Помощь в написании студенческих работ
Антистрессовый сервис

Классификация антигипоксантов. 
Антиоксиданты и антигипоксанты

РефератПомощь в написанииУзнать стоимостьмоей работы

Создание антигипоксантов с электроноакцепторными свойствами, образующими искуственные редокс-системы, преследует цель в какой-то мере компенсировать развивающийся при гипоксии дефицит естественного акцептора электронов — кислорода. Такие препараты должны шунтировать звенья дыхательной цепи, перегруженные электронами в условиях гипоксии, «снимать» электроны с этих звеньев и тем самым… Читать ещё >

Классификация антигипоксантов. Антиоксиданты и антигипоксанты (реферат, курсовая, диплом, контрольная)

  • 1. ПРЕПАРАТЫ С ПОЛИВАЛЕНТНЫМ ДЕЙСТВИЕМ1.1. Производные амидинотиомочевины1.2. Ингибиторы окисления жирных кислот2. СУКЦИНАТСОДЕРЖАЩИЕ И СУКЦИНАТОБРАЗУЮЩИЕ СРЕДСТВА3. ЕСТЕСТВЕННЫЕ КОМПОНЕНТЫ ДЫХАТЕЛЬНОЙ ЦЕПИ4. ИСКУССТВЕННЫЕ РЕДОКС-СИСТЕМЫ5. МАКРОЭРГИЧЕСКИЕ СОЕДИНЕНИЯ
  • 1. ПРЕПАРАТЫ С ПОЛИВАЛЕНТНЫМ ДЕЙСТВИЕМ

1.1. ПРОИЗВОДНЫЕ АМИДИНОТИОМОЧЕВИНЫ.

1.2. ИНГИБИТОРЫ ОКИСЛЕНИЯ ЖИРНЫХ КИСЛОТ.

Гутимин.

Триметазидин (Предуктал).

Пергексилин.

Амтизол.

Ранолазин.

Этомоксир

;

Милдронат.

Карнитин (Карнитен).

