Помощь в написании студенческих работ
Антистрессовый сервис

Критерии согласия ч2 Пирсона для простой гипотезы

РефератПомощь в написанииУзнать стоимостьмоей работы

В данном случае к перечисленным ранее трудностям аппроксимации прибавляется еще одна — выбор разумного разбиения исходного пространства. При этом надо заботится о том, чтобы в целом правило проверки гипотезы об исходном распределении выборки было достаточно чувствительным к возможным альтернативам. Наконец, отмечу, что статистические критерии, основные на редукции к схеме Бернулли, как правило… Читать ещё >

Критерии согласия ч2 Пирсона для простой гипотезы (реферат, курсовая, диплом, контрольная)

Теорема К. Пирсона относится к независимым испытаниям с конечным числом исходов, т. е. к испытаниям Бернулли (в несколько расширенном смысле). Она позволяет судить о том, согласуются ли наблюдения в большом числе испытаний частоты этих исходов с их предполагаемыми вероятностями.

Во многих практических задачах точный закон распределения неизвестен. Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому. Данная гипотеза требует статистической проверки по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X — исследуемая случайная величина. Требуется проверить гипотезу H0 о том, что данная случайная величина подчиняется закону распределения F (x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F'(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия. Одним из популярных является критерий согласия хи-квадрат К. Пирсона.

В нем вычисляется статистика хи-квадрат:

(2.1).

Критерии согласия ч2 Пирсона для простой гипотезы.

где N — число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i — номер интервала, pti -вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, pei — вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H0 отвергается. В противном случае она принимается на заданном уровне значимости. Здесь k — число наблюдений, p число оцениваемых параметров закона распределения.

Рассмотрим статистику:

(2.2).

(2.2).

Статистика ч2 называется статистикой хи-квадрат Пирсона для простой гипотезы.

Ясно, что ч2 представляем собой квадрат некоего расстояния между двумя r-мерными векторами: вектором относительных частот (mi/n, …, mr/n) и вектором вероятностей (pi, …, pr). От евклидового расстояния это расстояние отличается лишь тем, что разные координаты входят в него с разными весами.

Обсудим поведение статистики ч2 в случае, когда гипотеза Н верна, и в случае, когда Н неверна. Если верна Н, то асимптотическое поведение ч2 при n >? указывает теорема К. Пирсона. Чтобы понять, что происходит с (2.2), когда Н неверна, заметим, что по закону больших чисел mi/n > pi при n > ?, для i = 1, …, r. Поэтому при n > ?:

(2.3).

(2.3).

Эта величина равна 0. Поэтому если Н неверна, то ч2 >? (при n > ?).

Из сказанного следует, что Н должна быть отвергнута, если полученное в опыте значение ч2 слишком велико. Здесь, как всегда, слова «слишком велико» означают, что наблюденное значение ч2 превосходит критическое значение, которое в данном случае можно взять из таблиц распределения хи-квадрат. Иначе говоря, вероятность Р (ч2 npi ч2) — малая величина и, следовательно, маловероятно случайно получить такое же, как в опыте, или еще большее расхождение между вектором частот и вектором вероятностей.

Асимптотический характер теоремы К. Пирсона, лежащий в основе этого правила, требует осторожности при его практическом использовании. На него можно полагаться только при больших n. Судить же о том, достаточно ли n велико, надо с учетом вероятностей pi, …, pr. Поэтому нельзя сказать, к примеру, что ста наблюдений будет достаточно, поскольку не только n должно быть велико, но и произведения npi, …, npr (ожидаемые частоты) тоже не должны быть малы. Поэтому проблема аппроксимации ч2 (непрерывное распределение) к статистике ч2, распределение которой дискретно, оказалась сложной. Совокупность теоретических и экспериментальных доводов привела к убеждению, что эта аппроксимация применима, если все ожидаемые частоты npi>10. если число r (число различных исходов) возрастает, граница для npi может быть снижена (до 5 или даже до 3, если r порядка нескольких десятков). Чтобы соблюсти эти требования, на практике порой приходится объединять несколько исходов, т. е. переходить к схеме Бернулли с меньшим r.

Описанный способ для проверки согласия можно прилагать не только к испытаниям Бернулли, но и к произвольным выборкам. Предварительно их наблюдения надо превратить в испытания Бернулли путем группировки. Делают это так: пространство наблюдений разбивают на конечное число непересекающихся областей, а затем для каждой области подсчитывают наблюденную частоту и гипотетическую вероятность.

В данном случае к перечисленным ранее трудностям аппроксимации прибавляется еще одна — выбор разумного разбиения исходного пространства. При этом надо заботится о том, чтобы в целом правило проверки гипотезы об исходном распределении выборки было достаточно чувствительным к возможным альтернативам. Наконец, отмечу, что статистические критерии, основные на редукции к схеме Бернулли, как правило, не являются состоятельными против всех альтернатив. Так что такой метод проверки согласия имеет ограниченную ценность.

Показать весь текст
Заполнить форму текущей работой