Помощь в написании студенческих работ
Антистрессовый сервис

Введение. 
Исследование динамических систем управления

РефератПомощь в написанииУзнать стоимостьмоей работы

Опыт исследования систем с разными типами поведения показывает, что обычно оказывается невозможно управлять системами с регулярным и хаотическим поведением одними и теми же способами. Для систем с регулярным поведением успешно применяется метод регулярного синтеза управлений. Для систем с хаотическим поведением для управления часто используется существование всюду плотных траекторий. Таким… Читать ещё >

Введение. Исследование динамических систем управления (реферат, курсовая, диплом, контрольная)

Проблема управляемости имеет длинную историю и продолжает оставаться одной из самых актуальных проблем теории управления. Точкой отсчета современного периода развития теории можно считать появление работ Калмана, в которых были получены условия управляемости систем, правые части которых являются линейными функциями по состояниям и управлениям. Вслед за этими работами появились многочисленные работы других авторов и за почти полувековой период получено много результатов по управляемости динамических систем. За последние годы были разработаны новые методы исследования управляемости динамических систем и выявлен ряд причин, обусловливающий управляемость или неуправляемость динамических систем.

Практически одновременно с исследованием управляемости линейных систем стала исследоваться управляемость нелинейных систем. Было сделано несколько попыток создания общей, или абстрактной теории систем (работы Калмана Р., Кухтенко А. И., Блкина В. И. и некоторые другие). Ряд интересных результатов получен благодаря применению методов обшей теории, однако большинство работ посвящено исследованию более частных вопросов. Много результатов получено при исследовании управляемости динамических систем, принадлежащих конкретным классам систем. Важным классом нелинейных систем является класс билинейных систем, т. е. систем, правые части которых являются билинейными функциями по состояниям и управлениям.

Линейные и билинейные системы являются простейшими моделями локального описания систем управления. А именно, линейная система является моделью системы управления в окрестности точки общего положения, билинейная система является моделью систем управления в окрестности точки покоя.

Значительные успехи в исследовании управляемости нелинейных систем были достигнуты благодаря применению геометрических и алгебраических методов исследования управляемости, в частности применению дифференциально-геометрических и теоретико-групповых методов. Это направление было актуальным на протяжении многих лет. Описание результатов, полученных применением дифференциально-геометрических и теоретико-групповых методов, можно найти в ряде обзоров, в частности в обзоре Андреева Ю. Н., в обзоре Аграчева A.A., Вахрамеева С. А., Гамкрелидзе Р. В. и в обзоре Вахрамеева С. А. и Сарычева A.В. В этих обзорах приводятся результаты по управляемости гладких динамических систем как абстрактных так и более конкретных классов. Некоторые новые результаты отражены в книге Аграчева А. А и Сачкова Ю. Л. Класс систем, линейных по управлению, представляется особенно важным, так как предполагается, что управление будет осуществляться достаточно малыми по величине воздействиями, что не приводит к существенному изменению динамики исходной системы. В рамках дифференциально-геометрического подхода был получен ряд результатов по управляемости систем, линейных по управлению. Следует отметить, что дифференциально-геометрические методы являются наиболее подходящими для исследования свойств локальной управляемости, в целом же проблема управляемости имеет глобальный характер, т. е. относится ко всему пространству состояний. С этой точки зрения интерес представляют нелинейные системы достаточно общего вида.

Однако, разграничение систем по признаку линейный или нелинейный представляется поверхностным и не раскрывает особенностей этих систем.

Действительно, если в линейной системе сделать замену переменных, т. е. рассмотреть ее в новой системе координат, то она станет нелинейной, но сущность ее при этом не изменится. Возможны и обратные замены переменных, превращающие нелинейные системы в линейные. Установить существование таких замен переменных является трудной задачей.

Более адекватным представляется деление систем на классы по характеру поведения (простое или сложное) их траекторий. Сходным, хотя и не тождественным, является деление систем на классы по принципу регулярности или хаотичности поведения их траекторий. Наиболее отчетливо свойства регулярного поведения проявляются у систем Морса-Смейла, а свойства хаотического поведения — у гиперболических систем вблизи их аттракторов достаточно сложной структуры, которые иногда называют странными. Несколько огрубляя ситуацию, можно сказать, что эта разница поведения проявляется в том, что у систем с регулярным поведением близкие траектории не расходятся на протяжении достаточно большого промежутка времени, а у систем с хаотическим поведением траектории расходятся достаточно быстро. Отметим, что у систем, пограничных между этими классами, указанные свойства ослабляются, и с практической точки зрения отнести эти системы к каким-либо определенным классам иногда бывает затруднительно. В частности, некоторые системы Морса-Смейла с достаточно большим числом компактных инвариантных множеств могут демонстрировать весьма сложное поведение. Как известно, одним из сценариев возникновения хаоса является переход через границу класса систем Морса-Смейла.

Одним из факторов, влияющих на управляемость систем, является ее способность возвращаться в исходные состояния. Свойством возвращаемости могут обладать как системы с регулярным, так и хаотическим поведением.

Другим фактором, влияющих на управляемость систем, является соотношение исходных характеристик пространства состояний с характеристиками, индуцированными системой управления. Например, каким образом управляемость зависит от соотношения исходной топологии пространства состояний и топологии, индуцированной динамической системой управления. Другой пример показывает, что система управления с регулярным поведением индуцирует в пространстве состояний структуру специального клеточного комплекса, свойства которого обусловливают управляемость системы. На свойствах этого клеточного комплекса основан метод Болтянского В. Г. регулярного синтеза управлений. Исследуется вопрос о существовании клеточных комплексов специального вида для рассмотренных классов регулярных систем.

Опыт исследования систем с разными типами поведения показывает, что обычно оказывается невозможно управлять системами с регулярным и хаотическим поведением одними и теми же способами. Для систем с регулярным поведением успешно применяется метод регулярного синтеза управлений. Для систем с хаотическим поведением для управления часто используется существование всюду плотных траекторий. Таким образом, не существует универсального метода исследования управляемости произвольных динамических систем, кроме их численного моделирования. Численное моделирование имеет следующие недостатки. Во-первых, из-за того, что динамическая система имеет бесконечное множество состояний, часто не представляется возможным ее исчерпывающее исследование. Во-вторых, численное моделирование не дает обычно понимания причин управляемости или неуправляемости динамических систем. Эти обстоятельства являются побудительными мотивами для качественного исследования динамических систем управления, причем при исследовании учитываются особенности систем с регулярным или хаотическим поведением.

Показать весь текст
Заполнить форму текущей работой