Кафедра фармакологии Российской военно-медицинской академии является пионером в разработке антигипоксантов не только в нашей стране, но и в мире. Еще в 60-х годах на кафедре под руководством профессора В. М. Виноградова были созданы первые антигипоксанты: гутимин, а затем амтизол, активно изучавшиеся впоследствие под руководством профессора А. В. Смирнова. Механизм противогипоксического действия гутимина и амтизола на молекулярном уровне пока до конца не выяснен. Четко установлено положительное поливалентное влияние этих средств на энергетику клетки. Основу такого влияния составляет, очевидно, оптимизация функций митохондрий, в которые препараты активно проникают. При гипоксии они стабилизируют митохондриальные мембраны, уменьшают угнетение дегидрогеназ цикла Кребса, предоствращают разобщение окисления и фосфорилирования, увеличивая тем самым продукцию АТФ на единицу потребляемого дефицитного кислорода. Определенный вклад в антигипоксическое действие гутимина и амтизола вносит их способность снижать кислородный запрос тканей, благодаря ингибированию нефосфорилирующих видов окисления — микросомального и свободнорадикального. В результате кислород экономится для потребления в энергопродуцирующих окислительных реакциях в митохондриях. Имеются веские основания предполагать, что снижение кислородного запроса тканей обусловлено также ослаблением гутимином и амтизолом дыхательного контроля в митохондриях, то есть, усиление потребления кислорода митохондриями происходит при большем накоплении АДФ. Следовательно, при определенной степени гипоксии, в органах и тканях с менее активным метаболизмом образовавшегося при распаде АТФ количества АДФ уже не будет хватать для поддержания достаточно высокого уровня окисления, потребления кислорода и ресинтеза АТФ в митохондриях. В органах же с более активным метаболизмом, которые менее устойчивы к гипоксии (мозг, почки, печень и др.), АДФ будет накапливаться в достаточных для этого количествах. Таким образом, происходит экономизация потребления кислорода в органах с менее активным метаболизмом, позволяющая перераспределять дефицитный кислород в органы, лимитирующие устойчивость к гипоксии, но и в них уровень потребления кислорода будет ниже, чем обычно. Четко установленным компонентом антигипоксического действия гутимина и амтизола является активация гликолиза с увеличением анаэробного образования АТФ. Обычно гликолиз при гипоксии быстро ингибируется развивающимся ацидозом вследствие накопления лактата. Гутимин и амтизол уменьшают образование лактата в клетке, облегчая вхождение пирувата в цикл Кребса. Отчасти это объясняется уменьшением конкуренции за вхождение в данный цикл пирувата с остатками свободных жирных кислот, поскольку эти препараты блокируют липолиз, и, следовательно, высвобождение этих кислот. Происходит переключение цикла Кребса на преимущественное окисление углеводов — самых выгодных источников энергии при гипоксии, так как на единицу потребленного кислорода они дают наибольший выход АТФ. Происходящее переключение подтверждается повышением дыхательного коэффициента на фоне действия гутимина и амтизола. Данные антигипоксанты помимо уменьшения образования лактата усиливают и его утилизацию в реакциях глюконеогенеза, обеспечивая тем самым и ресинтез углеводов, запасы которых в организме невелики. Таким образом, активируя энергопродукцию в процессе гликолиза, гутимин и амтизол не только не усугубляют метаболический ацидоз при гипоксии, но, напротив, ослабляют его проявления и обеспечивают восстановление углеводных источников энергии. Некоторое значение в антигипоксическом эффекте гутимина и амтизола может иметь и способность этих препаратов тормозить определенные энергопотребляющие процессы, не играющие решающей роли в поддержании жизнеспособности клетки при критической гипоксии. Установлено, в частности, что гутимин и амтизол могут снижать активность мембранных АТФаз. В большом числе экспериментальных и клинических исследований получены доказательства высокой эффективности этих препаратов при шоке различного генеза, инфаркте миокарда, гипоксии и ишемии сердца, почек и печени при хирургических операциях на этих органах, инсультах, внутриутробной гипоксии плода и слабости родовой деятельности, дыхательной недостаточности разной природы, включая хирургические вмешательства на легких, кровопотере, в том числе во время операций, постоперационных парезах кишечника, менингококковой инфекции. Средние дозы амтизола составляют 2−4 мг/кг (до 15 мг/кг) в сутки 1,5% ампульного раствора внутривенно капельно 1−2 раза в сутки; гутимина — 10−15 мг/кг 1 раз в сутки. Основные показания к применению амтизола и гутимина и схемы использования препаратов представлены в таблицах 1−2. Амтизол, наряду с натрия оксибутиратом, признан Фармакологическим комитетом МЗ РФ эталонным антигипоксантом. Средствами, близкими по фармакологическим свойствам (но не по строению) к гутимину и амтизолу, являются препараты — ингибиторы окисления жирных кислот, использующиеся в настоящее время в комплексной терапии ишемической болезни сердца. Среди них выделяют прямые ингибиторы карнитин-пальмитоилтрансферазы-I (пергекселин, этомоксир), парциальные ингибиторы окисления жирных кислот (ранолазин, триметазидин, милдронат), и непрямые ингибиторы окисления жирных кислот (карнитин). Точки приложения некоторых препаратов представлены на рис. 2.Пергекселин и этомоксир способны угнетать активность карнитин-пальмитоилтрансферазы-I, нарушая таким образом перенос длинноцепочечных ацильных групп на карнитин, что приводит к блокаде образования ацилкарнитина. Вследствие этого падает внутримитохондриальный уровень ацил-КоА и уменьшается НАДЧН2/НАД соотношение, что сопровождается повышением активности пируватдегидрогеназы и фосфофруктокиназы, а следовательно стимуляцией окисления глюкозы, что яввляется более энергетически выгодным по сравнению с окислением жирных кислот. Пергекселин назначается перорально в дозах 200−400 мг/сут длительностью до 3-х месяцев. Препарат может комбинироваться с бета-адреноблокаторами, блокаторами кальциевых каналов и нитратами. Однако, его клиническое применение ограничивается неблагоприятными эффектами — развитием нейропатии и гепатотоксичностью. Этомоксир используют в дозе 80 мг/сут длительностью до 3-х месяцев. Однако, для окончательного суждения об эффективности и безопасности препарата необходимо проведение дополнительных исследований. При этом особое внимание уделяется вопросу токсичности этомоксира, учитывая тот факт, что он является необратимым ингибитором карнитин-пальмитоилтрансферазы-I.