Помощь в написании студенческих работ
Антистрессовый сервис

Генетика. 
Основы биологии

РефератПомощь в написанииУзнать стоимостьмоей работы

Фенокопия — фенотипическая копия наследственного признака или заболевания. Фенокопии по наследству не передаются. Например, возможна фенокопия глухонемоты. Она может возникнуть в том случае, когда женщина в период беременности переболеет коревой краснухой. При этом вирус проникает через плаценту в организм плода и нарушает у него процесс формирования слуховых косточек, что в последующем ведет… Читать ещё >

Генетика. Основы биологии (реферат, курсовая, диплом, контрольная)

Генетика — наука, которая изучает закономерности наследственности и изменчивости.

Наследственность — свойство всех живых организмов передавать особенности своего строения и развития потомкам.

Изменчивость — свойство всех живых организмов изменять наследственную информацию, полученную от родителей, а также процесс ее реализации в ходе индивидуального развития (онтогенеза). Изменчивость — это свойство, противоположное наследственности.

Эти два понятия тесно связаны друг с другом.

Термин «генетика» впервые был предложен в 1906 году английским ученым У. Бэтсоном, однако история развития этой науки своими корнями уходит в далекое прошлое.

Всю историю развития генетики можно условно разделить на четыре этапа:

Существование умозрительных гипотез о природе наследственности.

Открытие основных законов наследственности.

Изучение наследственности на клеточном уровне.

Изучение наследственности на молекулярном уровне.

Структурно-функциональные уровни организации наследственного материала В наследственной структуре клетки и организма в целом выделяют три уровня организации генетического материала: генный, хромосомный и геномный.

Генный уровень Наименьшей (элементарной) единицей наследственного материала является ген.

Ген — это часть молекулы ДНК, имеющая определенную последовательность нуклеотидов и представляющая собой единицу функционирования наследственного материала.

Ген несет информацию о конкретном признаке или свойстве организма.

У человека имеется около 30 тысяч генов.

Изменение в структуре гена ведет к изменению соответствующего признака. Следовательно, на генном уровне обеспечиваются индивидуальное наследование и индивидуальная изменчивость признаков.

Хромосомный уровень Все гены в клетке объединены в группы и располагаются в хромосомах в линейном порядке. Каждая хромосома уникальна по набору входящих в нее генов. В состав хромосом входят ДНК, белки (гистоновые и негистоновые), РНК, полисахариды, липиды и ионы металлов.

Хромосомный уровень в эукариотических клетках обеспечивает характер функционирования отдельных генов, тип их наследования и регуляцию их активности. Он позволяет закономерно воспроизводить и передавать наследственную информацию в процессе деления клетки.

Геномный уровень.

Геном — совокупность всех генов, находящихся в гаплоидном наборе хромосом. При оплодотворении два генома родительских гамет сливаются и образуют генотип.

Генотип — совокупность всех генов, заключенных в диплоидном наборе хромосом, или кариотипе. Кариотип — полный набор хромосом, характеризующийся у каждого вида их строго определенным числом и строением.

Геномный уровень отличается высокой стабильностью. Он обеспечивает сложную систему взаимодействия генов. Результатом взаимодействия генов друг с другом и с факторами внешней среды является фенотип.

Молекулярные основы наследственности Ген как элементарная единица наследственной информации выполняет определенные функции и обладает определенными свойствами.

Функции генов:

хранение наследственной информации;

управление биосинтезом белка и других веществ в клетке;

контроль за развитием и старением клетки.

Свойства генов:

дискретность: один ген контролирует один признак;

специфичность: каждый ген отвечает строго за свой признак;

стабильность структуры: гены передаются из поколения в поколение не изменяясь;

дозированность действия: один ген определяет одну дозу фенотипического проявления признака;

способность к мутированию (изменению структуры);

способность к репликации (самоудвоению);

способность к рекомбинации (переходу из одной гомологичной хромосомы в другую).

Функциональная классификация генов Все гены делятся на три группы:

cтруктурные — контролируют развитие признаков путем синтеза соответствующих ферментов;

регуляторные — управляют деятельностью структурных генов;

модуляторные — смещают процесс проявления признаков в сторону его усиления или ослабления, вплоть до полной блокировки.

Особенности строения генов у прокариотических и эукариотических клеток

Клетки в природе делятся на прокариотические и эукариотические. У прокариот ген имеет непрерывную структуру, т. е. представляет собой часть молекулы ДНК.

У эукариот ген состоит из чередующихся участков: экзонов и интронов. Экзон — информативный участок, интрон — неинформативный. Число интронов у разных генов неодинаково (от 1 до 50).

Экспрессия (проявление действия) гена в процессе синтеза белка Весь процесс синтеза белка условно делится на три этапа: транскрипция, процессинг и трансляция.

Транскрипция Транскрипция — процесс переписывания информации с молекулы ДНК на и-РНК. Протекает в ядре.

Молекула ДНК состоит из двух спирально закрученных нитей. Каждая нить представлена последовательностью нуклеотидов, а каждый нуклеотид состоит из углевода (пентозы), азотистого основания и остатка фосфорной кислоты.

Каждая нить молекулы ДНК имеет два конца — гидроксильный (3) и фосфатный (5). Нити расположены по отношению друг к другу антипараллельно.

Синтез и-РНК в клетке всегда идет от фосфатного конца к гидроксильному. Поэтому матрицей для транскрипции служит одна нить ДНК, обращенная к синтезирующему ферменту своим гидроксильным концом; она называется кодогенной, или информативной (а другая нить, соответственно, некодогенной, или неинформативной).

Транскрипция делится на три периода:

инициация, элонгация, терминация.

Инициация ;

начало синтеза и-РНК.

Синтез и-РНК осуществляется при помощи фермента — РНК-полимеразы. У прокариот имеется только один вид этого фермента, у эукариот — пять видов. Сущность инициации состоит в том, что фермент РНК-полимераза отыскивает в молекуле ДНК стартовую область — промотор и прикрепляется к ней. Это происходит в течение 15−20 секунд.

Элонгация ;

синтез молекулы и-РНК из свободных нуклеотидов по принципу комплементарности: аденину соответствует урацил, а цитозину — гуанин. За 1 секунду выстраивается около 50 нуклеотидов. Синтез и-РНК одновременно протекает в нескольких участках молекулы ДНК. Образующиеся фрагменты называются транскриптоны. В последующем они объединяются.

Терминация ;

завершение синтеза и-РНК.

Происходит тогда, когда РНК-полимераза встречается с особым участком молекулы ДНК — терминатором.

У прокариот в роли терминатора выступают участки молекулы ДНК, имеющие «симметричное» строение — они одинаково читаются в обе стороны от центра. Такие участки называются палиндромами. Фрагмент и-РНК, синтезированный на таком участке, в последующем складывается вдвое в виде шпильки. Образование «шпильки» является сигналом для завершения синтеза и-РНК. У эукариот «шпильки» не образуются. Вероятно, терминация у них протекает иначе.

2. Процессинг

Процессинг включает целый ряд преобразований и-РНК, необходимых для ее нормального функционирования:

Образование колпачка (КЭПа) на фосфатном конце.

Колпачок — это трифосфонуклеозид, содержащий гуанин. С помощью колпачка и-РНК отыскивает в цитоплазме малую субъединицу рибосомы.

Метилирование азотистых оснований.

Удаление части нуклеотидов на гидроксильном конце.

Присоединение на гидроксильном конце poli-А (100−200 остатков адениловой кислоты). Это образование выполняет стабилизирующую функцию и обеспечивает транспорт и-РНК из ядра в цитоплазму.

Сплайсинг — процесс удаления интронов и сшивания экзонов.

Ядерная и-РНК является точной матрицей молекулы ДНК. Она содержит как экзоны, так и интроны, поэтому называется незрелой, или юной. После прохождения сплайсинга она становится зрелой.

Сплайсинг присущ только эукариотам. Возможен также альтернативный сплайсинг: из одной и той же ядерной (незрелой) и-РНК вырезаются разные участки, в результате чего образуются разные зрелые и-РНК.

Зрелая и-РНК имеет следующий вид:

5 3.

КЭП — 1 — АУГ — 2 — 3 — 4 — poli-A.

Здесь КЭП — «колпачок», 1 — лидирующий участок, АУГ — стартовый кодон, 2 — экзоны (их может быть много), 3 — кодон-терминатор, 4 — трейлер, poli-А — 100−200 остатков адениловой кислоты.

Лидирующий участок взаимодействует в последующем с рибосомальной РНК, а трейлер определяет местоположение и-РНК в цитоплазме и продолжительность ее функционирования.

Такая и-РНК выходит из ядра в цитоплазму, где осуществляется следующий этап — трансляция.

3. Трансляция

Трансляция — это процесс считывания информации с молекулы и-РНК на молекулу белка. Подобно транскрипции, трансляция протекает в три стадии:

инициация, элонгация, терминация.

Инициация.

И-РНК своим кэпированным (фосфатным) концом отыскивает малую субъединицу рибосомы. Лидирующая последовательность соединяется с рибосомальной РНК. При этом стартовый кодон АУГ попадает в недостроенный пептидильный (П) участок рибосомы. (Как известно, в рибосоме имеется два активных участка: П — пептидильный и, А — аминоацильный.) Далее к стартовому кодону присоединяется т-РНК, несущая аминокислоту метионин. Только после этого субъединицы рибосомы объединяются, и на этом инициация заканчивается.

Элонгация.

Заключается в синтезе полипептида из свободных аминокислот, которые доставляются транспортными РНК. Аминокислота обязательно сначала должна попасть в аминоацильный центр — «центр узнавания». Скорость присоединения аминокислот у прокариот и эукариот разная: за одну секунду присоединяется две аминокислоты у эукариот и 16−17 — у прокариот.

Терминация.

Терминация наступает тогда, когда в аминоацильный центр поступает один из трех кодонов-терминаторов — УАА, УАГ, УГА. Таким триплетам не соответствует ни одна аминокислота, поэтому они называются еще нонсенс-кодонами. К последней аминокислоте присоединяется вода, и карбоксильный конец полипептидной цепочки отсоединяется от рибосомы.

На этом синтез белка завершается.

Поскольку у прои эукариот принципиальной разницы в механизме биосинтеза белка нет, то можно предположить, что данный механизм сформировался очень давно, еще до разделения клеток на два типа.

Следует также иметь в виду, что в синтезе белка принимает участие множество факторов инициации, элонгации, терминации — как белковой, так и небелковой природы.

Регуляция экспрессии генов Регуляция генной активности в клетках может происходить на всех этапах экспрессии — от репликации ДНК до посттрансляционных процессов. Рассмотрим регуляцию на уровне транскрипции.

Впервые принцип регуляции на уровне транскрипции был установлен французскими учеными Ф. Жакобом и Ж. Моно в 1961 году. Свои исследования они проводили на кишечной палочке. Кишечная палочка при попадании в среду, содержащую молочный сахар лактозу, вырабатывает фермент лактазу. Если же лактозы нет, то фермент не вырабатывается. Каким же образом клетка управляет процессом синтеза лактазы? Ответ на этот вопрос дает предложенная Жакобом и Моно модель оперона. Опероном называется функциональная система, состоящая из структурных и регуляторных генов.

В приведенной ниже схеме lac-оперона Р — ген-регулятор; П — промотор; О — ген-оператор; Z, Y, A — структурные гены, причем ген Z отвечает за выработку фермента лактазы, ген Y кодирует фермент, осуществляющий активный транспорт лактозы в клетку, а ген, А хотя и находится здесь, однако никакого отношения к расщеплению лактозы не имеет.

Ген-регулятор кодирует синтез белка-репрессора. Репрессор в химическом отношении очень активен и поэтому в свободном состоянии не существует, он обязательно должен вступить с чем-нибудь в связь. Если в окружающей среде нет лактозы, то репрессор вступает в связь с оператором, блокируя его. В этом случае РНК-полимераза не может прикрепиться к промотору (т.к. мешает репрессор). Без фермента РНК-полимеразы не происходит синтез и-РНК на структурных генах и, следовательно, на рибосомах не идет синтез фермента лактазы.

