Стандарт 802.11. Разработка программы расчета дальности распространения сигнала Wi-Fi
I (WPA2) — Целью создания данной спецификации является повышение уровня безопасности беспроводных сетей. В ней реализован набор защитных функций при обмене информацией через беспроводные сети — в частности, технология AES (Advanced Encryption Standard) — алгоритм шифрования, поддерживающий ключи длиной 128, 192 и 256 бит. Предусматривается совместимость всех используемых в данное время… Читать ещё >
Стандарт 802.11. Разработка программы расчета дальности распространения сигнала Wi-Fi (реферат, курсовая, диплом, контрольная)
Стандарт RadioEthernet IEEE 802.11 — это стандарт организации беспроводных коммуникаций на ограниченной территории в режиме локальной сети, т. е. когда несколько абонентов имеют равноправный доступ к общему каналу передач. 802.11 — первый промышленный стандарт для беспроводных локальных сетей (Wireless Local Area Networks), или WLAN. Стандарт был разработан Institute of Electrical and Electronics Engineers (IEEE), 802.11 может быть сравнен со стандартом 802.3 для обычных проводных Ethernet сетей.
Стандарт RadioEthernet IEEE 802.11 определяет порядок организации беспроводных сетей на уровне управления доступом к среде (MAC-уровне) и физическом (PHY) уровне. В стандарте определен один вариант MAC (Medium Access Control) уровня и три типа физических каналов.
Подобно проводному Ethernet, IEEE 802.11 определяет протокол использования единой среды передачи, получивший название carrier sense multiple access collision avoidance (CSMA/CA). Вероятность коллизий беспроводных узлов минимизируется путем предварительной посылки короткого сообщения, называемого ready to send (RTS), оно информирует другие узлы о продолжительности предстоящей передачи и адресате. Это позволяет другим узлам задержать передачу на время, равное объявленной длительности сообщения. Приемная станция должна ответить на RTS посылкой clear to send (CTS). Это позволяет передающему узлу узнать, свободна ли среда и готов ли приемный узел к приему. После получения пакета данных приемный узел должен передать подтверждение (ACK) факта безошибочного приема. Если ACK не получено, попытка передачи пакета данных будет повторена.
В стандарте предусмотрено обеспечение безопасности данных, которое включает аутентификацию для проверки того, что узел, входящий в сеть, авторизован в ней, а также шифрование для защиты от подслушивания.
На физическом уровне стандарт предусматривает два типа радиоканалов и один инфракрасного диапазона.
В основу стандарта 802.11 положена сотовая архитектура. Сеть может состоять из одной или нескольких ячеек (сот). Каждая сота управляется базовой станцией, называемой точкой доступа (Access Point, AP). Точка доступа и находящиеся в пределах радиуса ее действия рабочие станции образуют базовую зону обслуживания (Basic Service Set, BSS). Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему (Distribution System, DS), представляющую собой эквивалент магистрального сегмента кабельных ЛС. Вся инфраструктура, включающая точки доступа и распределительную систему, образует расширенную зону обслуживания (Extended Service Set). Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняется непосредственно рабочими станциями.
В настоящее время существует множество стандартов семейства IEEE 802.11:
- 1. 802.11 — первоначальный основополагающий стандарт. Поддерживает передачу данных по радиоканалу со скоростями 1 и 2 (опционально) Мбит/с.
- 2. 802.11a — высокоскоростной стандарт WLAN. Поддерживает передачу данных со скоростями до 54 Мбит/с по радиоканалу в диапазоне около 5 ГГц.
- 3. 802.11b — самый распространенный стандарт. Поддерживает передачу данных со скоростями до 11 Мбит/с по радиоканалу в диапазоне около 2,4 ГГц.
- 4. 802.11c — Стандарт, регламентирующий работу беспроводных мостов. Данная спецификация используется производителями беспроводных устройств при разработке точек доступа.
- 5. 802.11d — Стандарт определял требования к физическим параметрам каналов (мощность излучения и диапазоны частот) и устройств беспроводных сетей с целью обеспечения их соответствия законодательным нормам различных стран.
- 6. 802.11e — Создание данного стандарта связано с использованием средств мультимедиа. Он определяет механизм назначения приоритетов разным видам трафика — таким, как аудиои видеоприложения. Требование качества запроса, необходимое для всех радио интерфейсов IEEE WLAN.
- 7. 802.11f — Данный стандарт, связанный с аутентификацией, определяет механизм взаимодействия точек связи между собой при перемещении клиента между сегментами сети. Другое название стандарта — Inter Access Point Protocol. Стандарт, описывающий порядок связи между равнозначными точками доступа.
- 8. 802.11g — устанавливает дополнительную технику модуляции для частоты 2,4 ГГц. Предназначен, для обеспечения скоростей передачи данных до 54 Мбит/с по радиоканалу в диапазоне около 2,4 ГГц.
- 9. 802.11h — Разработка данного стандарта связана с проблемами при использовании 802.11а в Европе, где в диапазоне 5 ГГц работают некоторые системы спутниковой связи. Для предотвращения взаимных помех стандарт 802.11h имеет механизм «квазиинтеллектуального» управления мощностью излучения и выбором несущей частоты передачи. Стандарт, описывающий управление спектром частоты 5 ГГц для использования в Европе и Азии.