Триметазидин, ранолазин и милдронат относят к парциальным ингибиторам окисления жирных кислот. Триметазидин блокирует 3-кетоацилтиолазу, один из ключевых ферментов окисления жирных кислот. В результате тормозится окисление в митохондриях всех жирных кислот — как длинноцепочечных (количество атомов углерода больше 8), так и короткоцепочечных (количество атомов углерода меньше 8), однако, никаким образом не изменяется накопление активированных жирных кислот в митохондриях. Под влиянием триметазидина увеличивается окисление пирувата и гликолитическая продукция АТФ, уменьшается концентрация АМФ и АДФ, тормозится накопление лактата и развитие ацидоза, подавляется свободнорадикальное окисление. Триметазидин уменьшает скорость проникновения нейтрофильных гранулоцитов в миокард после реперфузии, вследствие чего уменьшается вторичное повреждение клеточных мембран продуктами перекисного окисления липидов. Кроме того, он обладает антитромбоцитарным действием и эффективен в предупреждении внутрикоронарной агрегации тромбоцитов, при этом, в отличие от аспирина, не влияя на коагуляцию и время кровотечения. По экспериментальным данным, триметазидин оказывает такое действие не только в миокарде, но и в других органах, то есть, по сути дела он является типичным антигипоксантом, перспективным для дальнейшего изучения и применения при различных критических состояниях. В Европейском многоцентровом исследовании триметазидина (TEMS) у больных со стабильной стенокардией применение препарата способствовало уменьшению частоты и продолжительности эпизодов ишемии миокарда на 25%, что сопровождалось повышением толерантности больных к физической нагрузке. Назначение триметазидина в сочетании с бета-адреноблокаторами, нитратами и блокаторами кальциевых каналов способствовует заметному повышению эффективности антиангинальной терапии. В настоящее время препарат применяется при стенокардии напряжения, постинфарктных состояниях, а также других заболеваниях, в основе которых лежит ишемия, в том числе вестибулокохлеарная и хориоретинальная ишемия. В комплексном лечении ИБС препарат назначается в разовой дозе 20 мг 3 раза в день, продолжительность курса может достигать 3 месяцев. Появление новой лекарственной формы триметазидина с медленным высвобождением (предуктал МВ, 35 мг/таб) позволяет принимать препарат 2 раза в сутки. Раннее включение триметазидина в комплексную терапию острого периода инфаркта миокарда способствует ограничению размера некроза миокарда, предотвращает развитие ранней постинфарктной дилатации левого желудочка, увеличивает электрическую стабильность сердца, не влияя на параметры ЭКГ и вариабельность сердечного ритма. Побочные эффекты редки (дискомфорт в области желудка, тошнота, головная боль, головокружения, бессонница). Ранолазин также является ингибитором оксиления жирных кислот, хотя, его биохимическая мишень пока не установлена. Он оказывает антиишемический эффект вследствие ограничения использования в качестве энергетического субстрата свободных жирных кислот и повышения использования глюкозы. Это приводит к образованию большего количества АТФ на каждый моль потребленного кислорода. Ранолазин — обратимый ингибитор дегидрогеназы НАД-Н в митохондриях, приводящий к улучшению эффективности метаболизма. Однако он не способен оказывать достаточный антиангинальный эффект при монотерапии и поэтому используется в комбинированной терапии больных ИБС вместе с бета-адреноблокаторами и блокаторами кальциевых каналов. Разовая доза препарата составляет 240 мг 2 раза в сутки и обычно не вызывает выраженных побочных эффектов, однако при комбинации его с бета-адреноблокаторами или блокаторами кальциевых каналов могут наблюдаются умеренно выраженные головные боли, головокружения, астенические явления. Создана и лекарственная форма препарата с пролонгированным действием (ранолазин SR, 500 мг/таб).Милдронат обратимо ограничивает скорость биосинтеза карнитина из его предшественника — гамма-бутиробетаина. Вследствие этого нарушается карнитин-опосредованный транспорт длинноцепочечных жирных кислот через мембраны митохондрий без воздействия на метаболизм короткоцепочечных жирных кислот. Это означает, что милдронат практически не способен оказывать токсического действия на дыхание митохондрий, так как не может полностью блокировать окисления всех жирных кислот. Частичная блокада окисления жирных кислот включает альтернативную систему производства энергии — окисление глюкозы, которая значительно эффективнее (на 12%) использует кислород для синтеза АТФ. Кроме того, под влиянием милдроната повышается концентрация гамма-бутиробетаина, способного индуцировать образование NO, что приводит к уменьшению ОПС. Милдронат, так и триметазидин, при стабильной стенокардии уменьшает частоту приступов стенокардии, повышает толерантность больных к физической нагрузке и снижает среднее суточное потребление нитроглицерина. Препарат малотоксичен и не вызывает существенных побочных эффектов. Карнитин (витамин ВТ) является эндогенным соединением и образуется из лизина и метионина в печени и почках. Он играет важную роль в переносе длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий, в то время как активация и проникновение низших жирных кислот происходит без картинитина. Кроме того, карнитин играет ключевую роль в образовании и регуляции уровня ацетил-КоА.Физиологические концентрации карнитина обладают насыщающим действием на карнитин-пальмитоил-трансферазу I, а увеличение дозы препарата не повышает транспорт ацильных групп жирных кислот в митохондрии при участии данного фермента. Однако, это приводит к активации карнитин-ацилкарнитин-транслоказы (которая не насыщается физиологическими концентрациями карнитина) и падению внутримитохондриальной концентрации ацетил-КоА, который транспортируется в цитозоль (через образование ацетилкарнитина). В цитозоле избыток ацетил-КоА подвергается воздействию ацетил-КоА-карбоксилазы с образованием малонил-КоА, который обладает свойствами непрямого ингибитора карнитин-пальмитоил-трансферазы I. Уменьшение же интрамитохондриального ацетил-КоА коррелирует с повышением уровня пируватдегидрогеназы, которая обеспечивает окисление пирувата и ограничивает продукцию лактата. Таким образом, антигипоксическое действие карнитина связано с блокадой транспорта жирных кислот в митохондрии, является дозозависимым и проявляется при назначении высоких доз препарата, в то время как низкие дозы обладают лишь специфическим витаминным действием. Одно из самых больших исследований с применением карнитина — CEDIM. При проведении его было показано, что длительная терапия карнитином в достаточно высоких дозах у больных с инфарктом миокарда ограничивает дилатацию левого желудочка. Кроме того положительный эффект от применения препарата получен при тяжелых черепно-мозговых травмах, гипоксии плода, отравлении угарным газом и т. д., однако большая вариабельность курсов применения и не всегда адекватная дозовая политика затрудняют интерпретацию результатов таких исследований.