Если же в окружающей среде появляется лактоза, то репрессор связывается с ней и освобождает ген-оператор. При отсутствии репрессора в области гена-оператора фермент РНК-полимераза взаимодействует с промотором и осуществляет синтез и-РНК на структурных генах. Далее и-РНК поступает на рибосомы, где осуществляется синтез фермента лактазы. Последняя будет расщеплять молочный сахар лактозу. Такое состояние в клетке будет длиться до тех пор, пока не исчезнет лактоза. После этого репрессор снова связывается с оператором и тем самым останавливает процесс синтеза фермента лактазы.

Данный принцип регуляции называется принципом индукции. Индуктором в данном случае является молочный сахар — лактоза, т.к. ее появление ведет к запуску синтеза фермента.

Возможен и другой принцип регуляции синтеза белка — принцип репрессии. Он также имеет место у кишечной палочки. В этом случае появление продуктов реакции не запускает, а тормозит процесс синтеза фермента.

Исходно белок-репрессор находится в неактивной форме, поэтому он ни с чем не вступает в связь. Оператор свободен, и РНК-полимераза производит синтез и-РНК на структурных генах. Далее и-РНК поступает на рибосомы, где синтезируются соответствующие ферменты. Ферменты расщепляют субстрат до определенных продуктов, которые в свою очередь активируют репрессор (взаимодействуя с ним). Активированный репрессор вступает в связь с оператором, блокируя его. Нахождение репрессора в области оператора ведет к остановке процесса транскрипции на структурных генах и, соответственно, к прекращению синтеза ферментов на рибосомах. Необходимо отметить, что активация репрессора происходит только тогда, когда продуктов реакции накопится определенное количество (достаточно большое!).

По такому принципу в кишечной палочке функционируют два оперона:

his-оперон, содержащий 9 структурных генов и регулирующий синтез аминокислоты гистидин;

trip-оперон, содержащий 5 структурных генов и регулирующий синтез аминокислоты триптофан.

У эукариот принцип оперонной регуляции не обнаружен. Активность каждого гена у них регулируется несколькими генами-регуляторами, кодирующими, соответственно, несколько регуляторных белков. Эти белки связываются с определенными участками в молекуле ДНК. Один из таких участков находится перед промотором и называется препромоторным элементом; другие области лежат вдали от промотора и носят названия энхансеров (усилителей) и глушителей. В результате связывания регуляторных белков с этими участками происходит включение и выключение структурных генов.

Система выработки регуляторных белков — «многоэтажная». Главные регуляторные белки отвечают за выработку второстепенных. Важная роль в регуляторных процессах принадлежит также гормонам (часто они являются индукторами транскрипции) и белкам гистоновой природы.

Разновидности генов Наряду с приведенной ранее функциональной классификацией генов существуют и другие их разновидности: псевдогены, онкогены и мобильные гены.

Псевдогены (ложные гены) — нуклеотидные последовательности в молекуле ДНК, сходные по строению с известными генами, но утратившие функциональную активность.

Онкогены — нуклеотидные последовательности в молекуле ДНК, присутствующие в хромосомах нормальных клеток, способные активизироваться под влиянием факторов внешней среды и продуцировать белки, вызывающие рост опухолей.

Мобильные (прыгающие) гены — гены, не имеющие постоянной локализации не только в хромосоме, но и в пределах хромосомного набора клетки. Понятно, что перемещения генов влияют на их экспрессию — ранее не активные гены могут активизироваться, и наоборот. Некоторые ученые считают, что эти гены играют важную роль в эволюции. Видимо, возникновение таким путем отдельных видов (в результате переноса информации от вида к виду) действительно возможно.

В последние десятилетия в генетике появилось еще одно новое понятие — «семейство генов», или «мультигенное семейство». Это группа генов, имеющих сходное строение, общее происхождение и выполняющих сходные функции. Число генов в разных семействах может колебаться от нескольких единиц до нескольких тысяч.

У человека имеются семейства генов, кодирующие би — глобиновые белки гемоглобина;

иммуноглобулины;

актины и миозины;

белки, определяющие тканевую несовместимость;

гистоновые белки.

Организация генов мультигенных семейств может быть разной. Так, семейства актиновых и миозиновых генов разбросаны по всему геному. Семейства генов, кодирующих — и — глобиновые белки, сосредоточены в одной хромосоме и образуют генные кластеры (так называют семейства генов, расположенных в одной хромосоме).

Генные кластеры возникли в результате дупликации (удвоения) отдельных генов. Таким образом, возникновение генных кластеров есть отражение эволюционного процесса.

Генотип и фенотип Качественная и количественная специфика проявления генов в признаки Генотип — это совокупность всех генов в диплоидном наборе хромосом.

Фенотип — совокупность всех внешних и внутренних признаков и свойств организма, которые формируются в результате взаимодействия генотипа с окружающей средой.

Впервые ответ на вопрос о том, как ген реализуется в признак, дали американские ученые Г. Бидл и Е. Татум в 1941 году. Они сформулировали гипотезу, которая получила название: «один ген — один фермент». Суть ее состоит в том, что один ген контролирует в клетке синтез одного белка, а поскольку все ферменты состоят из белков, то, следовательно, один ген отвечает за синтез одного фермента.

Исходя из этой гипотезы и с учетом современных знаний, весь путь реализации гена в признак можно представить следующим образом:

ген фермент биохимическая реакция признак Ф, а к т о р ы в н е ш н е й с р е д ы Этот процесс протекает под постоянным влиянием факторов внешней среды. Конечный результат будет зависеть от уровня, на котором действует фактор. Если фактор подействует на уровне гена, то возникающие в фенотипе изменения будут передаваться по наследству. Действие факторов на всем остальном протяжении этой цепочки приведет к ненаследственным изменениям фенотипа, а также к фенокопиям.

Фенокопия — фенотипическая копия наследственного признака или заболевания. Фенокопии по наследству не передаются. Например, возможна фенокопия глухонемоты. Она может возникнуть в том случае, когда женщина в период беременности переболеет коревой краснухой. При этом вирус проникает через плаценту в организм плода и нарушает у него процесс формирования слуховых косточек, что в последующем ведет к глухонемоте. В то же время существует глухонемота, которая определяется патологическим геном и передается по наследству. Другой пример — фенокопия кретинизма. Кретинизм — это наследственное заболевание, в основе которого лежит гипофункция щитовидной железы. Фенокопия кретинизма возникает в условиях недостаточного поступления йода с пищей. Вследствие образования после травмы рубца в головном мозге может возникнуть фенокопия наследственного заболевания эпилепсии.

Наряду с фенокопиями выделяют и генокопии — сходные изменения фенотипа, обусловленные мутациями разных неаллельных генов. Так, гемофилия — несвертываемость крови — может быть вызвана отсутствием в организме разных факторов, которые кодируются разными генами. Хромосомные болезни человека часто сопровождаются бесплодием и умственной отсталостью, однако в каждом конкретном случае изменения могут быть со стороны разных хромосом. Существует две формы глухоты, которые контролируются разными неаллельными генами.

Установление врачом фенокопий важно для прогнозирования рождения в данной семье здорового ребенка. Раскрытие механизма возникновения генокопии позволяет выбрать правильный путь лечения.

Поскольку путь от гена до признака длинный, то наличие гена в генотипе еще не означает, что он проявится фенотипически. Пробиваемость гена в признак — пенетрантность. Пенетрантность равна отношению числа индивидов с данным признаком к общему числу индивидов, имеющих в генотипе данный ген. Принято выражать эту величину в процентах.

Пенетрантность зависит как от внутренних (генотип), так и от внешних факторов (внешняя среда). Рассмотрим это влияние на конкретных примерах.

  • 1. В основе заболевания подагры лежит отложение солей мочевой кислоты в суставах, что ведет к тугоподвижности и появлению болей при движении. Это заболевание определяется доминантным геном. Однако проявление гена в признак будет зависеть как от генотипа, так и от факторов внешней среды. Влияние генотипа: пенетрантность у женщин равна нулю (ХХ половые хромосомы), у мужчин пенетрантность — 20% (ХY половые хромосомы). Влияние внешней среды: пробиваемости гена подагры в признак способствует злоупотребление виноградными винами и мясная пища.
  • 2. Одна из форм шизофрении определяется доминантным геном. Влияние генотипа: пенетрантность у гомозигот (АА) составляет 100%, у гетерозигот (Аа) — 20%. Влияние внешней среды: возникновению заболевания у гетерозигот способствуют факторы, ведущие к перенапряжению центральной нервной системы (стрессовые ситуации, частые конфликты в семье, коллективе; умственное переутомление и т. п.).

Существует еще одна важная характеристика проявления гена в признак — экспрессивность, т. е. степень выраженности признака. Например, серповидноклеточная анемия у гомозигот протекает тяжело, они погибают в раннем возрасте; у гетерозигот — значительно легче, отмечается только одышка при тяжелой работе. В семье, где все страдают брахидактилией (укороченные пальцы), степень укорочения пальцев может быть разная.

Знание пенетрантности и экспрессивности имеет важное практическое значение в работе врача, т.к. появляется возможность предупреждения возникновения наследственного заболевания путем рекомендации пациенту соответствующего образа жизни.

Иногда один ген может контролировать сразу несколько признаков. Это явление носит название плейотропии, или множественного действия гена. Так, у овец один ген контролирует окраску шерсти и степень развития рубца (отдел желудка). У человека примером плейотропии является генетически обусловленный синдром Марфана, при котором один ген вызывает подвывих хрусталика, аневризму (расширение) аорты и нарушения со стороны опорно-двигательного аппарата.

В заключение приведем современный взгляд на гипотезу Г. Бидла — Е. Татума «один ген — один фермент». В целом она верна, однако имеется немало примеров, которые показывают, что один ген может контролировать синтез нескольких ферментов. Это возможно в двух случаях:

  • 1. Наличие у ферментов общих субъединиц. Пример: один ген кодирует ферменты сахарозоизомальтазу, сахаразу, изомальтазу.
  • 2. Существование белкового сплайсинга, т. е. явления, когда ген определяет один полипептид, из которого в последующем удаляются разные участки и, следовательно, формируются разные белки. Так, в клетках мозга человека из белка препродинофрина образуются три типа нейрогормонов: энкефалины, эндорфины и динорфины.

Поэтому на современном уровне знаний данная гипотеза может быть сформулирована следующим образом: «один ген — один полипептид».

ВЗАИМОДЕЙСТВИЕ ГЕНОВ Генотип — это не простая сумма генов, а сложная система взаимодействующих между собой дискретных единиц наследственной информации. Так, у крупного рогатого скота признак окраски шерсти контролируется 12 парами генов, у мухи дрозофилы признак окраски глаз — 20 парами генов. Даже в самом простом варианте в определении признака участвуют как минимум два гена.

Наряду с функциональной классификацией генов они подразделяются еще на аллельные и неаллельные.

Аллельными называются гены, которые определяют контрастирующие (альтернативные) свойства одного признака и расположены в гомологичных хромосомах в одном и том же локусе.

Примеры контрастирующих свойств некоторых признаков человека.

—————————————————————————————————————————————;

Признак Контрастирующие свойства.

—————————————————————————————————————————————;

Цвет глаз карие, голубые Разрез глаз прямой, косой Размеры глаз большие, маленькие Строение кисти пятипалость, шестипалость Цвет кожи смуглый, белый Преобладающая рука правая, левая.

—————————————————————————————————————————————;

Аллельные гены принято обозначать одной буквой латинского алфавита: А, а.

Неаллельные гены определяют разные признаки, расположены в разных (негомологичных) хромосомах или в разных локусах одной хромосомы. Они обозначаются разными буквами латинского алфавита: А, В, С или а, b, c.

Взаимодействовать между собой могут как аллельные, так и неаллельные гены.

