Помощь в написании студенческих работ
Антистрессовый сервис

Список литературы. 
Исследование ингибиторной активности фосфорорганических соединений

РефератПомощь в написанииУзнать стоимостьмоей работы

Mcguire M.C., Nogueira C.P., Bartels C.F., Lightstone H., Hajra A., Van Der Spek A.F., Lockridge O., La Du B.N. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase // Proc. Natl. Acad. Sci. USA. 1989. V. 86 (3). P. 953−957. Yuan J., Yin J., Wang E. Characterization of procaine metabolism as probe for the… Читать ещё >

Список литературы. Исследование ингибиторной активности фосфорорганических соединений (реферат, курсовая, диплом, контрольная)

Casida J.E., Quistad G.B. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets // Chem. Res. Toxicol. 2004. V. 17. P. 983−998.

Peeples E.S., Schopfer L.M., Duysen E.G., Spaulding R., Voelker T., Thompson C.M., Lockridge O. Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry // Toxicol. Sci. 2005. V. 83. P. 303−312.

Tarhoni M.H., Lister T., Ray D.E., Carter W.G. Albumin binding as a potential biomarker of exposure to moderately low levels of organophosphorus pesticides // Biomarkers. 2008. V. 13. P. 343−363.

Massoulie J. Pezzementi L., Bon S., Krejci E., Vallette F.M. Molecular and cellular biology of cholinesterases // Prog. Neurobiol. 1993. V. 41 (1). P. 31- 91.

Matthews G. Neurotransmitter release // Annu. Rev. Neurosci. 1996. V. 19. P. 219−233.

Wiesner J., Kшнћ Z., Kuиa K., Jun D., Koиa J. Acetylcholinesterases — the structural similarities and differences // J. Enzyme Inhib. Med. Chem. 2007. V. 22 (4). P. 417−424.

Дудель Й. Физиология человека. / Под ред. Р. Шмидт, Г. Тевс. Москва: Мир, 1996. Т. 1. 323 с.

Lindstrom J. Mutation Causing Muscle Weakness // Proc. Natl. Acad. Sci. 1998. V. 95. P. 9070−9071.

Quinn D.M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states // Chem. Rev. 1987. V. 87. P. 955−979.

Nair H.K., Seravalli J., Arbuckle T., Quinn D.M. Molecular recognition in acetylcholinesterase catalysis: Free-energy correlations for substrate turnover and inhibition by trifluoro ketone transition-state analogs // Biochemistry. Rosenberry T.L. Acetylcholinesterase // Adv. Enzymol. Relat. Areas Mol. Biol. 1975. V. 43. P. 103−218.

Plageman L.R., Pauletti G.M., Skau K.A. Characterization of acetylcholinesterase in Caco-2 cells. // Exp. Biol. Med. 2002. V. 227 (7). P. 480−486.

Wessler I., Kirkpatrick C.J. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans // Br. J. Pharmacol. 2008. V. 154. P. 1558−1571.

Momonoki Y.S. Occurrence of acetylcholine-hydrolyzing activity at the stele-cortex interface // Plant Physiol. 1992. V. 99 (1). P. 130−133.

Sagane Y., Nakagawa T., Yamamoto K., Michikawa S., Oguri S., Momonoki Y.S. Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom // Plant Physiol. 2005. V. 138 (3). P. 1359−1371.

Shapira M., Tur-Kaspa I., Bosgraaf L., Livni N., Grant A.D., Grisaru D., Korner M., Ebstein R.P., Soreq H. A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases // Hum. Mol. Genet. 2000. V. 9 (9). P. 1273−1281.

Brenner T., Harma-Amitay Y., Evron T., Boneva N., Seidman S., Soreq H. The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis // The FASEB J. 2003. V. 17. P. 214−222.

Hasin Y., Avidan N., Bercovich D., Korczyn A., Silman I., Beckmann J. S., Sussman J. L. A paradigm for single nucleotide polymorphism analysis: the case of the acetylcholinesterase gene // Hum. Mutat. 2004. V. 24 (5). P. 408- 416.

Bartels C.F., Zelinski T., Lockridge O. Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism // Am. J. Hum. Genet. 1993. V. 52. P. 928−936.

Wurzel H.A., Haesler W.E. The Yt blood groups in American negroes // Vox Sang. 1968. V. 15 (4). P. 304−305.