2. СУКЦИНАТСОДЕРЖАЩИЕ И СУКЦИНАТОБРАЗУЮЩИЕ СРЕДСТВА

I. СУКЦИНАТСОДЕРЖАЩИЕ СРЕДСТВА.

II. СУКЦИНАТОБРАЗУЮЩИЕ СРЕДСТВА.

Реамберин.

Мафусол.

Мексидол (Мексикор).

Оксибутират натрия/лития.

Практическое использование в качестве антигипоксантов начали находить препараты, поддерживающие при гипоксии активность сукцинатоксидазного звена. Это ФАД-зависимое звено цикла Кребса, позднее угнетающееся при гипоксии по сравнению с НАД-зависимыми оксидазами, может определенное время подерживать энергопродукцию в клетке при условии наличия в митохондриях субстрата окисления в данном звене — сукцината (янтарной кислоты).Одним из препаратов, созданных на основе янтарной кислоты является реамберин — 1,5% раствор для инфузий, представляющий собой сбалансированный полиионный раствор с добавлением смешанной натрий N-метилглюкаминовой соли янтарной кислоты (до 15 г/л). Осмолярность этого раствора приближена к осмолярности плазмы человека. Изучение фармакокинетики реамберина показало, что при внутривенном введении в дозе 5 мг/кг максимальный уровень препарата (в пересчете на сукцинат) наблюдается в течение 1-й минуты после введения с последующим быстрым снижением до уровня 9−10 мкг/мл и через 40 минут после введения концентрация в крови возвращается к значениям, близким к фоновым (1−6 мкг/мл), что требует внутривенного капельного введения препарата. Инфузия реамберина сопрвождается повышением рН и буферной емкости крови, а также ощелачиванием мочи. В дополнение к антигипоксантной активности, реамберин обладает дезинтоксикационным и антиоксидантным (за счет активации ферментативного звена антиоксидантной системы) действием. Основные показания к применению препарата представлены в таблице 1. Побочных эффектов у препарата немного, в основном это кратковременное чувство жара и покраснение верхней части тела. Противопоказан реамберин при индивидуальной непереносимости, состояниях после черепно-мозговых травм, сопровождающихся отеком мозга. Однако, при применении препаратов, содержащих экзогенный сукцинат необходимо учитывать, что он относительно плохо проникает через биологические мембраны. Более перспективен здесь может быть препарат мексидол — оксиметилэтилпиридина сукцинат — представляющий собой комплекс сукцината с антиоксидантом эмоксипином, обладающим относительно слабой антигипоксической активностью, но облегчающим транспорт сукцината через мембраны. Подобно эмоксипину, мексидол является ингибитором свободнорадикальных процессов, но оказывает более выраженное антигипоксическое действие. Основные фармакологичекие эффекты мексидола можно суммировать следующим образом:1) активно реагирует с перекисными радикалами белков и липидов;2) оказывает модулирующее действие на некоторые мембрансвязанные ферменты (фосфодиэстеразу, аденилатциклазу), ионые каналы;3) обладает гиполипидемическим действием, снижает уровень перекисной модификации липопротеидов, уменьшает вязкость липидного слоя клеточных мембран ;4) блокирует синтез некоторых простагландинов, тромбоксана и лейкотриенов;5) оптимизирует энергосинтезирующие функции митохондрий в условиях гипоксии, улучшает синаптическую передачу;6) улучшает реологические свойства крови, подавляет агрегацию тромбоцитов. Клинические испытания подтвердили эффективность мексидола при расстройствах ишемического генеза: острых нарушениях мозгового кровообращения, дисциркуляторной энцефалопатии, вегетососудистой дистонии, атеросклеротических нарушениях функций мозга, абстинентном синдроме при алкоголизме и наркоманиях, при других состояниях, сопровождающихся гипоксией тканей.