Взаимодействие аллельных генов Различают следующие виды взаимодействия аллельных генов:

полное доминирование, неполное доминирование, сверхдоминирование, кодоминирование, межаллельная комплементация, аллельное исключение.

Полное доминирование.

При полном доминировании действие одного гена (одного аллеля) из аллельной пары полностью скрывает присутствие в генотипе другого гена (аллеля). Фенотипически проявляемый ген называется доминантным и обозначается — А; подавляемый ген называется рецессивным и обозначается — а.

Впервые это явление открыто Г. Менделем в опытах на горохе. Признаки, подчиняющиеся законам Менделя, называются менделирующими.

Г. Мендель сформулировал три закона:

I — закон единообразия;

II — закон расщепления;

III — закон независимого наследования (расщепления).

Два первых закона относятся к моногибридному скрещиванию, третий — к дии полигибридному скрещиванию.

Неполное доминирование Неполное доминирование имеет место в том случае, когда доминантный ген (анаблюдается промежуточный характер наследования признака.

Пример: окраска цветков у ночной красавицы. Доминантные гомозиготные растения (АА) имеют красные цветки, рецессивные гомозиготные (аа) — белые, а гетерозиготные (Аа) — розовые.

Пример у человека — серповидноклеточная анемия, в основе которой лежит мутация гена, приводящая к замене в белке гемоглобина одной из 287.

аминокислот — валина — на глутаминовую кислоту. В результате меняется строение гемоглобина и эритроциты приобретают форму серпа, что ведет к кислородной недостаточности. Гомозиготные организмы погибают в раннем возрасте, а гетерозиготы жизнеспособны, но страдают одышкой при физической нагрузке.

Сверхдоминирование Сверхдоминирование имеет место в том случае, когда фенотипическое проявление доминантного гена в гетерозиготном состоянии сильнее, чем в гомозиготном:

Aa > AA.

Пример — гетерозис, или явление гибридной силы, когда гибриды первого поколения обладают резко выраженными фенотипическими признаками (в последующих поколениях проявление этих признаков ослабевает).

Кодоминирование Кодоминирование — проявление в гетерозиготном состоянии признаков, кодируемых обоими аллельными генами.

Примеры: гены нормального и серповидноклеточного гемоглобина; наследование у человека IV группы крови (AB). В то же время группы крови являются примером множественного аллелизма.

Множественный аллелизм — наличие в генофонде популяции более двух аллельных генов.

Пример. Окраска шерсти у кроликов определяется четырьмя аллельными генами: A, ach, ah, a.

A — ген, определяющий черную окраску (дикий тип);

ach — ген шиншилловой окраски;

ah — ген гималайской окраски;

a — ген белой окраски.

Характер их взаимодействия: A > ach > ah > a.

Группы крови человека по системе АВО кодируются тремя аллельными генами: IA, IB, I0.

Группа крови Генотип.

0 (I) I0 I0.

А (II) IA I0, IA IA ;

B (III) IB I0, IB IB;

AB (IV) IA IB (фенотипически проявляется действие обоих аллельных генов — явление кодоминирования).

Межаллельная комплементация Межаллельная комплементация — вид взаимодействия аллельных генов, при котором возможно формирование нормального признака у организма, гетерозиготного по двум мутантным аллелям этого гена.

Пример: D — ген, кодирующий синтез белка с четвертичной структурой (например, глобин в гемоглобине). Четвертичная структура состоит из нескольких полипептидных цепей. Мутантные гены — D и D — определяют синтез измененных белков (каждый своего). Однако при объединении этих цепей в четвертичной структуре образуется белок с нормальными свойствами:

D + D = D.

Аллельное исключение Аллельное исключение — вид взаимодействия аллельных генов, при котором в разных клетках одного и того же организма фенотипически проявляются разные аллели. В результате возникает мозаицизм.

Пример: фенотипическое проявление аллельных генов, расположенных в Х-хромосоме женского организма. В норме в каждой клетке женщины из двух Х-хромосом функционирует только одна. Другая находится в плотном спирализованном состоянии (инактивированном) и образует «тельце Барра». При этом в одних клетках будет функционировать Х-хромосома, полученная от матери и несущая один аллельный ген (А), а в других клетках — хромосома, полученная от отца и содержащая другой аллельный ген (а).

Взаимодействие неаллельных генов

Различают следующие виды (формы) взаимодействия неаллельных генов:

комплементарное (дополнительное),.

эпистаз, полимерия, эффект положения, регуляторные взаимодействия.

Комплементарное взаимодействие Комплементарным называется такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары дополняется действием гена из другой аллельной пары, в результате чего формируется качественно новый признак.

Классический пример такого взаимодействия — наследование формы гребня у кур. Встречаются следующие формы гребня: листовидный — результат взаимодействия двух рецессивных неаллельных генов аabb; ореховидный — результат взаимодействия двух доминантных неаллельных генов A-B-; розовидный и гороховидный — c генотипами A-bb и aaB-, соответственно.

Другой пример — наследование окраски шерсти у мышей. Окраска бывает серая, белая и черная, а пигмент только один — черный. В основе формирования той или иной окраски шерсти лежит взаимодействие двух пар неаллельных генов:

A — ген, определяющий синтез пигмента;

a — ген, не определяющий синтез пигмента;

B — ген, определяющий неравномерное распределение пигмента;

b — ген, определяющий равномерное распределение пигмента.

Примеры комплементарного взаимодействия у человека: ретинобластома и нефробластома кодируются двумя парами неаллельных генов.

Возможные варианты расщепления в F2 при комплементарном взаимодействии: 9:3:4; 9:3:3:1; 9:7.

Эпистаз Эпистаз — такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.

Различают две формы эпистаза — доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе — рецессивный ген.

Пример доминантного эпистаза — наследование окраски оперения у кур. Взаимодействуют две пары неаллельных генов:

С — ген, определяющий окраску оперения (обычно пеструю),.

с — ген, не определяющий окраску оперения,.

I — ген, подавляющий окраску,.

i — ген, не подавляющий окраску.

Варианты расщепления в F2: 12:3:1, 13:3.

У человека примером доминантного эпистаза являются ферментопатии (энзимопатии) — заболевания, в основе которых лежит недостаточная выработка того или иного фермента.

Пример рецессивного эпистаза — так называемый «бомбейский феномен»: в семье у родителей, где мать имела группу крови О, а отец — группу крови А, родились две дочери, из которых одна имела группу крови АВ. Ученые предположили, что у матери в генотипе был ген IB, однако его действие было подавлено двумя рецессивными эпистатическими генами dd.

Полимерия Полимерия — такой вид взаимодействия неаллельных генов, при котором несколько неаллельных генов определяют один и тот же признак, усиливая его проявление. Это явление противоположно плейотропии. По типу полимерии обычно наследуются количественные признаки, чем и обусловлено большое разнообразие их проявления в природе.

Например, окраска зерен у пшеницы определяется двумя парами неаллельных генов:

A1 — ген, определяющий красную окраску;

a1 — ген, не определяющий красную окраску;

A2 — ген, определяющий красную окраску;

a2 — ген, не определяющий красную окраску.

A1 A1 A2 A2 — генотип растений с красной окраской зерен;

a1 a1 a2 a2 — генотип растений с белой окраской зерен.

Расщепление в F2: 15:1 или 1:4:6:4:1.

У человека по типу полимерии наследуются такие признаки, как рост, цвет волос, цвет кожи, величина артериального давления, умственные способности.

Эффект положения Эффект положения — вид взаимодействия неаллельных генов, обусловленный местом положения гена в генотипе.

Пример — наследование белка Rh-фактора (резус-фактора). У 85% европейцев резус-фактор имеется (Rh+), у 15% - его нет (Rh-). Определяется резус-фактор тремя доминантными генами (С, D, E), расположенными в хромосоме рядом друг с другом.

Два человека с одинаковым генотипом CcDDEe будут иметь разные фенотипы в зависимости от варианта расположения аллельных генов в паре гомологичных хромосом: в варианте, А — много антигена Е, но мало антигена С; в варианте В — мало антигена Е, но много антигена С.

C c C c.

D D D D.

E e e E.

Вариант, А Вариант В.

Регуляторные взаимодействия

Регуляторными называются взаимодействия, имеющие место в ходе регуляции экспрессии генов на уровне транскрипции (т.е. взаимодействия регуляторных и структурных генов).

закономерности наследования сцепленных признаков Согласно III закону Менделя, наследование по каждой паре признаков идет независимо друг от друга. Но этот закон справедлив лишь для случая, когда неаллельные гены расположены в негомологичных хромосомах (одна пара генов — в одной паре гомологичных хромосом, другая — в другой). Однако генов гораздо больше, чем хромосом, следовательно, в одной паре гомологичных хромосом всегда находится более одной пары генов (их может быть несколько тысяч). Как же наследуются признаки, гены которых находятся в одной хромосоме или в одной паре гомологичных хромосом? Такие признаки принято называть «сцепленными» .

Термин «сцепленные признаки» был введен американским ученым Томасом Морганом. Он вместе со своими учениками изучил закономерности наследования сцепленных признаков. За эти исследования Т. Моргану была присуждена Нобелевская премия.

В качестве объекта своих исследований Т. Морган выбрал плодовую мушку дрозофилу. Выбор оказался очень удачным ввиду следующих положительных качеств дрозофилы:

легко культивируется в лаборатории;

имеет высокую плодовитость (откладывает до 100 яиц);

короткий период развития — продолжительность цикла развития от яйца до половозрелой особи составляет две недели (в году 24 поколения!);

небольшое число хромосом (четыре пары), четко отличающихся по строению.

В настоящее время дрозофила является незаменимым объектом генетических исследований.

Т. Морган анализировал скрещиваемых мух по двум парам генов, определяющих цвет тела и длину крыльев:

A — ген серого цвета тела,.

a — ген черного цвета тела;

B — ген, определяющий нормальную длину крыльев,.

b — ген, определяющий укороченные крылья.

I опыт. Скрещивались мухи, гомозиготные по доминантным генам, с особями, гомозиготными по рецессивным генам:

P. AABB aabb.

Все потомство оказалось единообразным по генотипу и фенотипу, что соответствует I закону Менделя — закону единообразия.

II опыт — анализирующее скрещивание. Гетерозиготные самцы скрещивались с гомозиготными по рецессивным признакам самками:

P. > AaBb + aabb.

В потомстве получились мухи с двумя фенотипами (серые длиннокрылые и черные короткокрылые) в соотношении 1:1. Это означает, что у самца было только два сорта гамет. Образование двух сортов гамет объяснялось тем, что в данном случае неаллельные гены располагались в одной паре гомологичных хромосом. Признаки, контролируемые этими генами, были названы сцепленными.

Ш опыт — реципрокное (возвратное) скрещивание. Гетерозиготная самка скрещивалась с гомозиготным по рецессивным признакам самцом:

P. + AaBb > aabb.

В потомстве оказались мухи с четырьмя фенотипами в следующем соотношении:

  • 41,5% - серые длиннокрылые,
  • 41,5% - черные короткокрылые,
  • 8,5% - серые короткокрылые,
  • 8,5% - черные длиннокрылые.

Появление в потомстве четырех фенотипов означает, что у самки, в отличие от самца, образовалось четыре сорта гамет. Появление двух дополнительных сортов гамет Морган объяснил явлением кроссинговера — обменом идентичными участками гомологичных хромосом во время профазы первого мейотического деления. Причем кроссинговер наблюдался в 17% случаев. Вероятно, у самцов кроссинговер отсутствует.

На основании проведенных опытов Морган сформулировал основные положения хромосомной теории наследственности:

Гены расположены в хромосомах в линейном порядке (как бусинки на нитке).

Гены, расположенные в одной хромосоме, наследуются вместе и образуют одну группу сцепления. Признаки, определяемые этими генами, называются сцепленными.

Число групп сцепления у каждого вида равно гаплоидному набору хромосом.