Masson P., Froment M.-T., Sorenson R.C., Bartels C.F., Lockridge O. Mutation His322Asn in human acetylcholinesterase does not alter electrophoretic and catalytic properties of the erythrocyte enzyme // Blood. 1994. V. 83(10). P. 3003−3005.

Giles C.M., Metaxas-Buhler M., Romanski Y., Metaxas M.N. Studies on the Yt blood group system // Vox Sanguinis. 1967. V. 13. P. 171−180.

Duysen E.G., Stribley J.A., Fry D.L., Hinrichs S.H., Lockridge O. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse // Brain Res. Dev. Brain Res. 2002. V. 137 (1). P. 43−54.

Duysen E.G., Li B., Xie W., Schopfer L.M., Anderson R.S., Broomfield C.A., Lockridge O. Evidence for nonacetylcholinesterase targets of organophosphorus nerve agents: supersensitivity of acetylcholinesterase knockout mouse to VX lethality // J. Pharmacol. Exp. Ther. 2001. V. 299. P. 528−535.

Lockridge O., Duysen E.G., Voelker T., Thompson C.M., Schopfer L.M. Life without acetylcholinesterase: the implications of cholinesterase inhibition toxicity in AChE-knockout mice // Environ. Toxicol. Pharmacol. 2005. V. 19. P. 463−469.

Getman D.K., Eubanks J.H., Camp S., Evans G.A., Taylor P. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7 // Am. J. Hum. Genet. 1992. V. 51. P. 170−177.

Hasin Y., Avidan N., Bercovich D., Korczyn A.D., Silman I., Beckmann J.S., Sussman J.L. Analysis of genetic polymorphisms in acetylcholinesterase as reflected in different populations // Curr. Alzheimer Res. 2005. V. 2. P. 207−218.

Rachinsky T.L., Camp S., Li Y., Ekstrom T. J., Newton M., Taylor P. Molecular cloning of mouse acetylcholinesterase: tissue distribution of alternatively spliced mRNA species // Neuron. 1990. V. 5 (3). P. 317−327.

Sussman J.L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein // Science. 1991. V. 253. P. 872−879.

Bourne Y., Taylor P., Marchot P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex // Cell. 1995. V. 83 (3). P. 503−512.

Saxena A., Redman A.M., Jiang X., Lockridge O., Doctor B.P. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase // Biochemistry. 1997. V. 36 (48). P. 14 642−14 651.

Lockridge O., Quinn D.M. Esterases. In: Comprehensive Toxicology / Ed. C.A. McQueen / Elsevier Ltd, 2010. P. 243−273.

Лущекина С.В., Григоренко Б. Л., Немухин А. В., Варфоломеев С. Д. Холинэстеразы человека. Суперкомпьютерные вычисления в исследовании механизма действия и роли молекулярного полиморфизма белковой молекулы. В книге: Постгеномные исследования и технологии / Под ред. С. Д. Варфоломеева. Москва: МАКС Пресс, 2011. С. 15−102.

Soreq H., Gnatt A., Loewenstein Y., Neville L.F. Excavations into the active-site gorge of cholinesterases // Trends Biochem. Sci. 1992. V. 17 (9). P. 353−358.

Szegletes T., Mallender W.D., Thomas P.J., Rosenberry T.L. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect // Biochemistry. 1999. V. 38 (1). P. 122−133.

Ordentlich A., Barak D., Kronman C. Dissection of human acetylcholinesterase active centre determinants of substrate specifity // J. Biol. Chem. 1993. V. 268 (23). P. 17 083−17 095.

Macphee-Quigley K., Vedvick T.S., Taylor P., Taylor S.S. Profile of the disulfide bonds in acetylcholinesterase // J. Biol. Chem. 1986. V. 261 (29). P. 13 565−13 570.

Krupka R.M. Hydrolysis of neutral substrates by acetylcholinesterase // Biochemistry. 1966. V. 5 (6). P. 1983;1988.

Roskoski R. Choline acetyltransferase and acetylcholinesterase. Evidence for essential histidine residues // Biochemistry. 1974. V. 13 (25). P. 5141−5144.

Soreq H., Seidman S. Acetylcholinesterase — new roles for an old actor // Neuroscience. 2001. V. 2. P. 294−302.

Sternfeld M., Ming G.L., Song H.J., Sela K., Timberg R., Poo M.M., Soreq H. Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini // J. Neurosci. 1998. V. 18 (4). P. 1240−1249.