Введение

мексидола в комплексную терапию больных невирусными гепатитами позволяет сократить сроки достижения редукции клинической картины заболевания. При ишемических повреждениях ЦНС мексидол корригирует проявления гипоксического поражения, снижает частоту двигательных расстройств, вегетативных дисфункций, оптимизирует интегративную деятельность мозга и его пластичность. Применяют мексидол внутримышечно или внутривенно (струйно или капельно). Струйно препарат рекомендуется вводить для купирования абстинентного синдрома, вегетативных и симпато-адреналовых пароксизмов, а капельно при острых нарушениях мозгового кровообращения. Продолжительность приема и выбор индивидуальной дозы зависят от тяжести состояния больного и эффективности приема препарата. Максимальная суточная доза не должна превышать 800 мг. Обычно мексидол хорошо переносится. У некоторых больных возможно появление тошноты и сухости во рту. Противопоказан препарат при выраженных нарушениях функции печени и почек, аллергии к пиридоксину. Со способностью превращаться в сукцинат в цикле Робертса (g-аминобутиратном шунте) связано, очевидно, и противогипоксическое действие оксибутирата натрия/лития, хотя оно и не очень выражено. Трансаминирование ГАМК с альфа-кетоглутаровой кислотой является основным путем метаболической деградации ГАМК. Образующийся по ходу нейрохимической реакции полуальдегид янтарной кислоты с помощью семиальдегиддегидрогеназы при участии NAD окисляется в мозговой ткани в янтарную кислоту, которая включается в ЦТК. Такое дополнительное действие весьма полезно при использовании оксибутирата натрия в качестве общего анестетика. В условиях тяжелой циркуляторной гипоксии оксибутират в очень короткие сроки успевает запустить не только клеточные адаптационные механизмы, но и подкрепить их перестройкой энергетического обмена в жизненно важных органах. Поэтому не стоит ожидать сколько-нибудь заметного эффекта от введения малых доз анестетика. Средние дозы для натриевой соли оксибутирата составляют 70−120 мг/кг (до 250 мг/кг, в этом случае антигипоксическое действие будет выражено максимально), для литиевой соли — 10−15 мг/кг 1−2 раза в сутки. Действие предварительно введенного оксибутирата предотвращает, во-первых, активацию перекисного окисления липидов в нервной системе и миокарде, а во-вторых, предупреждает развитие их повреждения при интенсивном эмоционально-болевом стрессе. Кроме того, благоприятное действие оксибутирата натрия при гипоксии обусловлено тем, что он активирует энергетически более выгодный пентозный путь обмена глюкозы с ориентацией его на путь прямого окисления и образования пентоз, входящих в состав АТФ. Помимо этого, активация пентозного пути окисления глюкозы создает повышенный уровень НАДФЧН, как необходимого кофактора синтеза гормонов, что особенно важно для функционирования надпочечников. Изменение гормонального фона при введении препарата сопровождается повышением в крови содержания глюкозы, которая дает максимальный выход АТФ на единицу использованного кислорода и способна поддерживать продукцию энергии в условиях недостатка кислорода. Оксибутират лития дополнительно способен подавлять тиреоидную активность. Натрия оксибутират нивелирует изменения в кислотно-щелочном равновесии, снижает количество недоокисленных продуктов в крови, улучшает микроциркуляцию, усоряет скорость кровотока по капиллярам, артериолам и венулам, ликвидирует явления стаза в капиллярах. Мононаркоз оксибутиратом натрия представляет собой минимально токсичный вид общей анестезии и поэтому имеет наибольшую ценность у больных в состоянии гипоксии различной этиологии (тяжелая острая легочная недостаточность, кровопотеря, гипоксические и токсические повреждения миокарда), показан у пациентов с различными вариантами эндогенной интоксикации (в состоянии оксидативного стресса) (септические процессы, разлитой перитонит, печеночная и почечная недостаточность).Использование оксибутирата лития при операциях на легких сопровождается более гладким течением послеоперационного течения, смягчением лихорадочных реакций, уменьшением потребности в обезболивающих средствах. Отмечается оптимизация функции дыхания и менее выраженная гипоксемия, стабильность показателей кровообращения и ритма сердца, ускоренное восстановление уровня сывороточных трасаминаз и содержания лимфоцитов периферической крови. Натрия оксибутират вызывает перераспределение электоролитов (Na+ и K+) между жидкостями организма, увеличивая концентрацию K+ в клетках некоторых органов (мозг, сердце, скелетные мышцы) с развитием умеренной гипокалиемии и гипернатриемии. Побочные эффекты при применении препаратов редки, в основном при внутривенном введении (двигательное возбуждение, судорожные подергивания конечностей, рвота). Эти неблагоприятные явления при применении оксибутирата могут быть предупреждены во время премедикации метоклопрамидом или купированы дипразином. С обменом сукцината частично связан также противогипоксический эффект препарата мафусол (1 л водного раствора для инфузий содержит NaCl — 6.0, KCl — 0.3, MgCl — 0.12 и натрия фумарата 14.0). Мафусол содержит один из компонентов цикла Кребса — фумарат, хорошо проникающий через мембраны и легко утилизируемый в митохондриях. При наиболее жесткой гипоксии происходит обращение терминальных реакций цикла Кребса, то есть они начинают протекать в обратном направлении, и фумарат превращается в сукцинат с накоплением последнего. При этом обеспечивается сопряженная регенерация окисленного НАД из его восстановленной при гипоксии формы, и, следовательно, возможность энергопродукции в НАД-зависимом звене митохондриального окисления. При уменьшении глубины гипоксии направление терминальных реакций цикла Кребса меняется на обычное, при этом накопившийся сукцинат активно окисляется в качестве эффективного источника энергии. В этих условиях и фумарат преимущественно окисляется после превращения в малат. Антигипоксическое действие мафусола при различных критических состояниях (кровопотеря, шок, травма, интоксикация, острые нарушения мозгового кровообращения по ишемическому и геморрагическому типу) подтверждено в ходе клинических испытаний. Мафусол вводится внутривенно и внутриартериально; вначале вводят струйно, а при нормализации гемодинамических показателей — капельно; дозы и скорость введения выбирают в соответствии с показаниями и состоянием больного. При состоянии средней тяжести вводят 2−3 литра, при тяжелом состоянии препарат комбинируют с кровью или коллоидными кровезаменителями, при этом доза мафусола должна быть не менее 1 литра. В качестве компонента перфузионной смеси для заполнения контура аппарата искусственного кровообращения при кардиохирургических операциях у взрослых и детей мафусол может составлять до 50−70%. В случаях кровопотери, не превышающей 15% ОЦК у взрослых и детей, может быть использован в качестве единственной инфузионной среды. Мафусол можно применять вместо других солевых инфузионных растворов. Другим фумаратсодержащим антигипоксантом является полиоксифумарин (ПОФ), представляющий собой коллоидный раствор для внутривенного введения, содержащий 1,5% полиэтиленгликоль с молекулярной массой 17 000−26 000 дальтон с добавлением хлорида натрия (6 г/л) и магния (0,12 г/л), иодид калия (0,5 г/л), а также фумарат натрия (14 г/л). Солевой компонент кровезаменителя полностью метаболизируются, в то время как коллоидная основа (полиэтиленгликоль-20 000) не метаболизируется. После однократной инфузии препарата 80−85% полимера выводится из кровеносного русла в первые сутки через почки, а полное выведение коллоидного компонента происходит к 5−7 суткам. Многократное введение полиоксифумарина не приводит к накоплению полиэтиленгликоля-20 000 в органах и тканях и организм освобождается от него к 8−14 суткам.