Гомологичные хромосомы способны обмениваться гомологичными участками. Такое явление получило название «кроссинговер» .

Частота явления кроссинговера прямо пропорциональна расстоянию между генами.

В последующем за единицу расстояния между генами была принята морганида, или сантиморган. 1 сантиморган соответствует 1% явления кроссинговера. Таким образом, у дрозофилы расстояние между генами, определяющими длину крыльев и цвет тела, равно 17 сантиморган.

Используя явление кроссинговера, ученые составили генетические карты, в первую очередь для объектов генетических исследований (дрозофила, кишечная палочка, кукуруза, томаты, мышь). Составляются такие карты и для человека, правда, с помощью других методов. Установлено, например, что ген, определяющий резус-фактор, находится на расстоянии трех сантиморган от гена, определяющего форму эритроцитов; ген группы крови (по системе АВ0) — на расстоянии 10 сантиморган от гена, определяющего дефект ногтей и коленной чашечки.

Генетика пола В природе существует три типа определения пола:

прогамный, эпигамный, сингамный.

Прогамный — пол можно определить еще до оплодотворения по размерам яйцеклетки: если она крупная, содержит много питательных веществ — из нее разовьется особь женского пола; если мелкая — особь мужского пола.

Такой тип определения пола имеет место у коловраток (круглые черви), примитивных кольчатых червей, тлей.

Эпигамный — определение пола происходит после оплодотворения под влиянием условий среды.

Этот тип исключительно редок. Примером является морской червь Bonellia viridis. Самки этого вида имеют длинный хоботок. Если личинка развивается на хоботке, то она даст особь мужского пола; если самостоятельно, вне материнского организма — будет особь женского пола. Определяющим фактором в данном случае является влияние гормонов материнского организма.

Сингамный — пол определяется в момент оплодотворения и зависит от набора хромосом. Это самый распространенный в природе тип.

Кариотип любого организма содержит две группы хромосом: аутосомы (определяют строение тела) и гетерохромосомы (определяют пол). Гетерохромосомы принято обозначать двумя буквами латинского алфавита: X и Y. У большинства видов животных имеется одна пара гетерохромосом, которая определяет половую принадлежность организма.

Наборы половых хромосом у некоторых животных и человека.

П о л.

Организмы.

++.

>>

XX.

XY.

XX.

XO.

XY.

XX.

XO.

XX.

Человек, дрозофила Птицы, бабочки Тараканы Комнатная моль.

Формирование пола в онтогенезе Процесс формирования пола в онтогенезе длителен и проходит несколько этапов или уровней. У человека можно выделить четыре уровня:

Хромосомный — сочетание половых хромосом: ХХ — женский пол, XY — мужской пол.

Гонадный — формирование гонад: яичники или семенники.

Фенотипический — формирование определенного фенотипа.

Психологический — психологическая самооценка принадлежности к тому или иному полу.

Рассмотрим эти уровни более детально.

У человека и других млекопитающих зигота потенциально бисексуальна, т. е. нейтральна в половом отношении, несмотря на имеющийся в ней набор половых хромосом: XX или XY. Зачаточные гонады (половые железы) у эмбриона имеют два слоя — корковый (cortex) и мозговой (medulla), из которых развиваются в дальнейшем соответственно яичник и семенник.

Выбор направления развития коркового или мозгового вещества определяется белком — H-Y-антигеном. Он кодируется аутосомным геном, который, в свою очередь, находится под контролем гена, расположенного в Y-хромосоме. Этот белок должен подействовать не позднее 6-й — 10-й недели эмбриогенеза, тогда из medulla будет развиваться семенник. Если данного белка нет или он подействует позднее — из коркового слоя будет формироваться яичник. Таким образом, генеральное направление в природе — формирование женского пола (он определяющий, так как дает потомство); для формирования мужского пола нужен дополнительный фактор.

Сформированные половые железы вырабатывают соответствующие гормоны — эстрогены или андрогены, под влиянием которых формируется тот или иной фенотип (развиваются вторичные половые признаки: характер оволосения и отложения жира на теле, особенности строения скелета, тембр голоса и т. п.).

Доказательством бисексуальности зиготы могут служить примеры переопределения пола у потомства:

У червя B. viridis личинка может дать особь любого пола (см. выше).

У крупного рогатого скота возможно рождение в случае разнополой двойни фри-мартин (интерсексуальной телочки), т.к. андрогены одного из близнецов выделяются раньше и будут оказывать влияние на оба эмбриона, направляя их развитие в сторону фенотипа самца, а потом начинают действовать женские гормоны.

У аквариумных рыбок медаки под влиянием женского гормона происходит полное переопределение пола у мужской особи, и она начинает давать потомство.

Примером неполного переопределения пола у человека может служить синдром Морриса: при наборе половых хромосом XY фенотип женский. В основе этого синдрома лежит рецессивная мутация, ведущая к отсутствию в клетке белка-рецептора, который воспринимает мужские половые гормоны (андрогены).

Закономерности наследования признаков, сцепленных с полом У человека известно несколько сотен признаков, гены которых расположены в половых хромосомах. Наследование этих признаков имеет свои особенности.

У млекопитающих и у человека половые хромосомы X и Y имеют небольшой гомологичный участок (I), которым они конъюгируют, и два негомологичных: II — негомологичный в Х-хромосоме и III — негомологичный в Y-хромосоме:

II III.

I.

X Y.

Сцепленными с полом называются такие признаки, гены которых расположены в негомологичных участках половых хромосом.

Примеры заболеваний человека, гены которых расположены в половых хромосомах:

гомологичный участок (I): геморрагический диатез, пигментная ксеродерма, общая цветовая слепота;

негомологичный участок (II): рецессивные признаки — гемофилия, дальтонизм, катаракта, атрофия зрительного нерва, ихтиоз (заболевание кожи, при котором она напоминает рыбью чешую); доминантные признаки — рахит, не поддающийся лечению витамином Д; коричневая эмаль зубов;

негомологичный участок (III): гипертрихоз (избыточное оволосение ушной раковины), перепончатость пальцев на ногах.

Особенности обозначения гена гемофилии:

XH — ген, определяющий нормальное свертывание крови,.

Xh — ген, определяющий гемофилию.

Особенности обозначения гена гипертрихоза:

YH — ген, определяющий гипертрихоз.

Наряду с признаками, сцепленными с полом, выделяют признаки, ограниченные полом.

Признаки, ограниченные полом, кодируются генами, которые расположены как в аутосомах, так и в половых хромосомах, однако фенотипически проявляются только у особей одного какого-то пола.

Так, ген, определяющий количество и жирность молока, имеется и у быков. Гены, определяющие размеры и количество яиц, имеются и у петухов. У человека таким признаком является тембр голоса (бас бывает только у мужчин, хотя определяющий его ген имеется и у женщин).

ЦИТОПЛАЗМАТИЧЕСКАЯ НАСЛЕДСТВЕННОСТЬ Цитоплазматической называется наследственность, обусловленная молекулами ДНК или РНК, находящимися в цитоплазме автономно или в составе органелл. Гены цитоплазмы получили название плазмагенов, их совокупность называют плазмон.

На сегодняшний день такие гены обнаружены в пластидах, митохондриях и центриолях. Соответственно различают пластидную, митохондриальную и центриолярную цитоплазматическую наследственность.

Пластидная наследственность.

Установлено, что пестролистность (наличие на листе белых участков, лишенных хлорофилла) у некоторых растений обусловлена генами, находящимися в пластидах.

У хламидомонады (одноклеточная водоросль) ген, определяющий устойчивость к стрептомицину, также расположен в пластидах.

Митохондриальная наследственность Примерами митохондриальной наследственности является устойчивость к антибиотикам у дрожжевых клеток и мужская половая стерильность (отсутствие мужских гамет) у ряда растений, например, у кукурузы.

У человека (предположительно) — такие пороки развития, как сращение нижних конечностей и расщепление позвоночника.

Центриолярная наследственность.

Примеры признаков, передающихся через центриоли, пока не установлены.

В цитоплазме бактерий автономно расположены небольшие кольцевые молекулы ДНК — плазмиды. Выделено три вида плазмид.

Плазмиды, содержащие F-фактор (фактор фертильности): F+ (мужской пол), F- (женский пол). При конъюгации фактор может переходить от одной бактерии к другой, т. е. меняется пол.

Плазмиды, содержащие R-фактор (фактор резистентности), определяют устойчивость к антибиотикам. Также могут переходить от одной бактерии к другой.

Плазмиды-колициногены — кодируют белки, губительно действующие на особей того же вида, не содержащих колициногенов (бактерии-«киллеры»).

Гены ядра и цитоплазмы взаимодействуют между собой. В их основе лежат известные формы взаимодействия неаллельных генов типа эпистаза (например, гены ядра подавляют гены цитоплазмы).

Существует также псевдоцитоплазматическая наследственность, обусловленная наличием в клетках симбионтов — бактерий или вирусов. Так, у дрозофилы есть раса с повышенной чувствительностью к СО2. В клетках этой расы имеются вирусы, которые и определяют данное свойство.

Некоторые инфузории-туфельки («киллеры») выделяют вещества, губительно действующие на других особей того же вида. В их клетках обнаружены бактерии.

У мышей существует раса с наследственной предрасположенностью к раку молочной железы. Передача происходит через материнское молоко, содержащее вирусы. Если исключить питание потомства этим молоком, то предрасположенности к раку не будет, и наоборот, если потомство здоровой расы вскармливать этим молоком, то у него возникнет предрасположенность к раку.

ИЗМЕНЧИВОСТЬ Изменчивость — свойство живых организмов изменять как саму наследственную информацию, полученную от родителей, так и процесс ее реализации в ходе онтогенеза.

Выделяют три вида изменчивости:

фенотипическая, онтогенетическая, генотипическая.

Фенотипическая, или модификационная изменчивость — изменение фенотипа в ответ на действие факторов внешней среды. Этот вид изменчивости был выделен еще Ч. Дарвином и назван им «определенная». Приобретенные в ходе онтогенеза признаки по наследству не передаются. Пределы изменчивости признака называются нормой реакции. Норма реакции передается по наследству. Она может быть широкая и узкая. (Приведите примеры.).

Для эволюционного процесса фенотипическая изменчивость имеет большое значение, т.к. естественный отбор особей в природе идет по фенотипу.

Онтогенетическая изменчивость — закономерное изменение генотипа и фенотипа в ходе онтогенеза.

Изменение фенотипа организма человека в процессе роста, появление вторичных половых признаков — это примеры онтогенетической изменчивости.

Закономерное изменение генотипа в ходе онтогенеза обнаружено недавно. Правда, известно таких примеров немного. Так, белки иммуноглобулины у мышей состоят из двух фракций: V (вариабельная) и С (константная). У эмбрионов мышей кодирующие их гены расположены на довольно большом расстоянии друг от друга:

V C.

ДНК У взрослых мышей эти гены соединены и работают как один:

V + C.

ДНК Генотипическая изменчивость обусловлена изменением генотипа. Ч. Дарвин этот вид изменчивости называл «неопределенной». Это наследуемая изменчивость (передается по наследству).

Генотипическая изменчивость подразделяется на два вида: комбинативную и мутационную.

Комбинативная изменчивость обусловлена перекомбинацией имеющегося генетического материала.

В природе имеется три источника комбинативной изменчивости:

  • 1) независимое расхождение хромосом в мейозе (число комбинаций составляет
  • 2n, где n — число хромосом в гаплоидном наборе);
  • 2) кроссинговер (обмен гомологичными участками между гомологичными

хромосомами);

3) случайное комбинирование хромосом во время оплодотворения.

Все это приводит к огромному разнообразию генотипов и фенотипов, что, в свою очередь, обеспечивает высокую приспособляемость видов.

В основе мутационной изменчивости лежит перестройка генетического аппарата.

Классификация мутаций По характеру проявления в гетерозиготном состоянии — доминантные (проявляются в гетерозиготном состоянии) и рецессивные (проявляются только в гомозиготном состоянии).