Grifman M., Galyam N., Seidman S., Soreq H. Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 13 935−13 940.

Karpel R., Ben Aziz-Aloya R., Sternfeld M., Ehrlich G., Ginzberg D., Tarroni P., Clementi F., Zakut H., Soreq H. Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins // Exp. Cell Res. 1994. V. 210 (2). P. 268−277.

Koenigsberger C., Chiappa S., Brimijoin S. Neurite differentiation is modulated in neuroblastoma cells engineered for altered acetylcholinesterase expression // J. Neurochem. 1997. V. 69. P. 1389−1397.

Fitzpatrick-Mcelligott S., Stent G.S. Appearance and localization of acetylcholinesterase in embryos of the leech Helobdella triserialis // J. Neurosci. 1981. V. 1. P. 901−907.

Chatonnet A., Lockrige O. Comparison of butyrylcholinesterase and acetylcholinesterase // Biochem. J. 1989. V. 260. P. 625−634.

Lev-Lehman E., Deutsch V., Eldor A., Soreq H. Immature human megakaryocytes produce nuclear-associated acetylcholinesterase // Blood. 1997. V. 89 (10). P. 3644−3653.

Paoletti F., Mocali A., Vannucchi A.M. Acetylcholinesterase in murine erythroleukemia cells: evidence for megakaryocyte-like expression and potential growth-regulatory role of enzyme activity // Blood. 1992. V. 79. P. 2873−2879.

Zhang X.J., Yang L., Zhao Q. Induction of acetylcholinesterase expression during apoptosis in various cell types // Cell Death and Differentiation. 2002. V. 9. P. 790−800.

Al-Kassab A.S., Vijayakumar E. Profile of serum cholinesterase in systemic sepsis syndrome (septic shock) in intensive care unit patients // Eur. Clin. Chem. Clin. Biochem. 1995. V. 33. P. 11−14.

Schulpis K.H., Karikas G.A., Tjamouranis J. Acetylcholinesterase activity and biogenic amines in phenylketonuria // Clin. Chem. 2002. V. 48 (10). P. 1794−1796.

Francis P.T., Palmer A.M., Snape M. The cholinergic hypothesis of Alzheimer’s disease: a review of progress // J. Neurol. Neurosurg Psychiatry. 1999. V. 66. P. 137−144.

Giacobini E., Becker R. E. One hundred years after the discovery of Alzheimer’s disease. A turning point for therapy? // J. Alzheimers Dis. 2007. V. 12 (1). P. 37−52.

Giacobini E. Cholinesterases and cholinesterase inhibitors. / Abingdon, UK: Informa Health Care, 2000. 270 p.

Giacobini E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer’s disease? // Drugs & Aging. 2001. V. 18 (12). P. 891−898.

Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer’s disease // Neurochem. Res. 2003. V. 28 (3−4). P. 515−522.

Giacobini E. Cholinergic function and Alzheimer’s disease // Int. J Geriatr. Psychiatry. 2003. V. 18. P. 1−5.

Giacobini E. Butyrylcholinesterase, its function and inhibitors. / London and New York: Martin Dunitz Pub, 2003. 181 p.

Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives // Pharmacol. Res. 2004. V. 50 (4). P. 433−440.

Giacobini E., Spiegel R., Enz A., Veroff A.E., Cutler N.R. Inhibition of acetyl-and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit // J. Neural Transm. 2002. V. 109 (7−8). P. 1053−1065.

Darvesh S., MacKnight C., Rockwood K. Butyrylcholinesterase and cognitive function // Int. Psychogeriatr. 2001. V. 13. P. 461−464.

Darvesh S., Darvesh K.V., McDonald R.S., Mataija D., Walsh R., Mothana S., Lockridge O., Martin E. Carbamates with differential mechanism of inhibition toward acetylchoilnesterase and butyrylcholinesterase // J. Med. Chem. 2008. V. 51. P. 4200−4212.

Радченко Е.В., Махаева Г. Ф., Малыгин В. В., Соколов В. Б., Палюлин В. А., Зефиров Н. С. Моделирование связи структуры O-фосфорилированных оксимов с их антихолинэстеразной активностью и селективностью с помощью метода анализа топологии молекулярного поля (MFTA) // Доклады Академии Наук. 2008. T. 418. № 6. С. 837−841.

