Применение магнитных материалов в энергетике
Для уменьшения потерь на гистерезис выбирают материалы с пониженной коэрцитивной силой, а для уменьшения вихревых токов магнитопроводы собирают из отдельных пластин и используют металлы с повышенным удельным сопротивлением. Дело в том, что ЭДС самоиндукции, благодаря которой возникают вихревые токи, пропорциональна площади поперечного сечения контура. При рассечении площади n изолированными… Читать ещё >
Применение магнитных материалов в энергетике (реферат, курсовая, диплом, контрольная)
Применение магнитных материалов в энергетике. Свойства наиболее применяемых материалов
Магнитомягкие материалы используются в энергетике в качестве разнообразных магнитопроводов в трансформаторах, электрических машинах, электромагнитах и т. д.
Для уменьшения потерь на гистерезис выбирают материалы с пониженной коэрцитивной силой, а для уменьшения вихревых токов магнитопроводы собирают из отдельных пластин и используют металлы с повышенным удельным сопротивлением. Дело в том, что ЭДС самоиндукции, благодаря которой возникают вихревые токи, пропорциональна площади поперечного сечения контура. При рассечении площади n изолированными пластинами в каждой пластине наводится уменьшенная в n раз ЭДС. Мощность потерь при протекании вихревого тока пропорциональна квадрату напряжения (ЭДС) и обратно пропорциональна удельному сопротивлению. Поэтому уменьшение ЭДС в каждой из отдельных пластин и использование металлов с повышенным удельным сопротивлением приводит к уменьшению общих потерь.
Основой наиболее широко используемых в электротехнике магнитных материалов является низкоуглеродистая электротехническая сталь. Она выпускается в виде листов, толщиной от 0.2 мм до 4 мм, содержит не выше 0.04% углерода и не выше 0.6% других примесей. Максимальное значение магнитной проницаемости max ~ 4000, коэрцитивной силы Нс~ 65−100 А/м. Наблюдается интересная закономерность: чем чище железо и чем лучше оно отожжено — тем выше магнитная проницаемость и тем ниже коэрцитивная сила. Для особо чистого железа эти параметры составляют: более 1 миллиона и менее 1 А/м, соответственно.
Добавлением в состав кремния достигается повышение удельного сопротивления стали с 0.14 мкОм· м для нелегированной стали до 0.6 мкОм· м для высоколегированной стали. Это дает уменьшение потерь.
Электротехническую сталь маркируют следующим образом: первая цифра-структура (1-горячекатанная изотропная, 2-холоднокатанная изотропная, 3- холоднокатанная анизотропная с ребровой структурой), вторая цифрасодержание кремния (0-до 0.4%, 1 — до 0.8%. 2 — до 1.8%, 3-до 2.8%, 4 — до 3.8%, 4 — до 4.8%), третья цифра — тип нормируемых магнитных характеристик (0- удельные потери при В=1.7 Тл, f=50 Гц, 1- удельные потери при В=1.5 Тл, f=50 Гц, 2- удельные потери при В=1 Тл, f=400 Гц, 6- В при Н=0.4 А/м, 7- В в средних полях при Н=10 А/м). Четвертая цифра в старых справочниках означала номер материала. В современных справочниках четвертая и пятая цифры являются одним числом, означающим численную характеристику нормируемого параметра.
Если к железу добавить никель, то полученные материалы будут обладать повышенной магнитной проницаемостью (до 100 000 у 79НМ, 79% никеля и небольшое количество марганца). Такие сплавы называются пермаллои, они используются для изготовления сердечников малогабаритнгых силовых и импульсных трансформаторов. Практически такие же результаты по магнитной проницаемости можно получить, добавляя к железу кремний (9.5%) и алюминий (5.6%). Такие сплавы называются альсиферами.
Добавки к железу и никелю молибдена, хрома, меди приводит к еще большему росту начальной магнитной проницаемости, более 100 тысяч. Такие материалы используются в миниатюрных магнитных устройствах.