В зависимости от причины — спонтанные (без видимых причин) и индуцированные (вызванные направленным действием какого-то фактора).

В зависимости от локализации в клетке — ядерные и цитоплазматические.

По отношению к возможности наследования — генеративные (в половой клетке) и соматические (возникшие в соматической телесной клетке). Соматические мутации у видов, размножающихся половым способом, по наследству не передаются. Но для данного индивида они не безразличны (например, родимые пятна, пятна на радужке, раковая опухоль).

Функциональная (в зависимости от исхода) — полезные, вредные (в том числе летальные) и нейтральные (безразличные).

По характеру изменения генома — генные (изменение структуры гена), хромосомные (изменение строения хромосом) и геномные (изменение числа хромосом).

Генные мутации В основе генных мутаций лежит изменение в строении молекулы ДНК. Все они могут быть объединены в три группы.

Замена одних азотистых оснований на другие. Например, при дезаминировании (цитозин превращается в тимин) или при ошибочном включении нуклеотида в процессе репликации ДНК.

Сдвиг рамки считывания — в результате выпадения или вставки какого-то нуклеотида в синтезируемую цепь.

ААА ЦГТ ААЦ фен — ала — лей ААА АЦГ ТАА фен — цис — иле кодогенная цепь ДНК полипептид Изменение порядка нуклеотидов в пределах гена (при повороте на 1800 участка цепи ДНК).

Хромосомные мутации В основе хромосомных мутаций лежат изменения в строении хромосом. Они подразделяются на внутрии межхромосомные.

Внутрихромосомные:

  • а) дефишенси — отрыв концевого участка хромосомы;
  • б) делеция — выпадение срединного участка хромосомы;
  • в) дупликация — удвоение участка хромосомы;
  • г) инверсия — поворот участка хромосомы на 180о. Инверсия может быть перицентрической (захватывает центромеру) и парацентрической (в пределах одного какого-то плеча).

Межхромосомные:

а) транслокация — в основе лежит отрыв участка одной хромосомы и присоединение его к другой хромосоме. Разновидности транслокаций: реципрокная (взаимный обмен плечами) и робертсоновская — центрическое разделение или слияние отдельных хромосом.

Предполагают, что в процессе превращения обезьяны (шимпанзе) в человека имело место слияние двух акроцентрических хромосом в одну метацентрическую.

б) транспозиция — перемещение небольших участков генетического материала в пределах как одной хромосомы, так и всего кариотипа.

Геномные мутации В основе лежит изменение числа хромосом. Различают два вида таких мутаций:

полиплоидия — увеличение числа хромосом на величину, кратную гаплоидному набору;

анеуплоидия — увеличение числа хромосом на величину, не кратную гаплоидному набору. В случае трисомии имеется одна лишняя хромосома (набор 2n + 1), при моносомии одна хромосома отсутствует (набор 2n — 1), при нулисомии отсутствует целиком хромосомная пара (2n — 2).

Полиплоидия широко распространена в растительном мире. Так, существует три вида пшеницы (2n, 4n, 6n), где n = 7. Хризантемы имеют наборы от 2n до 22n (n = 9). Аналогичные примеры можно найти у всех растений, как дикорастущих, так и культивируемых. Поэтому считается, что эволюция растений шла по пути полиплоидизации. Полиплоидия широко используется в селекционной работе (у полиплоидных растений крупнее плоды, больше семян).

В животном мире полиплоидия — явление редкое. Полиплоидные организмы обнаружены у инфузорий, рыб.

У человека установлено рождение триплоидов, однако они нежизнеспособны (существуют от нескольких минут до нескольких часов).

Геномные и хромосомные мутации у человека лежат в основе группы заболеваний, которые были названы хромосомными болезнями.

Хромосомные болезни человека

Встречаются в 1% случаев среди всех новорожденных, в 7% - среди мертворожденных и в 42% самопроизвольных выкидышей.

В настоящее время описано более 100 хромосомных заболеваний человека. Они делятся на две группы: аутосомные (нарушения со стороны аутосом) и гетерохромосомные (нарушения со стороны половых хромосом).

В 1971 г. на Международном генетическом конгрессе в Париже была введена единая международная цитогенетическая номенклатура.

Согласно этой номенклатуре, кариотип нормальной женщины записывается — 46, ХХ; кариотип нормального мужчины — 46, ХY.

Гетерохромосомные болезни Синдром Шерешевского-Тернера — 45, X (моносомия по половой хромосоме).

Пол — женский. Частота — 7 случаев на 10 000 новорожденных девочек.

Низкий рост, короткая шея, крыловидная складка на шее (от затылка к предплечью). Бесплодие (недоразвитие яичников). Инфантилизм, снижение интеллекта.

Синдром Клайнфельтера — 47, XXY (легкая степень) или 48, XXXY (тяжелая степень).

Пол — мужской. Частота — 20−25 случаев на 10 000 новорожденных мальчиков.

Узкие плечи, широкий таз, евнухоидный тип (отложение жира по женскому типу). Бесплодие (недоразвитие семенников). Умственная отсталость.

Синдром полисомии по Х-хромосоме — 47, ХХХ и 48, ХХХХ.

Пол — женский. Частота — 4 случая на 10 000 новорожденных девочек.

Фенотип — разнообразный, могут даже давать потомство. Патологические признаки тем выраженнее, чем больше число Х-хромосом.

Синдром добавочной Y-хромосомы — 47, XYY.

Пол — мужской. Частота — 10 случаев на 10 000 новорожденных мальчиков.

Фенотип: высокий рост, длинные руки, длинные веретенообразные пальцы, умственная отсталость, во многих случаях агрессивное или преступное поведение. Степень умственной отсталости увеличивается с числом Y-хромосом.

Аутосомные болезни Синдром Дауна — 47, XY + 21 или 47, XX + 21 (трисомия по 21-й паре хромосом).

Частота — 15 случаев на 10 000 новорожденных обоих полов.

Укороченные конечности, маленькая головка, плоское лицо, широкая переносица, монголоидный разрез глаз, большой язык, не помещающийся во рту. Аномалии строения внутренних органов. Резко выраженная умственная отсталость. Женщины иногда могут иметь детей, мужчины — никогда. 31% больных умирает до 1 года, причем от обычных простых заболеваний, так как снижен иммунитет. Вообще живут недолго.

Иногда синдром Дауна обусловлен не трисомией, а транслокацией (реципрокной) между 13 — 15 и 21 хромосомами; в этом случае хромосом 46.

Синдром Эдвардса — 47, ХХ + 18 или 47, XY + 18 (трисомия по 18-й паре хромосом).

Частота — 1 случай на 7000 новорожденных обоего пола.

Фенотип: множественные аномалии — деформация черепа, «птичий профиль» лица, короткие глазные щели, микрофтальм, низко расположенные и деформированные ушные раковины, короткая шея и грудина, врожденный вывих бедра, синдактилия, врожденные пороки сердца и крупных сосудов. Живут недолго: 30% умирает на первом и 50% - на втором месяце жизни Синдром Патау — 47, XY + 13 или 47, ХХ + 13 (трисомия по 13-й паре хромосом).

Частота — 1 случай на 6000 новорожденных обоего пола.

Множественные уродства (микрофтальм, расщелина губы и неба, череп неправильной конфигурации, скошенный узкий лоб, плоский и широкий нос, запавшее переносье, низко расположенные уши, полидактилия, пороки развития внутренних органов). Живут несколько дней или недель.

Синдром Лежьена — 46, ХХ, 5рили 46, XY, 5р- (делеция короткого плеча (р) 5-й хромосомы).

Частота — 1 случай на 50 000 новорожденных обоего пола. Его еще называют «синдром кошачьего крика».

Характеризуются многочисленными пороками развития черепа, строения гортани (в связи с чем при рождении вместо плача издают звук, похожий на кошачье мяуканье), конечностей, сердца, почек, глаз, тяжелой формой слабоумия. Живут такие больные недолго.

Причины и частота возникновения мутаций Спонтанные мутации — это мутации, которые возникают без видимых причин. Они широко распространены в природе. У каждого вида все свойства и признаки организма подвержены спонтанным мутациям.

Частота мутаций в природе определяется отношением числа гамет, несущих данную мутацию, к общему числу гамет (данного поколения, в данной популяции). Частота мутации различных генов — 10−5-10−7 (1 гамета из 100 тысяч — 10 млн). У различных видов растений и животных частота спонтанных мутаций очень близка.

Так как число генов достаточно велико, суммарная частота мутаций у того или иного вида высока. Так, у дрозофил 25% гамет несут измененные гены (т.е. каждая четвертая гамета).

Мутации могут идти и в прямом, и в обратном порядке (т.е. рецессивные гены — в доминантные, а доминантные — в рецессивные).

Причины спонтанных мутаций условно делятся на две группы — внешние и внутренние. Внешние обусловлены естественным радиационным фоном: космическими излучениями, радиацией элементов земной коры, радиактивными изотопами, поступающими в организм с пищей. Обычные показатели естественного радиационного фона — 13−27 микрорентген в час. Внутренние причины обусловлены генотипом. Так, у кишечной палочки есть гены-мутаторы, наличие которых увеличивает частоту мутаций других генов в 2000 раз. Длительное хранение семян приводит к увеличению частоты спонтанных мутаций у растений. У дрозофилы в норме частота летальных мутаций, локализованных в Х-хромосоме, составляет приблизительно 0,15%, но есть линии, где эта частота равна 1%.

Индуцированные мутации возникают в результате целенаправленного действия какого-то фактора. Русские ученые Надсон и Филиппов (1925) впервые получили их у дрожжевых клеток с помощью рентгеновских лучей. Американский ученый Меллер (1927) впервые получил мутации у дрозофилы.

Факторы, вызывающие мутации, называются мутагенными. По природе они делятся на три группы: физические, химические, биологические.

Физические факторы Ионизирующие излучения — рентгеновское, альфа-, бета-, гамма-лучи и поток нейтронов.

Под действием ионизирующего излучения в клетках образуются ионы Н+, ОНи свободные радикалы, которые активно вступают в химические реакции. В ходе этих реакций нарушается строение ДНК, т. е. возникают мутации.

Дозу радиоактивного излучения принято измерять в «радах» (сокращенно рад) или «греях» (Гр). 1 рад = 100 эргам энергии, поглощенных 1 граммом вещества. 1 грей = 100 рад.

Чувствительность организмов к действию ионизирующей радиации разная. Так, летальная доза (разовая минимальная, вызывающая смертельный исход) для человека — 600 рад или 6 Гр; для мыши — 900 рад или 9 Гр; для амебы — 100 000 рад или 1000 Гр.

Температура В опытах на дрозофилах обнаружено, что повышение температуры окружающей среды приводит к увеличению частоты мутаций. У курящих чаще, чем у некурящих, наблюдается рак губы.

Ультрафиолетовое излучение ведет к образованию в молекуле ДНК димеров.

Химические факторы Сегодня известны десятки и сотни тысяч химических веществ, вызывающих мутации. Приведем некоторые из них:

колхицин, митотический яд — разрушает веретено и останавливает деление клетки на метафазе; селекционеры используют его для получения полиплоидных форм;

формальдегид и его производное — формалин;

пестициды, гербициды;

кофеин;

многие лекарственные препараты (отечественный аспирин, сульфаниламиды);

фотореактивы;

консерванты;

ракетное топливо.

Биологические факторы Вирусы (герпес, ветряная оспа, коревая краснуха, энцефалит, полиомиелит).

Живые вакцины, сыворотки, гистамин, стероидные гормоны.

Возраст (чем больше, тем выше вероятность возникновения наследственных заболеваний, — так, синдром Дауна в 14 раз чаще возникает у детей от матерей, рожающих после 40 лет).

Нарушение функции какого-то органа (рак молочной железы чаще возникает у нерожавших женщин).