Makhaeva G.F., Aksinenko A.Y., Sokolov V.B., Serebryakova O.G., Richardson R.J. Synthesis of organophosphates with fluorine-containing leaving groups as serine esterase inhibitors with potential for Alzheimer disease therapeutics // Bioorg. Med. Chem. Lett. 2009. V. 19 (19). P. 5528−5530.

Nordberg A., Darreh-Shori T., Peskind E., Soininen H., Mousavi M., Eagle G., Lane R. Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients // Curr. Alzheimer Res. 2009. V.6. P. 4−14.

Drachman D.B. Myasthenia gravis // N. Engl. J. Med. 1994. V. 330 (25). P. 1797−1810.

Weiner L., Shnyrov V.L., Konstantinovskji L., Roth E., Ashani Y., Silman I. Stabilization of Torpedo californica acetylcholinesterase by reversible inhibitors // Biochemisty. 2009. V. 48. P. 563−574.

Pohanka M. Cholinesterases, a target of pharmacology and toxicology // Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2011. V. 155 (3). P. 219−229.

Aldridge W.N., Reiner E. Enzyme Inhibitors as Substrates: Interaction of Esterases with Esters of Organophosphorus and Carbamic Acids / Amsterdam: Elsevier, 1972. 568 р.

Moretto A. Experimental and clinical toxicology of anticholinesterase agents // Toxicol. Lett. 1998. V. 102−103. P. 509−513.

Mileson B.E., Chambers J.E., Chen W.L. Common mechanism of toxicity: a case study of organophosphorus pesticides // Toxicol. Sci. 1998. V. 41 (1). P. 8−20.

Pope C.N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? // J. Toxicol. Environ. Health. 1999. Part B. V. 2 (2). P. 161−181.

Casida J.E., Quistad G.B. Serine hydrolase targets of organophosphorus toxicants // Chem. Biol. Interact. 2005. V. 157−158. P. 277−283.

Lotti M. Organophosphorous compounds. In: Experimental and Clinical Neurotoxicology /Eds. P. S. Spencer, H.H. Schaumburg, A.C. Ludolph / Oxford: Oxford University Press, 2000. P. 898−925.

Lotti M. Clinical toxicology of anticholinesterase agents in humans. In: Handbook of Pesticide Toxicology / Ed. R.I. Krieger / San Diego: Academic Press, 2001. P. 1043−1085.

Ecobichon D.J. The Basic Science of Poisons. In: Casarett and Doull’s Toxicology, 6th edition / Ed. C. D. Klaassen / New York: McGraw-Hill, 2001. P. 763−810.

Chambers H.W., Boone J.S., Carr R.L., Chambers J.E. Chemistry of organophosphorus insecticides. In: Handbook of Pesticide Toxicology. 2nd edition / Ed. R. Krieger / San Diego: Academic Press, 2001. P. 913−917.

Main A.R. In: Introduction to Biochemical Toxicology / Eds. E. Hodgson, F.E. Guthrie / New York: Elsevier, 1980. Chapter 11. P. 193−223.

Richardson R.J. Interactions of organophosphorus compounds with neurotoxic esterase. In: Organophosphates: Chemistry, Fate, and Effects / Eds. J.E. Chambers, P.E. Levi / San Diego: Academic Press, 1992. P. 299−323.

Richardson R.J., Worden R.M., Makhaeva G.F. Biomarkers and biosensors of delayed neuropathic agents. In Handbook of Toxicology of Chemical Warfare Agents; Gupta, R. C., Ed.; Academic Press / Elsevier: Amsterdam, 2009; Chapter 57. pp. 859−876. Elsevier, Amsterdam.

Richardson R.J. Anticholinesterase insecticides. In: Comprehensive Toxicology / Ed. C.A. McQueen / Oxford: Academic Press, 2010. V. 13. P. 433−444.

Sultatos L.G. Interactions of organophosphorus and carbamate compounds with cholinesterases. In: Toxicology of organophosphate and carbamate compounds. Chapter 15. / Ed. R.C. Gupta / Elsevier, 2006. P. 209−218.

Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment // Adv. Clin. Chem. 2004. V. 38. P. 151−216.

Kwong T.C. Organophosphate pesticides: biochemistry and clinical toxicology // Ther. Drug. Monit. 2002. V. 24 (1). P. 144−149.

Worek F., Koller M., Thiermann H., Szinicz L. Diagnostic aspects of organophosphate poisoning // Toxicology. 2005. V. 214. P. 182−189.