Введение

полиоксифумарина приводит не только к постинфузионная гемодилюция, в результате которой уменьшается вязкость крови и улучшаются ее реологические свойства, но и повышается диурез и проявляется дезинтоксикационное действие. Входящий в состав фумарат натрия оказывает антигипоксическое действие. Кроме того, ПОФ используется в качестве компонента перфузионной среды для первичного заполнения контура аппарата ИК (150−400 мл, что составляет 11%-30% объема) при операциях коррекции врожденных и приобретенных пороков сердца в условиях искусственного кровообращения. При этом включение полиоксифумарина в состав перфузата положительно влияет на стабильность гемодинамики в постперфузионном периоде, снижает потребность в инотропной поддержке. Конфумин — 15% раствор фумарата натрия для инфузий, обладающий заметным антигипоксическим действием. Обладает определенным кардиотоническим и кардиопротекторным действием.

3. ЕСТЕСТВЕННЫЕ КОМПОНЕНТЫ ДЫХАТЕЛЬНОЙ ЦЕПИ.

Цитохром С (Цитомак).

Убихинон (Убинон, Коэнзим Q10).

Идебенон (Нобен).

Практическое применение нашли и антигипоксанты, представляющие собой естественные для организма компоненты дыхательной цепи митохондрий, участвующие в переносе электронов. К ним относится цитохром С и убихинон (убинон). Данные препараты, в сущности, выполняют функцию заместительной терапии, поскольку при гипоксии из-за структурных нарушений митохондрии теряют часть своих компонентов, включая переносчики электронов. В экспериментальных исследованиях доказано, в частности, что экзогенный цитохром С при гипоксии проникает в клетку и митохондрии, встраивается в дыхательную цепь и способствует нормализации энергопродуцирующего окислительного фосфорилирования. Цитохром С может быть полезным средством комбинированной терапии критических состояний. Показана высокая эффективность препарата при отравлении снотворными средствами, окисью углерода, токсических, инфекционных и ишемических повреждениях миокарда, пневмониях, нарушениях мозгового и периферического кровообращения. Применяют также при асфиксии новорожденных и инфекционном гепатите. Обычная доза препарата составляет 10−15 мг внутривенно, внутримышечно или внутрь (1−2 раза в день). В настоящее время разрабатывается липосомальная лекарственная форма цитохрома С, обеспечивающая более высокую биодоступность и эффективность по сравнению с обычной лекарственной формой (раствор).У больных, получающих цитохром С течение инфаркта миокарда более благоприятно, что сопровождается более быстрым улучшением состояния больных, увеличением сердечного выброса, фракции выброса левого желудочка, меньшим числом случаев развития левожелудочковой недостаточности. Компоненты дыхательной цепи митохондрий и точки приложения некоторых антигипоксантов. Условные обозначения: комплекс I — НАДН: убихинон-оксидоредуктаза; комплекс II — сукцинат: убихинон-оксидоредуктаза; комплекс III — убихинон: феррицито-хром с-оксидоредуктаза; комплекс IV — ферроцитохром с: кислород-оксидоредуктаза; FeS — железо-серный белок; ФМН — флавинмононуклеотид; ФАД — флавинадениндинуклеотид.

Препарат увеличивает сократительную и насосную функции сердца, стабилизирует гемодинамику, способствует положительной динамике ЭКГ. Это улучшает прогноз инфаркта миокарда, уменьшает частоту и выраженность левожелудочковой недостаточности. Выяыленный положительный инотропный эффект цитохрома С способствует более быстрому и полному восстановлению сократительной и ритмической функции сердца. Убихинон — кофермент, широко распространенный в клетках организма, в химическом отношении представляющий собой производное бензохинона. Он является переносчиком ионов водорода, компонентом дыхательной цепи. Кроме того, убихинон кроме специфической окислительно-восстановительной функции способен выполнять роль антиоксиданта. Препарат убихинона — убинон в основном используется в комплексной терапии больных ишемической болезнью сердца, при инфаркте миокарда. При применении препарата улучшается клиническое течение заболевания (преимущественно у больных I-II функционального класса), снижается частота приступов; увеличивается толерантность к физической нагрузке; повышается в крови содержание простациклина и снижается тромбоксана. Однако, необходимо учитывать, что сам препарат не приводит к увеличению коронарного кровотока и не способствует уменьшению кислородного запроса миокарда. Вследствие этого антиангинальный эффект препарата проявляется через некоторое, иногда довольно значительное (до 3-х месяцев) время. В комплексной терапии больных с ИБС убинон может сочетаться с бета-адреноблокаторами и ингибиторами ангиотензинпревращающего фермента. При этом снижается риск развития левожелудочковой сердечной недостаточности, нарушений сердечного ритма. Препарат малоэффективен у больных с резким снижением толерантности к физической нагрузке, а также при наличии высокой степени склеротического стенозирования коронарных артерий. Препарат обычно хорошо переносится. Иногда возможны тошнота и расстройства стула, в этом случае прием препарата прекращают. В качестве производного убихинона может рассматриваться идебенон, который по сравнению с коэнзимом Q10 обладает меньшим размером (в 5 раз), меньшей гидрофобностью и большей антиоксидантной активностью. Препарат проникает через гемато-энцефалический барьер и в значительных количествах распределяется в ткани мозга. Механизм действия идебенона сходен с таковым убихинона. Наряду с антигипоксическим и антиоксидантным эффектами он оказывает мнемотропное и ноотропное действие, развивающееся после 20−25 дней лечения. Наиболее частым побочным эффектом препарата (до 35%) является нарушение сна, обусловленное его активирующим действием, всвязи с чем послений прием идебенона должен осуществляться не позднее 17 часов.