Различия в действии ионизирующей радиации и химических мутагенов Химические мутагены обладают определенной специфичностью действия (можно предвидеть, какие именно гены будут мутировать). Ионизирующая же радиация действует неспецифически. С другой стороны, она обладает кумулятивным эффектом, т. е. способна накапливаться в организме. Так, один и тот же эффект будет получен как при однократном облучении дозой 20 рад, так и при воздействии четыре раза по 5 рад.

Возникшая мутация фенотипически проявляется не всегда. В природе существует мощная система антимутационных барьеров на молекулярном, субклеточном, клеточном и организменном уровнях.

Антимутационные барьеры.

1. Наличие двух нитей молекулы ДНК. Изменения, возникшие в одной нити, могут быть восстановлены благодаря существованию второй неизмененной нити ДНК. Процесс восстановления поврежденной молекулы ДНК называется репарацией. Она бывает нескольких видов:

дорепликативная (световая и темновая),.

пострепликативная,.

SOS-репарация.

Световая дорепликативная репарация — устраняет повреждения, возникшие под действием ультрафиолетовых лучей. Протекает только на свету. Ультрафиолетовые лучи вызывают образование в ДНК димеров, которые нарушают ее функцию. Димер — это возникновение дополнительной связи между двумя нуклеотидами одной цепи и разрыв связей между нуклеотидами противоположных цепей:

Ц — А — Т — А — Г — Т = Т — А — Г.

¦ ¦ ¦ ¦ ¦ ¦ ¦

Г — Т — А — Т — Ц — А — А — Т — Ц Под действием квантов видимого света в клетке образуется фермент дезоксириботидпиримидинфотолиаза, которая восстанавливает нарушенные связи.

Темновая дорепликативная репарация происходит как на свету, так и в отсутствие света. Способна устранять повреждения, вызванные любым мутагенным фактором. Условно в ней выделяют пять фаз: 1) узнавание; 2) надрезание; 3) вырезание; 4) синтез нового участка; 5) сшивание вновь синтезированного участка с концами неповрежденной ДНК.

У человека есть рецессивная мутация, которая проявляется в виде неспособности клеток устранять димеры, образованные под действием ультрафиолетовых лучей. Это заболевание называется пигментная ксеродерма. Оно характеризуется сухостью и шелушением кожи, образованием пигментных пятен, заболеванием глаз.

Пострепликативная репарация наблюдается в синтетический период интерфазы. Во время репликации ДНК участки с димерами не реплицируются, поэтому вновь синтезированная нить содержит бреши. Потом эти бреши заполняются путем рекомбинативного синтеза с неповрежденной молекулой ДНК.

SOS-репарация происходит в том случае, если молекула ДНК сильно разрушена. Тогда нить строится из первых попавшихся нуклеотидов и исходная структура ДНК не восстанавливается.

  • 2. Сходство аминокислот по функциональному действию. В результате мутации одна аминокислота заменена на другую, сходную по функциональному действию, поэтому свойства и функции белка не изменились.
  • 3. Вырожденность генетического кода. В связи с тем, что триплетов существует 64, а аминокислот 20, одной и той же аминокислоте может соответствовать несколько триплетов (до 6). Поэтому во многих случаях замена одного нуклеотида на другой ведет к образованию триплета-синонима.
  • 4. Дублирование генов. Многие гены в клетке дублируются от 100 до 1 000 000 раз.
  • 5. Парность хромосом в диплоидном наборе. Благодаря этому рецессивные мутации не проявляются.
  • 6. Отбор. Он происходит на всех уровнях: молекулярном, клеточном, организменном (гибель эмбриона, мертворождение, гибель в раннем детстве, бесплодие). Направлен на защиту популяции от вырождения. Благодаря этому виды существуют длительное время.

ГЕНЕТИКА ПОПУЛЯЦИЙ Популяция является формой существования любого вида. Популяция — это совокупность особей одного вида, достаточно длительное время существующая на одной территории, внутри которой осуществляется панмиксия и которая отделена от других таких же совокупностей той или иной степенью изоляции.

Совокупность генотипов всех особей, составляющих данную популяцию, носит название генофонд.

Существует ли закономерность в распределении генов и генотипов внутри генофонда? Да. Она была сформулирована в 1908 году одновременно двумя учеными: английским математиком Харди и немецким врачом Вайнбергом и получила название закона Харди-Вайнберга. Этот закон полностью справедлив только для идеальных популяций, т. е. популяций, отвечающих следующим требованиям:

  • 1) бесконечно большая численность;
  • 2) внутри популяции осуществляется панмиксия (свободное скрещивание);
  • 3) отсутствуют мутации по данному гену;
  • 4) отсутствует приток и отток генов;
  • 5) отсутствует отбор по анализируемому признаку (признак нейтральный!).

Природные популяции в большинстве своем приближаются к идеальным, поэтому данный закон находит применение.

Закон Харди-Вайнберга имеет математическое и словесное выражения, причем в двух формулировках:

Частоты встречаемости генов одной аллельной пары в популяции остаются постоянными из поколения в поколение.

p + q = 1,.

где p — частота встречаемости доминантного аллеля (А), q — частота встречаемости рецессивного аллеля (a).

Частоты встречаемости генотипов в одной аллельной паре в популяции остаются постоянными из поколения в поколение, а их распределение соответствует коэффициентам разложения бинома Ньютона 2-й степени.

p2 + 2pq +q2 = 1.

Эту формулу следует выводить с помощью генетических рассуждений.

Допустим, что в генофонде популяции доминантный аллель, А встречается с частотой р, а рецессивный аллель, а с частотой q. Тогда в этой же популяции женские и мужские гаметы будут нести аллель, А с частотой р, а аллель, а с частотой q. При свободном скрещивании (панмиксии) происходит случайное слияние гамет и образуются самые разные их сочетания:

pА.

qa.

pA.

р2AA.

pqAa.

qa.

pqAa.

q2aa.

Запишем полученные генотипы в одну строку:

p2AA + 2pqAa + q2aa = 1.

Теперь докажем на конкретном примере, что частоты встречаемости генов одной аллельной пары из поколения в поколение не меняются. Допустим, что в некой популяции в данном поколении pA = 0,8, qa = 0,2. Тогда в следующем поколении будет:

0,8А.

0,2a.

0,8A.

0,64AA.

0,16Aa.

0,2a.

0,16Aa.

0,04aa.

0,64 АА + 0,32 Аа + 0,04 аа = 1.

При этом частота встречаемости аллельных генов в гаметах остается без изменений:

А = 0,64+0,16 = 0,8; а = 0,04+0,16 = 0,2.

Закон Харди-Вайнберга применим и для множественных аллелей.

Так, для трех аллельных генов формулы будут следующие:

p + q + r = 1,.

p2 + 2pq + 2pr + 2 qr + q2 + r2 = 1.

Практическое значение закона Харди-Вайнберга состоит в том, что он позволяет рассчитать генетический состав популяции в данный момент и выявить тенденцию его изменения в будущем.

Применение этого закона на практике показало, что популяции отличаются друг от друга по частоте встречаемости генов. Так, по генам группы крови в системе АВ0 различия между русскими и англичанами были следующие:

IA.

IB.

I0.

Русские.

0,25.

0,19.

0,56.

Англичане.

0,25.

0,05.

0,70.

Дрейф генов В малочисленных популяциях закон Харди-Вайнберга не действует. Там имеет место явление дрейфа генов. Под дрейфом генов понимают случайное изменение частоты встречаемости генов одной аллельной пары в популяции. Ввели данный термин зарубежные ученые. Российские ученые это явление назвали генетико-автоматическими процессами.

Дрейф генов может привести популяцию в гомозиготное состояние. Он играет очень важную роль в формировании генофонда малочисленных популяций. Именно дрейфом генов ученые объясняют отсутствие у североамериканских индейцев (коренных жителей) гена группы крови IB, и соответственно у них имеется только две группы крови (0 и А).

Доказательство дрейфа генов было получено в эксперименте на мухах-дрозофилах. Мух анализировали по одному признаку — строению щетинки.

(адаптивного значения не имеет):

А — ген, определяющий нормальное строение щетинки;

а — ген, определяющий раздвоенность щетинки.

Взяли 96 ящиков, в каждый из них поместили по 4 самца и 4 самки. Из полученного потомства в каждом поколении методом случайной выборки оставляли в каждом ящике 4 самца и 4 самки. И так проделывали на протяжении 16 поколений. На 16-м поколении получили следующий результат: в 41 ящике все мухи имели генотип АА, в 29 ящиках — генотип аа, в 26 — генотип Аа.

Введение

в генетику человека Генетика человека — это наука, изучающая закономерности наследственности и изменчивости у человека. Генетика человека является одной из важнейших теоретических дисциплин медицины.

Медицинская генетика — это раздел генетики человека, который изучает генетические причины заболеваний человека, разрабатывает методы диагностики, профилактики и лечения наследственной патологии. Основоположником медицинской генетики является русский врач, невропатолог и генетик Сергей Николаевич Давиденков.

Актуальность проблемы профилактики врожденной и наследственной патологии продиктована значительным вкладом этих заболеваний в показатели здоровья населения. Так, по данным Всемирной организации здравоохранения (ВОЗ) около 6% населения имеет наследственную отягощенность. В течение последних 50−70 лет происходит увеличение удельного веса наследственной патологии в структуре младенческой и детской смертности. В развитых странах, где младенческая смертность не превышает 15 случаев на 1000 детей, врожденная и наследственная патология занимает 2-е место в ее структуре. Наследственная и врожденная патология вносит существенный вклад и в детскую заболеваемость: около 5% детей в возрасте до 7 лет имеют те или иные нарушения развития, из которых более 80% являются врожденными по своей природе. Врожденные и наследственные заболевания имеют хроническое течение и, как правило, подлежат лечению в течение всей жизни. Кроме того, возможности лечения большинства этих нарушений резко ограничены. 40% инвалидов детства — это больные с наследственными, врожденными заболеваниями.

Предметом изучения генетики человека является человек — существо биосоциальное, обладающее рядом особенностей, большинство из которых осложняет исследовательский процесс:

невозможность проведения экспериментов;

медленная смена поколений;

малое число потомков;

большое число групп сцепления генов;

большая фенотипическая изменчивость.

Положительная черта человека как объекта генетических исследований состоит в хорошей его фенотипической изученности.

К методам, используемым в генетике человека, относятся следующие:

генеалогический, близнецовый, цитогенетический, биохимический, генетики соматических клеток, популяционно-статистический, методы моделирования, молекулярно-генетические методы, дерматоглифики и пальмоскопии.

Для каждого метода необходимо знать его сущность (как проводится) и возможности.

Генеалогический метод.

Генеалогический метод, или метод сбора и анализа родословной, является основным в практике медико-генетического консультирования. Применяется с конца Х1Х века, разработан и внедрен в практику знаменитым английским исследователем Френсисом Гальтоном. Основан на прослеживании нормального или патологического признака в ряду поколений, связанных между собой родственными связями. Осуществляют в два этапа:

  • 1) составление родословной;
  • 2) анализ родословной.

Составление родословной начинают с пробанда, т. е. человека, относительно которого проводится исследование. В генетическую карту записываются сведения о сибсах (братьях и сестрах) пробанда, его родителях, о сибсах родителей и их детях и т. д. Очень важно выяснить вопрос о наличии самопроизвольных абортов, мертворождений и ранней детской смертности.

На основании собранных сведений готовят графическое изображение родословной, используя условные символы, предложенные еще в начале 30-х годов ХХ века А. Ютом. Они были модифицированы и дополнены в последующем некоторыми другими авторами.

Метод применяется с целью:

  • 1. Выявления наследственного характера изучаемого признака. Если в семье регистрируется один и тот же признак несколько раз, то возможно предположить наследственную природу или семейный характер заболевания.
  • 2. Определения гетерозиготного носительства мутантного гена.
  • 3. Установления сцепленного наследования признаков.
  • 4. Определения пенетрантности гена.
  • 5. Изучения интенсивности мутационного процесса.
  • 6. Установления типа наследования моногенного заболевания.

