Солнечная атмосфера.
Циклы солнечной активности, их влияние на Землю
Вся солнечная атмосфера постоянно колеблется. В ней распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания носят резонансный характер и происходят с периодом около 5 мин. В возникновении явлений происходящих на Солнце большую роль играют магнитные поля. Вещество на Солнце всюду представляет собой намагниченную плазму. Иногда в отдельных… Читать ещё >
Солнечная атмосфера. Циклы солнечной активности, их влияние на Землю (реферат, курсовая, диплом, контрольная)
Солнце… Ежедневно оно появляется из-за горизонта, совершает свой обычный путь по небу и вечером исчезает. Обычно мы не замечаем, насколько вся наша жизнь тесно связана с Солнцем. А ведь оно дает свет и тело всем животным и растениям, без него не могла бы существовать жизнь на Земле. Солнце — центральное тело Солнечной системы — представляет собой раскалённый плазменный шар. Солнце — ближайшая к Земле звезда. Свет от него до нас доходит за 8,3 мин. Солнце решающим образом повлияло на образование всех тел Солнечной системы и создало те условия, которые привели к возникновению и развитию жизни на Земле.
Его масса в 333 000 раз больше массы Земли и в 750 раз больше массы всех других планет, вместе взятых. За 5 миллиардов лет существования Солнца уже около половины водорода в его центральной части превратилось в гелий.
В результате этого процесса выделяется то количество энергии, которое Солнце излучает в мировое пространство. Мощность излучения Солнца очень велика: около 3,8 * 410 520 0 степени МВт. На Землю попадает ничтожная часть Солнечной энергии, составляющая около половины миллиардной доли. Она поддерживает в газообразном состоянии земную атмосферу, постоянно нагревает сушу и водоёмы, даёт энергию ветрам и водопадам, обеспечивает жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти и других полезных ископаемых. Видимый с Земли диаметр Солнца незначительно меняется из-за эллиптичности орбиты и составляет, в среднем, 1 392 000 км. (что в 109 раз превышает диаметр Земли). Расстояние до Солнца в 107 раз превышает его диаметр. Солнце представляет собой сферически симметричное тело, находящееся в равновесии. Всюду на одинаковых расстояниях от центра этого шара физические условия одинаковы, но они заметно меняются по мере приближения к центру. Плотность и давление быстро нарастают вглубь, где газ сильнее сжат давлением вышележащих слоёв. Следовательно, температура также растёт по мере приближения к центру. В зависимости от изменения физических условий Солнце можно разделить на несколько концентрических слоёв, постепенно переходящих друг в друга.
В центре Солнца температура составляет 15 миллионов градусов, а давление превышает сотни миллиардов атмосфер. Газ сжат здесь до плотности около 150 000 кг/ м.
Почти вся энергия Солнца генерируется в центральной области с радиусом примерно 1/3 солнечного. Через слои, окружающие центральную часть, эта энергия передаётся наружу. На протяжении последней трети радиуса находится конвективная зона. Причина возникновения перемешивания (конвекции) в наружных слоях Солнца та же, что и в кипящем чайнике: количество энергии, поступающее от нагревателя, гораздо больше того, которое отводится теплопроводностью. Поэтому вещество вынужденно приходит в движение и начинает само переносить тепло. Ядро и конвективная зона фактически не наблюдаемы. Об их существовании известно либо из теоретических расчётов, либо на основании косвенных данных. Над конвективной зоной располагаются непосредственно наблюдаемые слои Солнца, называемые его Атмосферой. Они лучше изучены, т.к. об их свойствах можно судить из наблюдений.
Солнечная атмосфера так же состоит из нескольких различных слоёв. Самый глубокий и тонкий из них — фотосфера, непосредственно наблюдаемая в видимом непрерывном спектре. Толщина фотосферы приблизительно около 300 км. Чем глубже слои фотосферы, тем они горячее. Во внешних более холодных слоях фотосферы на фоне непрерывного спектра образуются Фраунгоферовы линии поглощения. Во время наибольшего спокойствия земной атмосферы можно наблюдать характерную зернистую структуру фотосферы. Чередование маленьких светлых пятнышек — гранул — размером около 1000 км, окруженных тёмными промежутками, создаёт впечатление ячеистой структуры — грануляции. Возникновение грануляции связано с происходящей под фотосферой конвекцией. Отдельные гранулы на несколько сотен градусов горячее окружающего их газа, и в течение нескольких минут их распределение по диску Солнца меняется. Спектральные измерения свидетельствуют о движении газа в гранулах, похожих на конвективные: в гранулах газ поднимается, а между ними — опускается.
Это движение газов порождают в солнечной атмосфере акустические волны, подобные звуковым волнам в воздухе. Распространяясь в верхние слои атмосферы, волны, возникшие в конвективной зоне и в фотосфере, передают им часть механической энергии конвективных движений и производят нагревание газов последующих слоёв атмосферыхромосферы и короны. В результате верхние слои атмосферы с температурой около 4500К оказываются самыми «холодными» на Солнце. Как вглубь, так и вверх от них температура газов быстро растёт. Расположенный над фотосферой слой называют хромосферой, во время полных солнечных затмений в те минуты, когда Луна полностью закрывает фотосферу, виден как розовое кольцо, окружающее тёмный диск. На краю хромосферы наблюдаются выступающие язычки пламени — хромосферные спикулы, представляющие собой вытянутые столбики из уплотнённого газа. Тогда же можно наблюдать и спектр хромосферы, так называемый спектр вспышки. Он состоит из ярких эмиссионных линий водорода, гелия, ионизированного кальция и других элементов, которые внезапно вспыхивают во время полной фазы затемнения. Выделяя излучение Солнца в этих линиях, можно получить его изображение. Хромосфера отличается от фотосферы значительно более неправильной неоднородной структурой. Заметно два типа неоднородностей — яркие и тёмные. По своим размерам они превышают фотосферные гранулы.
В целом распределение неоднородностей образует так называемую хромосферную сетку, особенно хорошо заметную в линии ионизированного кальция. Как и грануляция, она является следствием движения газов в под фотосферной конвективной зоне, только происходящих в более крупных масштабах. Температура в хромосфере быстро растёт, достигая в верхних её слоях десятков тысяч градусов. Самая верхняя и самая разряжённая часть солнечной атмосферы — корона, прослеживающаяся от солнечного лимба до расстояний в десятки солнечных радиусов и имеющая температуру около миллиона градусов. Корону можно видеть только во время полного солнечного затмения либо с помощью коронографа.
Вся солнечная атмосфера постоянно колеблется. В ней распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания носят резонансный характер и происходят с периодом около 5 мин. В возникновении явлений происходящих на Солнце большую роль играют магнитные поля. Вещество на Солнце всюду представляет собой намагниченную плазму. Иногда в отдельных областях напряженность магнитного поля быстро и сильно возрастает. Этот процесс сопровождается возникновением целого комплекса явлений солнечной активности в различных слоях солнечной атмосферы. К ним относятся факелы и пятна в фотосфере, флоккулы в хромосфере, протуберанцы в короне. Наиболее замечательным явлением, охватывающим все слои солнечной атмосферы и зарождающимся в хромосфере, являются солнечные вспышки.