- 10. 802.11i (WPA2) — Целью создания данной спецификации является повышение уровня безопасности беспроводных сетей. В ней реализован набор защитных функций при обмене информацией через беспроводные сети — в частности, технология AES (Advanced Encryption Standard) — алгоритм шифрования, поддерживающий ключи длиной 128, 192 и 256 бит. Предусматривается совместимость всех используемых в данное время устройств — в частности, Intel Centrino — с 802.11i-сетями. Затрагивает протоколы 802.1X, TKIP и AES.
- 11. 802.11j — Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4,9 ГГц.
- 12. 802.11n — Перспективный стандарт, находящийся на сегодняшний день в разработке, который позволит поднять пропускную способность сетей до 100 Мбит/сек.
- 13. 802.11r — Данный стандарт предусматривает создание универсальной и совместимой системы роуминга для возможности перехода пользователя из зоны действия одной сети в зону действия другой.
Из всех существующих стандартов беспроводной передачи данных IEEE 802.11, на практике наиболее часто используются всего три, определенных Инженерным институтом электротехники и радиоэлектроники (IEEE), это: 802.11b, 802.11g и 802.11a.
Сравнение стандартов беспроводной передачи данных.
802.11 b. В окончательной редакции широко распространенный стандарт 802.11b был принят в 1999 г. и благодаря ориентации на свободный от лицензирования диапазон 2,4 ГГц завоевал наибольшую популярность у производителей оборудования. Пропускная способность (теоретическая 11 Мбит/с, реальная — от 1 до 6 Мбит/с) отвечает требованиям большинства приложений. Поскольку оборудование 802.11b, работающее на максимальной скорости 11 Мбит/с, имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала.
К началу 2004 года в эксплуатации находилось около 15 млн. радиоустройств 802.11b.
В конце 2001;го появился — стандарт беспроводных локальных сетей 802.11a, функционирующих в частотном диапазоне 5 ГГц (диапазон ISM). Беспроводные ЛВС стандарта IEEE 802.11a обеспечивают скорость передачи данных до 54 Мбит/с, т. е. примерно в пять раз быстрее сетей 802.11b, и позволяют передавать большие объемы данных, чем сети IEEE 802.11b.
К недостаткам 802.11а относятся большая потребляемая мощность радиопередатчиков для частот 5 ГГц, а также меньший радиус действия (оборудование для 2,4 ГГц может работать на расстоянии до 300 м, а для 5 ГГц — около 100 м). Кроме того, устройства для 802.11а дороже, но со временем ценовой разрыв между продуктами 802.11b и 802.11a будет уменьшаться.
802.11 g является новым стандартом, регламентирующим метод построения WLAN, функционирующих в нелицензируемом частотном диапазоне 2,4 ГГц. Максимальная скорость передачи данных в беспроводных сетях IEEE 802.11g составляет 54 Мбит/с. Стандарт 802.11g представляет собой развитие 802.11b и обратно совместим с 802.11b. Соответственно ноутбук с картой 802.11g сможет подключаться и к уже действующим точкам доступа 802.11b, и ко вновь создаваемым 802.11g. Теоретически 802.11g обладает достоинствами двух своих предшественников. В числе преимуществ 802.11g надо отметить низкую потребляемую мощность, большую дальность действия и высокую проникающую способность сигнала. Можно надеяться и на разумную стоимость оборудования, поскольку низкочастотные устройства проще в изготовлении.
Стандарт IEEE 802.11 работает на двух нижних уровнях модели ISO/OSI: физическом и канальном. Другими словами, использовать оборудование Wi-Fi так же просто, как и Ethernet: протокол TCP/IP накладывается поверх протокола, описывающего передачу информации по каналу связи. Расширение IEEE 802.11b не затрагивает канальный уровень и вносит изменения в IEEE 802.11 только на физическом уровне. В беспроводной локальной сети есть два типа оборудования: клиент (обычно это компьютер, укомплектованный беспроводной сетевой картой, но может быть и иное устройство) и точка доступа, которая выполняет роль моста между беспроводной и проводной сетями. Точка доступа содержит приемопередатчик, интерфейс проводной сети, а также встроенный микрокомпьютер и программное обеспечение для обработки данных.
Типы и разновидности соединений.
1. Соединение Ad-Hoc (точка-точка).
Все компьютеры оснащены беспроводными картами (клиентами) и соединяются напрямую друг с другом по радиоканалу работающему по стандарту 802.11b и обеспечивающих скорость обмена 11 Mбит/с, чего вполне достаточно для нормальной работы.
2. Инфраструктурное соединение.
Все компьютеры оснащены беспроводными картами и подключаются к точке доступа. Которая, в свою очередь, имеет возможность подключения к проводной сети.
Данная модель используется когда необходимо соединить больше двух компьютеров. Сервер с точкой доступа может выполнять роль роутера и самостоятельно распределять интернет-канал.
3. Точка доступа, с использованием роутера и модема.
Точка доступа включается в роутер, роутер — в модем. Теперь на каждом компьютере в зоне действия Wi-Fi, в котором есть адаптер Wi-Fi, будет работать интернет.
4. Соединение мост.
Компьютеры объединены в проводную сеть. К каждой группе сетей подключены точки доступа, которые соединяются друг с другом по радио каналу. Этот режим предназначен для объединения двух и более проводных сетей. Подключение беспроводных клиентов к точке доступа, работающей в режиме моста невозможно.
5. Репитер.
Точка доступа просто расширяет радиус действия другой точки доступа, работающей в инфраструктурном режиме.