4. ИСКУССТВЕННЫЕ РЕДОКС-СИСТЕМЫ.

Олифен (Гипоксен).

Создание антигипоксантов с электроноакцепторными свойствами, образующими искуственные редокс-системы, преследует цель в какой-то мере компенсировать развивающийся при гипоксии дефицит естественного акцептора электронов — кислорода. Такие препараты должны шунтировать звенья дыхательной цепи, перегруженные электронами в условиях гипоксии, «снимать» электроны с этих звеньев и тем самым в определенной степени восстанавливать функцию дыхательной цепи и сопряженного с ней фосфорилирования. Кроме того, искусственные акцепторы электронов могут обеспечивать окисление пиридиннуклеотидов (НАДН) в цитозоле клетки, предупреждая в результате ингибирование гликолиза и избыточное накопление лактата. Препараты, способные формировать искусственные редокс-сисемы, должны удовлетворять следующим основным требованиям: а) иметь оптимальный редокс-потенциал; б) обладать конформационной доступность для взаимодействия с дыхательными ферментами; в) иметь свойство осуществлять как одно-, так и двухэлектронный перенос. Из средств, формирующих искусственные редокс-системы, в медицинскую практику внедрен препарат олифен (гипоксен), представляющий собой синтетический полихинон. В межклеточной жидкости препарат, очевидно, диссоциирует на полихиноновый катион и тиоловый анион. Антигипоксический эффект препарата связан, в первую очередь, с наличием в его структуре полифенольного хинонового компонента, участвующего в переносе эектронов по дыхательной цепи. Полимеризованный фенольный комплекс обладает высокой антирадикальной активностью, препятствует развитию реакций свободнорадикального окисления и образованию перекисей липидов. Олифен обладает высокой электрон-объемной емкостью, связанной с полимеризацией фенольных ядер в орто-положении. Антигипоксическое действие олифена осуществляется в результате шунтирования транспорта электронов в дыхательной цепи митохондрий (с I-го и II-го комплексов на III-й), так как его окислительно-восстановительный потенциал составляет 300 мВ, что близко к значениям для цитохромоксидазы (рис.1). В постгипоксическом периоде препарат приводит к быстрому окислению накопленных восстановленных эквивалентов (НАДФН2, ФАДН). Тиосульфатная группировка препарата обеспечивает ему заметное антиоксидантное действие, обеспесивая нейтрализацию продуктов перекисного окисления липидов. При пероральном приеме препарат обладает высокой биодоступностью и достаточно равномерно распределяется в организме, несколько в большей степени накапливаясь в ткани головного мозга. Период полувыведения олифена составляет примерно 6 часов. Минимальная разовая доза, вызываюшая отчетливый клинический эффект у человека при пероральном приеме, составляет около 250 мг. Применение препарата разрешено при тяжелых травматических поражениях, шоке, кровопотере, обширных оперативных вмешательствах. У больных ишемической болезнью сердца он уменьшает ишемические проявления, нормализует гемодинамику, снижает свертываемость крови и общее потребление кислорода. Клинические исследования показали, что при включении олифена в комплекс терапевтических мероприятий понижается летальность больных с травматическим шоком, отмечается более быстрая стабилизация гемодинамических показателей в послеоперационном периоде. У больных хронической сердечной недостаточностью на фоне олифена снижаются проявления тканевой гипоксии, но не происходит особого улучшения насосной функции сердца, что ограничивает применение препарата при острой сердечной недостаточности. Отсутствие положительного влияния на состояние нарушенной центральной и внутрисердечной гемодинамики при инфаркте миокарда не позволяет сформировать однозначного мнения об эффективности препарата при данной патологии. Курсовое применение препарата после операций сопровождается более быстрой стабилизацией главных гемодинамических показателей и восстановлением ОЦК в послеоперационном периоде. Кроме того выявлен антиагрегационный эффект препарата. Олифен применяется в комплексной терапии острого деструктивного панкреатита (ОДП). При данной патологии эффективность применения препарата тем выше, чем раньше начато лечение. При назначении олифена регионарно (внутриаортально) в раннюю фазу ОДП следует тщательно определять момент возникновения заболевания, так как по прошествии периода управляемости и наличии уже сформировавшегося панкреонекроза применение препарата противопоказано. Это связано с тем, что олифен, улучшая микроциркуляцию вокруг зоны массивной деструкции, способствует развитию реперфузионного синдрома и ишемизированная ткань, через которую возобновляется кровоток, становится дополнительным источником токсинов, что может спровоцировать развитие шока. Регионарная терапия олифеном при ОДП противопоказана: 1) при четких анамнестических указаниях, что длительность заболевания превышает 24 ч; 2) при эндотоксическом шоке или появлении его предвестников (нестабильность гемодинамики); 3) наличии гемолиза и фибринолиза. Местное использование олифена у больных генерализованным пародонтитом позволяет устранить кровоточивость и воспаление десен, нормализовать показатели функциональной стойкости капиляров. Остается открытым вопрос об эффективности олифена в остром периоде цереброваску-лярных заболеваний (декомпенсация дисциркуляторной энцефалопатии, ишемический инсульт). Показано отсутствие влияния препарата на состояние магистрального мозгового и динамику системного кровотока. Применяют препарат перорально (до приема пищи или во время еды с небольшим количеством воды), внутривенно капельно или внутриаортально (после трансфеморальной катетеризации брюшной аорты до уровня чревного ствола. Средние разовые дозы для взрослых составляют 0,5−1,0 г., суточные — 1,5−3,0 г. Для детей разовая доза 0,25 г., суточная 0,75 г. Препарат, в целом, хорошо переносится, среди побочных эффектов можно отметить нежелательные вегетативные сдвиги, включая длительное повышение артериального давления у части больных, аллергические реакции и флебиты; редко кратковременное чувство сонливости, сухость во рту. При длительном курсовом применении олифена преобладают два основных побочных эффекта — острые флебиты (у 6% больных) и аллергические реакции в виде гиперемии ладоней и кожного зуда (у 4% больных), реже отмечаются кишечные расстройства (у 1% людей).

