Помощь в написании студенческих работ
Антистрессовый сервис

Расчетные выражения для потенциальных коэффициентов

РефератПомощь в написанииУзнать стоимостьмоей работы

Тороид и провод конечной длины (рис. 8). Где l — большая полуось эллипсоида,. Два провода конечной длины (рис. 9). Два коаксиальных тороида (рис. 5). N целое число (принять равным 20),. N целое число (принять равным 20),. L0 — полуфокусное расстояние,. H — высота центра эллипсоида; R0 _ радиус сечения тороида,. Они соответственно равны: R0 — радиус тороида,. Рисунок 14. Рисунок 13. Рисунок 12… Читать ещё >

Расчетные выражения для потенциальных коэффициентов (реферат, курсовая, диплом, контрольная)

Собственный потенциальный коэффициент тороида, осевая линия которого перпендикулярна проводящей плоскости (рис. 4).

(4).

(4).

Расчетные выражения для потенциальных коэффициентов.

где _ модуль полного эллиптического интеграла первого рода K(k), численные значения которого приведены в таблице 1.

R0 — радиус тороида,.

r0 _ радиус сечения тороида,.

H1 — высота тороида над проводящей плоскостью.

Расчетные выражения для потенциальных коэффициентов.

Рисунок 4.

Таблица 1.

K(k).

K(k).

K(k).

K(k).

1.5708.

1.6365.

1.8691.

2.461.

1.5709.

1.6426.

1.8848.

2.5046.

1.5713.

1.649.

1.9011.

2.5507.

1.5719.

1.6557.

1.918.

2.5998.

1.5727.

1.6627.

1.9356.

2.6521.

1.5738.

1.6701.

1.9539.

2.7081.

1.5751.

1.6777.

1.9729.

2.7681.

1.5767.

1.6858.

1.9927.

2.8327.

1.5785.

1.6941.

2.0133.

2.9026.

1.5805.

1.7028.

2.0347.

2.9786.

1.5828.

1.7119.

2.0571.

3.0617.

1.5854.

1.7214.

2.0804.

3.1534.

1.5882.

1.7312.

2.1047.

3.2553.

1.5913.

1.7415.

2.13.

3.3699.

1.5946.

1.7522.

2.1565.

3.5004.

1.5981.

1.7633.

2.1842.

3.6519.

1.602.

1.7748.

2.2132.

3.8317.

1.6061.

1.7868.

2.2435.

4.0528.

1.6105.

1.7992.

2.2754.

4.3387.

1.6151.

1.8122.

2.3088.

4.7427.

1.62.

1.8256.

2.3439.

5.4349.

1.6252.

1.8396.

2.3809.

1.6307.

1.8541.

2.4198.

Примечание:. Для работы с таблицей 1 после вычисления округлить или отбросить дробную часть.

Два коаксиальных тороида (рис. 5).

Два коаксиальных тороида (рис. 5).

(5).

(5).

Расчетные выражения для потенциальных коэффициентов.

и ,.

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

Рисунок 5.

Два нескрещивающихся тороида, осевые линии которых расположены в параллельных горизонтальных плоскостях (рис. 6).

Расчетные выражения для потенциальных коэффициентов.
(6).

(6).

где D — расстояние между центрами торов ,.

n целое число (принять равным 20),.

n целое число (принять равным 20),.

и.

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

Рисунок 6.

Несколько соединенных между собой одинаковых прямолинейных проводов, перпендикулярных проводящей плоскости (рис. 7).

(7).

(7).

Расчетные выражения для потенциальных коэффициентов.

где (r=1, 2, …, n-1); D2 — коэффициент, определяемый по отношению h/l из таблицы 2.

Таблица 2.

h/l

D2

h/l

D2

h/l

D2

0.02.

0.928.

0.30.

0.645.

1.11.

0.465.

0.04.

0.884.

0.40.

0.604.

1.25.

0.451.

0.06.

0.850.

0.50.

0.569.

2.00.

0.408.

0.08.

0.820.

0.60.

0.554.

2.50.

0.392.

0.10.

0.795.

0.70.

0.523.

5.00.

0.352.

0.15.

0.744.

0.80.

0.504.

10.0.

0.332.

0.20.

0.702.

0.90.

0.489.

0.25.

0.670.

1.00.

0.477.

Расчетные выражения для потенциальных коэффициентов.

Рисунок 7.

Тороид и провод конечной длины (рис. 8).

Расчетные выражения для потенциальных коэффициентов.
(8).

(8).

где ,.

Расчетные выражения для потенциальных коэффициентов.

.

_ расстояние между центром тора и проводом.

.

.

.

n целое число (принять равным 20),.

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

Рисунок 8.

Два провода конечной длины (рис. 9).

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
(9).

(9).

Расчетные выражения для потенциальных коэффициентов.

Рисунок 9.

Эллипсоид вращения, одна из осей которого перпендикулярна проводящей плоскости (рис. 10).

(10).

(10).

где l — большая полуось эллипсоида,.

l0 — полуфокусное расстояние,.

h — высота центра эллипсоида;

.

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

Рисунок 10.

Тороид и проводящее тело в форме эллипсоида вращения (рис. 11).

(11).

(11).

где lЭ, ОРИГ и lЭ, ИЗОБ — большие полуоси эллипсоидов вращения, являющихся эквипотенциальными поверхностями электростатических полей, создаваемых электродом в форме эллипсоида и его изображением.

Они соответственно равны:

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

, или.

Расчетные выражения для потенциальных коэффициентов.

.

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

Рисунок 11.

Соосные тороид и эллипсоид вращения (рис. 12).

(12).

(12).

Расчетные выражения для потенциальных коэффициентов.

.

Расчетные выражения для потенциальных коэффициентов.

.

где i=0;1;1.

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

Рисунок 12.

Эллипсоид вращения и провод конечной длины (рис. 13).

(13).

(13).

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

Рисунок 13.

Два непересекающихся эллипсоида вращения (рис. 14).

(14).

(14).

Расчетные выражения для потенциальных коэффициентов.

где и .

Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.
Расчетные выражения для потенциальных коэффициентов.

Рисунок 14.

Показать весь текст
Заполнить форму текущей работой