Costa LG. Current issues in organophosphate toxicology // Clin. Chim. Acta. 2006. V. 366 (1−2). P. 1−13.

Kovach I.M. Stereochemistry and secondary reactions in the irreversible inhibition of serine hydrolases by organophosphorus compounds // J. Phys. Org. Chem. 2004. V. 17 (6−7). P. 602−614.

Sanson B., Nachon F., Colletier J.P., Froment M.T., Toker L., Greenblatt H.M., Sussman J.L., Ashani Y., Masson P., Silman I., Weik M. Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime (dagger) // J. Med. Chem. 2009. V. 52 (23). P. 7593−7603.

Carletti E.N., Li H., Li B., Ekstrцm F., Nicolet Y., Loiodice M.L., Gillon E., Froment M.T., Lockridge O., Schopfer L.M., Masson P., Nachon F. Aging of cholinesterases phosphylated by tabun proceeds through O-dealkylation // J. Am. Chem. Soc. 2008. V. 130 (47). P. 16 011−16 020.

Carletti E., Aurbek N., Gillon E., Loiodice M., Nicolet Y., Fontecilla_Camps J.C., Masson P., Thiermann H., Nachon F., Worek F. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun // Biochem. J. 2009. V. 421 (1). P. 97−106.

Carletti E.N., Colletier J.-P., Dupeux F., Trovaslet M., Masson P., Nachon F. Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation // J. Med. Chem. 2010. V. 53 (10). P. 4002−4008.

Barak D., Ordentlich A., Stein D., Yu Q.S., Greig N.H., Shafferman A. Accomodation of physostigmine and its analogues by acetylchoil nesterase is dominated by hydrophobic interactions // Biochem. J. 2009. V. 417. P. 213−222.

Chilcott R.P., Dalton C.H., Hill I., Davison C.M., Blohm K.L., Clarkson E.D., Hamilton M.G. In vivo skin absorption and distribution of the nerve agent VX (O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate) in the domestic white pig // Hum. Exp. Toxicol. 2005. V. 24. P. 347−352.

Jokanovic M. Biotransformation of organophosphorus compounds // Toxicology. 2001. V. 166 (3). P. 139−160.

Hemmer A.C., Otto T.C., Wierdl M., Edwards C.C., Fleming C.D., MacDonald M., Cashman J.R., Potter P.M., Cerasoli D.M., Redinbo M.R. Human carboxylesterase 1 stereoselectively binds the nerve agents cyclosarin and spontaneously hydrolyzes the nerve agent sarin // Mol. Pharmacol. 2010. V. 77. P. 508−516.

Masson P., Rochu D. Catalytic bioscavengers against toxic esters, an alternative approach for prophylaxis and treatments of poisonings // Acta. Naturae. 2009. V. 1(1). P. 68−79.

Kasagami T., Miyamoto T., Yamamoto I. Activated transformations of organophoshorus insecticides in the case of non-AChE inhibitory oxons // Pest. Manag. Sci. 2002. V. 58. P. 1107−1117.

Старостина В.К., Дёгтева С. Д. Холинэстераза: методы анализа и диагностическое значение. Новосибирск: Вектор-Бест, 2008. 140 с.

Машковский М. Д. Лекарственные средства. М.: Новая волна, 2002. 201с.

Andersen J.B., Engeland A., Owe J.F., Gilhus N.E. Myasthenia gravis requiring pyridostigmine treatment in a national population cohort // Eur. J. Neurol. 2010. V. 17 (12). P. 1445−1450.

Haigh J.R., Adler M., Apland J.P., Desphpande S.S., Barham C.B., Desmond P., Koplovitz I., Lenz D.E., Gordon R.K. Protection by pyridostigmine bromide of marmoset hemi-diaphragm acetylcholinesterase activity after soman exposure // Chem. Biol. Interact. 2010. V. 187 (1−3). P. 416−420.

Chitnis S., Rao J. Rivastigmine in Parkinson’s disease dementia // Expert Opin. Drug Metab. Toxicol. 2009. V. 5. P. 941−955.

Cummings J.L., Nadel A., Masterman D., Cyrus P.A. Efficacy of metrifonate in imporving the psychiatric and behavioral disturbances of patients with Alzheimer’s disease // J. Geriatr. Psychiatry Neurol. 2001. V. 14. P. 101−108.