5. МАКРОЭРГИЧЕСКИЕ СОЕДИНЕНИЯ.

Креатинфосфат (Неотон).

Кислота аденозинтрифосфорная (АТФ).

Антигипоксантом, созданным на основе естественного для организма макроэргического соединения — креатинфосфата, является препарат неотон. В миокарде и в скелетной мышце креатинфосфат выполняет роль резерва химической энергии и используется для ресинтеза АТФ, гидролиз которой обеспечивает образование энергии, необходимой в процессе сокращения актомиозина. Действие как эндогенного, так и экзогенно вводимого креатинфосфата состоит в непосредственном фосфорилировании АДФ и увеличении тем самым количества АТФ в клетке. Кроме того, под влиянием препарата стабилизируется сарколеммальная мембрана ишемизированных кардиомиоцитов, снижается агрегация тромбоцитов и увеличивается пластичность мембран эритроцитов. Наиболее изучено нормализующее влияние неотона на метаболизм и функции миокарда. При повреждении миокарда существует тесная связь между содержанием в клетке высокоэнергетических фосфорилирующих соединений, выживаемостью клетки и способностью к восстановлению функции сокращения. Основными показаниями к применению креатинфосфата являются острый инфаркт миокарда, интраоперационная ишемия миокарда или конечностей, хроническая сердечная недостаточность. Показана эффективность препарата у больных с острым нарушением мозгового кровообращения. Кроме того, препарат может быть использован и в спортивной медицине для предотвращения неблагоприятных последствий физического перенапряжения. Дозы внутривенно капельно вводимого препарата различаются в зависимости от вида патологии. Включение неотона в состав комплексной терапии хронической сердечной недостаточности позволяет, как правило, уменьшить дозу сердечных гликозидов и диуретиков. Побочные эффекты редки, иногда возможно кратковременное снижение артериального давления при быстрой внутривенной инъекции в дозе свыше 1 г. Другим препаратом из этой группы является АТФ (кислота аденозинтрифосфорная). В качестве антигипоксанта препарат нашел применение преимущественно в кардиологии. Однако, результаты оказались противоречивы, что объясняется чрезвычайно плохим проникновением экзогенной АТФ через неповрежденные мембраны и ее дефосфорилированием в крови. Однако, если увеличить проникновение АТФ в кардиомиоциты, например введением его на фоне чреспищеводной кардиостимуляции, то препарат оказывает заметный положительный эффект. Терапевтический эффект препарата обусловлен как нейромедиаторны-ми свойствами (влияние на адрено-, холино-, пуриновые рецепторы), так и влиянием на обмен веществ и клеточные мембраны продуктов деградации АТФ — АМФ, цАМФ, аденозина, инозина. В условиях кислороддефицитных состояний проявляются новые свойства адениннуклеотидов как эндогенных внутриклеточных регуляторов метаболизма, функция которых направлена на защиту клетки от гипоксии. Дефосфорилирование АТФ приводит к накоплению аденозина, обладающего вазодилятаторным, антиаритмическим, антиангинальным и антиагрегационным эффектом и реализующего свои эффеты через Р1-Р3-пуринергические рецепторы в различных тканях. Завершая характеристику антигипоксантов, необходимо еще раз подчеркнуть, что применение данных препаратов имеет самые широкие перспективы, поскольку антигипоксанты нормализуют саму основу жизнедеятельности клетки — ее энергетику, определяющую все остальные функции. Поэтому использование антигипоксических средств в критических состояниях может предотвращать развитие необратимых изменений в органах и вносить решающий вклад в спасение больного. Большинство антигипоксантов характеризуется малой токсичностью и хорошо совмещается с другими средствами терапии. 17].

Показать весь текст
Заполнить форму текущей работой