Моногенным называется заболевание, обусловленное действием одного патологического гена. В зависимости от того, каким является патологический ген (доминантным или рецессивным) и где он расположен (в аутосоме или половой хромосоме), различают пять типов наследования:

  • — аутосомно-доминантный,
  • — аутосомно-рецессивный,
  • — Х-сцепленный доминантный,
  • — Х-сцепленный рецессивный,
  • — У-сцепленный, или голандрический.

Признаки, характерные для родословной при аутосомно-доминантном типе наследования Каждый больной член семьи обычно имеет больного родителя.

Заболевание передается из поколения в поколение; больные есть в каждом поколении (вертикальное наследование).

У здоровых родителей дети будут здоровы (при 100% пенетрантности гена).

Вероятность рождения больного ребенка в семье, где один из супругов болен, составляет 50%.

Одинаковая частота поражения мужчин и женщин.

Признаки, характерные для родословной при аутосомно-рецессивном типе наследования Наличие больных детей у здоровых родителей.

Накопление пораженных лиц в одном поколении (наследование по горизонтали).

Одинаковая частота поражения мужчин и женщин.

Повышенный процент инбридинга (кровно-родственный брак).

Признаки, характерные для родословной при Х-сцепленном доминантном типе наследования:

  • 1. Рождение больных детей в семьях, где болен один из супругов.
  • 2. Если болен отец, то все дочери будут больны, а все сыновья здоровы.
  • 3. Если больна мать, то вероятность рождения больного ребенка составляет 50% независимо от пола.
  • 4. Болеют лица обоих полов, но частота поражения женщин в два раза выше, чем мужчин.
  • 5. Заболевание прослеживается в каждом поколении.

Признаки родословной при Х-сцепленном рецессивном типе наследования:

  • 1. Преимущественное поражение мужчин.
  • 2. Наличие здоровых сыновей у больных отцов.
  • 3. Передача патологического гена от больного отца дочерям, у которых высок риск рождения больного сына (25%).

Признаки родословной при У-сцепленном (голандрическом) типе наследования Признак, имеющийся у отца, передается всем его сыновьям.

Близнецовый метод Метод предложен в конце Х1Х века Ф.Гальтоном.

Близнецы рождаются в одном случае из 84 родов. Из них 1/3 приходится на рождение монозиготных близнецов, 2/3 — на дизиготных.

Монозиготные (MZ) близнецы развиваются из одной яйцеклетки, оплодотворенной одним сперматозоидом. Их генотип идентичен, и различия между близнецами определяются преимущественно средовыми факторами.

Дизиготные (DZ) близнецы развиваются при оплодотворении двух яйцеклеток двумя сперматозоидами. Общих генов у них 50%, как у братьев и сестер, рожденных в пределах одной супружеской пары в разное время. Различия в фенотипе у DZ определяются как генотипом, так и факторами среды.

Близнецовые исследования проводятся в три этапа.

Подбор близнецовых пар.

Установление зиготности.

Сопоставление пар близнецов по изучаемым признакам.

Совпадение у близнецов анализируемых признаков обозначается как конкордантность, несовпадение — дискордантность.

Метод позволяет установить роль наследственности и среды в развитии какого-либо признака.

На заключительном этапе исследования сравнивают показатели конкордантности признака между монои дизиготными близнецами. Если показатели конкордантности в обеих группах близки, это значит, что в развитии признака ведущая роль принадлежит факторам внешней среды. Чем больше разница между показателями конкордантности в группах монои дизиготных близнецов, тем больший вклад в развитие признаков вносит генотип.

Существует формула, по которой можно определить роль наследственности и среды в развитии признака:

% сх-ва MZ — % сх-ва DZ.

Н =.

100% - % сх-ва DZ.

Н — коэффициент наследуемости.

Если Н = 1, признак строго наследственный (группы крови).

Если Н = 0, признак определяется факторами внешней среды (инфекционные болезни).

Если Н = 0,5, признак определяется в равной степени и генотипом, и средой.

Признак.

% сходства.

MZ.

DZ.

Группа крови.

100%.

46%.

Шизофрения.

70%.

13%.

Корь.

98%.

94%.

Цитогенетический метод Включает два основных вида исследования:

  • 1) изучение хромосомного набора в соматических клетках организма человека, т. е. кариотипа;
  • 2) определение полового хроматина.
  • 1. Исследование кариотипа.

Бурное развитие этот метод получил после 1956 года, когда шведские ученые Дж. Тийо и А. Леван предложили новую методику исследования хромосомного набора и установили, что кариотип человека в норме содержит 46 хромосом.

Для исследования берут 1 мл крови, выделяют из нее лимфоциты и культивируют их на питательной среде. Через определенное время воздействуют на культуру клеток колхицином, который останавливает деление лимфоцитов на стадии метафазы. Клеточную суспензию наносят на предметные стекла, окрашивают и микроскопируют. Изучению подвергаются метафазные пластинки. Микропрепарат фотографируют, делают отпечатки на фотобумаге, вырезают изображение каждой хромосомы ножницами и наклеивают на белую бумагу в ряд попарно, начиная с первой пары гомологов и заканчивая парой половых хромосом. Такое расположение хромосомного набора называется идиограммой.

С конца 60-х годов стали применяться методы дифференциального окрашивания хромосомных препаратов, которые позволяют точно идентифицировать каждую хромосому в наборе и диагностировать структурные аберрации.

Метод позволяет поставить диагноз хромосомного заболевания человека.

2. Исследование полового хроматина (телец Барра) — экспресс-метод.

При помощи шпателя делают соскоб со слизистой щеки, наносят мазок на предметное стекло, окрашивают и исследуют под микроскопом клетки, находящиеся на стадии интерфазы.

Метод позволяет установить количество Х-хромосом в кариотипе по числу телец Барра в клетке. В норме у женщин одна из Х-хромосом в период интерфазы не функционирует и образует тельце Барра (половой хроматин), которое хорошо видно в микроскоп как глыбка хроматина, прилежащая к ядерной мембране. В мужских соматических клетках тельце Барра в норме отсутствует.

Биохимический метод Метод основан на знании принципов реализации гена в признак: ген — фермент — биохимическая реакция — признак. О наличии нормального или мутантного гена можно судить по ферментам или продуктам биохимических реакций, которые они катализируют.

Осуществляется в два этапа. На первом этапе проводится обследование большого контингента лиц с целью выявления предположительных случаев заболевания или носительства патологического гена. Эти программы называются просеивающими, или скрининг-программами. Использование программ просеивания преследует две цели:

выявление больных в доклинической стадии, т. е. до развития симптомов заболевания, когда возможно эффективное лечение;

выявление здоровых носителей патологического гена с целью определения дальнейшей тактики по планированию семьи.

Просеивающие программы подразделяются на два вида:

Массовые, когда объектом обследования является максимально большое количество видимо здоровых лиц в популяции.

Выборочные, или селективные, когда объектом просеивания являются только определенные контингенты больных, среди которых ожидается повышенная частота встречаемости патологического генотипа.

Требования к скрининг-программам:

  • а) методы просеивания должны быть простыми и экономичными, что позволяет обследовать большие группы лиц. Должен использоваться легкодоступный материал в малых количествах (кровь, моча, слюна). Желательно, чтобы исследуемый образец был пригоден для пересылки и хранения (капля крови на фильтровальной бумаге);
  • б) методы должны быть надежными и диагностически значимыми;
  • в) просеиванию подлежат заболевания, которые достаточно широко распространены в популяции. Следовательно, в каждой местности целесообразно осуществлять скрининг тех мутаций, частота встречаемости которых в генофонде данной популяции высока. Например, в Ивановской области и близлежащих областях проводится скрининг новорожденных на предмет выявления фенилкетонурии и гипотиреоза. Оба заболевания являются моногенными и имеют высокую частоту встречаемости в популяциях средней полосы России.

На втором этапе с помощью более сложных методов обследуют выявленных в ходе просеивания лиц с целью подтверждения диагноза.

Методы генетики соматических клеток Целью данной группы методов является изучение процессов наследственности и изменчивости соматических клеток, что позволяет судить о генетических закономерностях организма в целом. Соматические клетки человека получают из различных органов и тканей (клетки крови, кожных покровов и слизистых, костного мозга, эмбриональные клетки). Чаще всего для исследования берут фибробласты и лимфоциты. Полученный клеточный материал можно использовать по следующим направлениям:

Культивирование, т. е. размножение клеток для последующего цитогенетического, биохимического, иммунологического и других видов исследований.

Клонирование, т. е. получение потомков одной клетки.

Селекция соматических клеток, т. е. целенаправленный отбор клеток с определенными свойствами.

Гибридизация соматических клеток, основанная на слиянии двух типов клеток с образованием гибридной клетки после предварительной обработки вирусом парагриппа Сендай. При гибридизации могут использоваться клетки от особей как одного биологического вида, так и от разных видов (например, клетки человека и мыши, крысы, обезьяны, комара и т. д.). В смешанной культуре двух типов клеток образуются клетки с наличием в общей цитоплазме ядер обеих родительских клеток — гетерокарионы. После митоза двухядерного гетерокариона возникают две одноядерные клетки — синкарионы. Гибридная клетка, содержащая два хромосомных набора, при делении обычно утрачивает хромосомы одного из видов. Выпадает каждый раз пара хромосом того вида, клетки которого имеют более длительный митотический цикл. Например, в 1967 году H. Green было обнаружено исчезновение человеческих хромосом в процессе длительного культивирования гибридных клеток мышей и человека. Клетки, в которых после ряда делений остается диплоидный набор мышиных хромосом и пара гомологичных хромосом человека, клонируют и исследуют в них набор ферментов, предварительно изучив набор ферментов в мышиной клетке. По наличию фермента, не свойственного мышиной клетке, приходят к выводу о локализации структурного гена в определенной паре гомологичных хромосом человека.

Метод позволяет установить:

локализацию гена в хромосоме;

группы сцепления;

механизм взаимодействия генов;

мутантное действие тех или иных веществ;

заболевание в дородовый период.

Популяционно-статистический метод Метод заключается в изучении генетических закономерностей в популяции. Теоретической основой данного метода является основной закон генетики популяций — закон Харди-Вайнберга.

Метод позволяет установить:

Частоту встречаемости аллелей одного гена в популяции, т. е. генные частоты. По частоте встречаемости гены можно разделить на две группы:

  • а) гены, имеющие универсальное распространение, т. е. встречающиеся в разных популяциях с одинаковой частотой,
  • б) гены, имеющие локальное распространение.

Например, ген, определяющий серповидно-клеточную анемию, распространен в странах Средиземноморья и на Африканском континенте. Ген, определяющий врожденный вывих бедра, распространен у малых народов Севера. Гены, определяющие нарушение строения гемоглобина, распространены в среднеазиатских популяциях. Изучение генных частот в разных популяциях лежит в основе современной геногеографии.

Генотипическую структуру популяции, т. е. частоты встречаемости генотипов. Исследование генотипических частот позволяет решить две основные задачи:

  • а) изучить распространенность наследственных заболеваний,
  • б) определить частоту гетерозиготного носительства патологического гена в популяции.

Факторы, влияющие на генофонд популяции, в частности, интенсивность мутационного процесса и стабилизирующего естественного отбора.

Прогнозировать изменение генных и генотипических частот в популяции, снижение или рост заболеваемости и грамотно обосновать необходимость проведения соответствующих профилактических мероприятий в данном регионе.

Методы моделирования Различают два вида моделирования: биологическое и математическое.