  • 104. Alfirevic A., Mills T., Carr D., Barratt B.J., Jawaid A., Sherwood J., Smith J.C., Tugwood J., Hartkoorn R., Owen A., Park K.B., Pirmohamed M. Tacrine-induced liver damage: an analysis of 19 candidate genes // Pharmacogenet. Genomics. 2007. V. 17. P. 1091−1100.
  • 105. Pohanka M., Kuca K., Kassa J. New performance of biosensor technology for Alzheimer’s disease drugs: in vitro comparison of tacrine and 7-methoxytacrine // Neuroendocrinol. Lett. 2008. V. 29. P. 755−758.
  • 106. Машковский М. Д., Кругликова-Львова Р.П. К фармакологии нового алкалоида галантамина // Фармакол. и Токсикол. 1951. Т. 14. С. 27−30.
  • 107. Bartolucci C., Perola E., Pilger C., Fels G., Lamba D. Threedimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-Alzheimer drugs // Proteins. 2001. V. 42. P. 182−191.
  • 108. Pilger C., Bartolucci C., Lamba D., Tropsha A., Fels G. Accurate prediction for the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking // J. Mol. Graph. Model. 2001. V. 19. P. 288−296.

Jung H.A., Min B.S., Yokozawa T., Lee J.H., Kim Y.S., Choi J.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids // Biol. Pharm. Bull. 2009. V. 32. P. 1433−1438.

Castro A., Martinez A. Targeting beta-amyloid pathogenesis through acetylchoinesterase inhibitors // Curr. Pharm. Des. 2006. V. 12. P. 4377−4387.

Arce M.P., Rodriguez-Franco M.I., Gonzalez-Munoz G.C., Perez C., Lopez B., Villaroya M., Lopez M.G., Garcia A.G., Conde S. Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzeheimer’s disease // J. Med. Chem. 2009. V. 52. P. 7249−7257.

Berson A., Knobloch M., Hanan M., Diamant S., Sharoni M., Schuppli D., Geyer B.C., Ravid R., Mor T.S., Nitsch R.M., Soreg H. Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology // Brain. 2008. V. 131. P. 109−119.

Birks J. Cholinesterase inhibitors for Alzheimer’s disease // Cochrane Database of Systematic Reviews. 2006. Issue 1. Art. № CD005593. DOI: 10.1002/14 651 858.-CD005593.

Taylor P. Anticholinesterase agents. In: Goodman and Gilman’s: The Pharmacological Basis of Therapeutics / Eds. J.G. Hardman, L.E. Limbird / New York: McGraw-Hill, 1996. P. 161−176.

Rogawski M.A., Wenk G.L. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease // CNS Drug Rev. 2003. V. 9 (3). P. 275−308.

Robinson D.M., Keating G.M. Memantine: a review of its use in Alzheimer’s disease // Drugs. 2006. V. 66 (11). P. 1515−1534.

Darreh-Shori T., Soininen H. Effects of cholinesterse inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies // Curr. Alzheimer Res. 2010. V. 7. P. 67−73.

Khan M. Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects // N. Biotechnol. 2009. V. 25 (5). P. 331−346.

Thompson C.M., Richardson R.J. Anticholinesterase insecticides. In: Pesticide Toxicology and International Regulation (Current Toxicology Series) / Eds. T.C. Marrs, B. Ballantyne / Chichester: John Wiley and Sons Ltd, 2004. Chapter 3. P. 89−127.

Thiermann H., Szinicz L., Eyer P., Zilker T., Worek F. Correlation between red blood cell acetylcholinesterase activity and neuromuscular transmission in organophosphate poisoning // Chem. Biol. Interact. 2005. V. 157−158. P. 345−347.

Thiermann H., Mast U., Klimmek R., Eyer P., Hibler A., Pfab R., Felgenhauer N., Zilker T. Cholinesterase status, pharmacokinetics and laboratory findings during obidoxime therapy in organophosphate poisoned patients // Hum. Exp. Toxicol. 1997. V. 16 (8). P. 473−480.

Lockridge O., Bartels C.F., Vaughan T.A., Wong C.K., Norton S.E., Johnson L.L. Complete amino acid sequence of human serum cholinesterase // J. Biol. Chem. 1987. V. 262 (2). P. 549−557.

Ostergaard D., Viby-Moogensen J., Hanel H.K., Skovgaard L.T. Half-life of plasma cholinesterase // Acta Anaesthesiol. Scand. 1988. V. 32. P. 266−269.

Silver A. The Biology of Cholinesterases. / Amsterdam: Elsevier, 1974. 576 p.