Теоретической основой для биологического моделирования является закон гомологических рядов наследственной изменчивости, открытый Н. И. Вавиловым. Исходя из этого закона, можно предположить, что мутации, имеющиеся у человека, должны вызывать такие же фенотипические изменения признаков у других представителей класса млекопитающих. Следовательно, для изучения определенных наследственных болезней человека можно использовать экспериментальных животных. Описаны и изучены многие генные мутации у животных, имеющие сходство с соответствующими аномалиями у человека. Так, гемофилия, А и В встречается у собак и обусловлена генами, расположенными в Х-хромосоме. У кроликов и крыс можно вызвать эпилептоидные припадки (сходные с эпилепсией у человека) путем воздействия на них сильным звуковым раздражителем. Наследственная глухота обнаружена у морских свинок. У хомяков и крыс встречаются такие заболевания, как сахарный диабет, ахондроплазия, мышечная дистрофия и др.

Математическое моделирование. Наибольшее применение эти методы нашли в популяционной генетике, где моделируются различные процессы, влияющие на генофонд популяции (например, дрейф генов, миграционные процессы). Кроме того, с помощью математических методов изучается взаимодействие наследственных факторов и среды в развитии отдельных признаков, анализируется сцепление большого числа генов и т. д.

Методы изучения ДНК Методы секвекнирования (определения нуклеотидной последовательности ДНК).

Использование ДНК-зондов.

Клонирование ДНК-зондов.

Читать по учебнику В. Н. Ярыгина «Биология».

Классификация наследственной патологии человека Наследственные болезни (болезни, причиной которых являются изменения наследственного материала).

1. Генные болезни.

А. Моногенные болезни:

— аутосомно-доминантные;

аутосомно-рецессивные;

Х-сцепленные доминантные;

Х-сцепленные рецессивные;

У-сцепленные.

Б. Полигенные болезни (ретинобластома, нефробластома).

2. Хромосомные болезни.

А. Аутосомные синдромы:

анеуплоидии;

хромосомные аберрации.

Б. Гетерохромосомные синдромы:

анеуплоидии;

хромосомные аберрации.

Болезни с наследственной предрасположенностью (заболевания, которые развиваются в результате совместного действия генетических и средовых факторов. Неблагоприятный генетический фон создает генетическую предрасположенность к развитию заболевания, а неблагоприятное действие факторов внешней среды провоцирует развитие заболевания).

А. Моногенные (непереносимость сульфаниламидов, непереносимость лактозы, непереносимость жирной пищи, непереносимость сыра и шоколада, патологическая реакция на тепло, холод, солнечный свет, вакцины и т. п.).

Б. Полигенные (мультифакториальные): атеросклероз, гипертоническая болезнь, сахарный диабет, язвенная болезнь желудка и двенадцатиперстной кишки, псориаз, шизофрения и многие другие.

ПРИНЦИПЫ ПРОФИЛАКТИКИ, ДИАГНОСТИКИ И ЛЕЧЕНИЯ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ Профилактика и диагностика наследственной патологии В настоящее время профилактика наследственной патологии проводится на четырех уровнях: 1) прегаметическом; 2) презиготическом; 3) пренатальном; 4) неонатальном.

Прегаметический уровень Осуществляется:

  • 1. Санитарный контроль за производством — исключение влияния на организм мутагенов.
  • 2. Освобождение женщин детородного возраста от работы на вредном производстве.
  • 3. Создание генетических регистров, т. е. перечней наследственных заболеваний, которые распространены на определенной территории, с указанием частоты встречаемости этих заболеваний. Создание таких регистров позволяет:
    • а) изучить структуру наследственной патологии;
    • б) определить распространенность заболеваний;
    • в) своевременно уловить изменение частоты встречаемости

наследственных заболеваний и принять необходимые меры.

Презиготический уровень Важнейшим элементом этого уровня профилактики является медико-генетическое консультирование (МГК) населения.

МГК населения ставит своей целью информировать семью о степени возможного риска рождения ребенка с наследственной патологией и оказать помощь в принятии правильного решения о деторождении.

Различают два вида МГК: проспективное и ретроспективное.

Проспективное МГК проводится относительно прогноза здоровья потомства еще до рождения больного ребенка в семье. Поводом к проведению проспективного МГК может явиться:

  • — кровно-родственный брак;
  • — наличие у одного из супругов или его родственников

наследственного заболевания;

— воздействие на супругов мутагенных факторов.

Ретроспективное консультирование осуществляется относительно здоровья следующих детей после появления в семье больного ребенка.

Медико-генетическое консультирование включает четыре этапа:

  • 1. Установление диагноза наследственного заболевания. На этом этапе врач использует все доступные и необходимые методы исследования.
  • 2. На втором этапе определяется генетический риск рождения больного ребенка. Риск рождения ребенка с любыми наследственными аномалиями в здоровой супружеской паре составляет в среднем 1−2%, что определяется случайными генеративными мутациями. Эта величина называется неспецифическим общепопуляционным риском. Обратившихся в консультацию интересует больше специфический риск — это риск рождения ребенка с определенным наследственным заболеванием, уже встречавшимся в семье.
  • 3. На третьем этапе врач в доступной форме сообщает семье сведения о величине риска и оказывает помощь в принятии решения относительно деторождения.
  • 4. На четвертом, заключительном этапе проводится оценка эффективности медико-генетического консультирования в ходе дальнейшего наблюдения за семьей.

Пренатальный уровень Заключается в проведении пренатальной (дородовой) диагностики.

Пренатальная диагностика — это комплекс мероприятий, который осуществляется с целью определения наследственной патологии у плода и прерывания данной беременности.

К методам пренатальной диагностики относятся:

Ультразвуковое сканирование (УЗС) — исследование плода с помощью ультразвука.

Фетоскопия — метод визуального наблюдения плода в полости матки через эластичный зонд, оснащенный оптической системой.

Биопсия хориона. Метод основан на взятии ворсин хориона, культивировании клеток и исследовании их с помощью цитогенетических, биохимических и молекулярно-генетических методов.

Амниоцентез — пункция околоплодного пузыря через брюшную стенку и взятие амниотической жидкости. Она содержит клетки плода, которые могут быть исследованы цитогенетически или биохимически в зависимости от предполагаемой патологии плода.

Кордоцентез — пункция сосудов пуповины и взятие крови плода. Лимфоциты плода культивируют и подвергают исследованию.

Неонатальный уровень На четвертом уровне проводится скрининг новорожденных на предмет выявления аутосомно-рецессивных болезней обмена в доклинической стадии, когда своевременно начатое лечение дает возможность обеспечить нормальное умственное и физическое развитие детей. Основывается на клиническом, генетическом и лабораторно-инструментальном обследовании пациентов.

Принципы лечения наследственных заболеваний Различают следующие виды лечения.

Симптоматическое (воздействие на симптомы болезни).

Патогенетическое (воздействие на механизмы развития заболевания).

Симптоматическое и патогенетическое лечение не устраняет причины заболевания, т.к. не ликвидирует генетический дефект.

В симптоматическом и патогенетическом лечении могут использоваться следующие приемы.

Исправление пороков развития хирургическими методами (синдактилия, полидактилия, незаращение верхней губы и т. п.).

Заместительная терапия, смысл которой заключается во введении в организм отсутствующих или недостаточных биохимических субстратов.

Индукция метаболизма — введение в организм веществ, которые усиливают синтез некоторых ферментов и, следовательно, ускоряют процессы, в которых эти ферменты участвуют.

Ингибиция метаболизма — введение в организм препаратов, связывающих и выводящих аномальные продукты обмена из организма.

Диетотерапия (лечебное питание) — устранение из пищевого рациона веществ, которые не могут быть усвоены организмом.

Этиологическое лечение ставит своей целью исправление наследственного дефекта. Этот вид лечения еще не разработан, сегодня сформулированы лишь исследовательские программы на перспективу. Они основаны на идеях генной инженерии.

Генная инженерия — область молекулярной биологии и генетики, ставящая своей задачей конструирование генетических структур по заранее намеченному плану, т. е. создание организмов с новой генетической программой.

В процессе создания организмов с новой генетической программой можно выделить три основных этапа:

Синтез искусственного гена или выделение необходимого гена из клетки донора.

Сшивание полученного гена с направляющей (векторной) молекулой ДНК.

Введение

полученной рекомбинантной молекулы ДНК в клетку-реципиент.

1 этап Синтез искусственных генов вне организма возможен двумя способами: химическим и ферментативным.

Химический синтез — создание гена с известной нуклеотидной последовательностью. Впервые искусственный ген был синтезирован в 1970 г. индийским ученым Г. Кораной. Это был ген аланиновой т-РНК. Он состоял из 72 нуклеотидов и включал только структурную часть. Регуляторная часть гена отсутствовала, поэтому ген был функционально не активным. В 1976 г. Корана осуществил химический синтез другого гена — гена тирозиновой т-РНК кишечной палочки, который включал промотор и терминатор, т. е. регуляторные части.

Ферментативный синтез искусственных генов — это синтез ДНК на матрице и-РНК в процессе обратной транскрипции. Ферментативный синтез искусственных генов стал возможным после открытия в 1970 г. ферментов обратной транскрипции — обратных транскриптаз. ДНК, полученная в процессе обратной транскрипции, называется ДНК-копией. Полученные путем ферментативного синтеза гены не имеют регуляторных участков, поэтому для обеспечения работы этих генов необходимо присоединять промотор, взятый из генома бактериальной клетки. Таким образом были получены гены, отвечающие за синтез некоторых гормонов: инсулина, соматотропина, глобиновые гены.

2 этап Состоит в сшивании полученного гена с направляющей, или векторной, молекулой ДНК. В качестве направляющих молекул могут использоваться:

  • а) бактериальные плазмиды, т. е. кольцевые молекулы ДНК, присутствующие в бактериальной клетке;
  • б) фаги (фаг лямбда);
  • в) вирусы (вирус SV 40).

Плазмидную ДНК выделяют и расщепляют ферментом рестриктазой, превращая кольцевую молекулу в линейную. Причем после разрезания одна из цепей оказывается длиннее другой на несколько нуклеотидов, т. е. формируются так называемые «липкие концы». Эти нуклеотиды могут свободно спариваться с комплементарными нуклеотидами другого фрагмента ДНК с липкими концами. Благодаря этому ДНК из различных источников могут объединяться, образуя рекомбинантные молекулы. Рекомбинантную конструкцию вводят затем в бактерию, где она реплицируется.

3 этап Состоит в проникновении гибридной молекулы ДНК в клетку-реципиент и встраивании в ее геном. Способ введения в клетку гибридных молекул зависит от вектора. Если в качестве вектора используется плазмида, то введение происходит по типу трансформации; если в качестве вектора используется фаг или вирус — по типу трансдукции.

Достижения генной инженерии могут быть использованы по следующим направлениям.

  • 1.

    Введение

    генов эукариот в бактерии и создание таких микроорганизмов, которые могут в промышленном масштабе синтезировать биологически активные вещества: антибиотики, витамины, гормоны. Например, были синтезированы гены, отвечающие за синтез инсулина, введены в геном кишечной палочки, которая стала продуцировать инсулин. Сегодня возможно получение таким образом соматостатина, СТГ, брадикинина и других биологически активных веществ.

  • 2. Генотерапия — получение лечебного эффекта с помощью введения в организм чужеродных генов. Клинические испытания по доставке функционально активных молекул ДНК в клетки человека были начаты в 1990 г. и касались таких заболеваний, как гемофилия, серповидно-клеточная анемия, различные ферментопатии. В настоящее время допускается лечение не только моногенных заболеваний, но и мультифакториальных (диабет, атеросклероз, онкологические и психические заболевания).

В зависимости от способа введения экзогенной ДНК в геном пациента генная терапия может проводиться либо в культуре клеток (ex vivo), либо непосредственно в организме (in vivo).

Клеточная генная терапия ex vivo предполагает:

выделение и культивирование специфических типов клеток (например, опухолевых);

введение

в них чужеродных генов;

отбор клеток с рекомбинантными молекулами ДНК;

трансплантацию этих клеток тому же пациенту.

Генная терапия in vivo основана на прямом введении клонированных и упакованных последовательностей ДНК в ткани больного.

наследственный жизнь экологический организм.

Показать весь текст
Заполнить форму текущей работой