Reiner E., Bosak A., Simeon-Rudolf V. Activity of cholinesterases in human whole blood measured with acetylthiocholine as substrate and ethopropazine as selective inhibitor of plasma butyrylcholinesterase //Arh. Hig. Rada Toksikol. 2004. V. 55. P. 1−4.

Alha A.R., Ruohonen A., Telaranta M. Blood and brain cholinesterase activity in human death cases, in normal human subjects and in some laboratory and domestic animals. In: Medical Protection Against Chemical Warfare Agents, SIPRI / Stockholm: Almqvist&Wiksell International, 1976. P. 151−156.

Камышников В. С. Справочник по клинико-биохимической лабораторной диагностике. Минск, 2000. T. 2. С. 258−260.

  • 131. Manoharan I., Boopathy R., Darvesh S., Lockridge O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India // Clin. Chim. Acta. 2007. V. 378 (1−2). P. 128−135.
  • 132. Li B., Duysen E.G., Carlson M., Lockridge O.J. The butyrylcholinesterase knockout mouse as a model for human butyrylcholinesterase deficiency // J. Pharmacol. Exp. Ther. 2008. V. 324 (3). P. 1146−1154.
  • 133. Keesey J. Biochemica Information / Boehringer Mannheim Biochemicals. Indianapolis, 1987. 382 p.
  • 134. Padilla S., Lassiter T.L., Hunter D. Neurodegeneration Methods and Protocols. In: Methods in Molecular Medicine / Eds J. Harry and H.A.Tilson / Totowa: Humana Press Inc., 1999. V. 22. P. 237−245.
  • 135. Allderdice P.W., Gardner H. A., Galutira D., Lockridge O., La Du B. N., McAlpine P.J. The cloned butyrylcholinesterase (BCHE) gene maps to a single chromosome site, 3q26 // Genomics. 1991. V. 11. P. 452−454.
  • 136. Lockridge O., Masson P. Pesticides and susceptible populations: people with Butyrylcholinesterase genetic variants may be at risk // Neurotoxicol. 2000. V.

Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine // Pharmacol. Ther. 1990. V. 47 (1). P. 35−60.

Primo-Parmo S.L., Wiersema B., Spek A.F. Characterization of 12 silent alleles of the human butyrylcholinesterase (BCHE) gene // Am. J. Hum. Genet. 1996. V. 58 (1). P. 52−64.

Варфоломеев С.Д., Курочкин И. Н., Гариев И. А. Ферменты человека — генетический, протеомный и каталитический полиморфизм. В книге: Молекулярный полиморфизм человека / Под ред. С. Д. Варфоломеева. Москва: Российский университет дружбы народов, 2007. С. 203−311.

Simeon-Rudolf V., Kovarik Z., Skrinjaric-Spoljar M., Evans R.T., An explanation for the different inhibitory characteristics of human serum butyrylcholinesterase phenotypes deriving from inhibition of atypical heterozygotes // Chem. Biol. Interact. 1999. V. 119−120. P. 159−164.

Mcguire M.C., Nogueira C.P., Bartels C.F., Lightstone H., Hajra A., Van Der Spek A.F., Lockridge O., La Du B.N. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase // Proc. Natl. Acad. Sci. USA. 1989. V. 86 (3). P. 953−957.

Noguera C.P., McGuire M.C., Graeser C., Identification of a frame shift mutation responsible for the silent phenotype of human serum cholinesterase, Gly 117 (GGT——GGAG) // Am. J. Hum. Genet. 1990. V. 46 (5). P. 934−942.

Noguera C.P., Bartels C.F., McGuire M.C., Identification of 2 different point mutations associated with the fluoride-resistant phenotype for human butyrylcholinesterase // Am. J. Hum. Genet. 1992. V. 51 (4). P. 821−828.

Bartels C.F., Jensen F.S., Lockridge O., DNA mutations associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites // Am. J. Hum. Genet. 1992. V. 50 (5). P. 1086−1103.

Bartels C.F., James K., Ladu B.N. DNA mutations associated with the human butyrylcholinesterase J-variant // Am. J. Hum. Genet. 1992. V. 50 (5). P. 1104−1114.

Jensen F.S., Bartels C.F., Ladu B.N. Structural basis of the butyrylcholinesterase H-variant segregating in 2 Danish families // Pharmacogenetics. 1992. V. 2 (5). P. 234−240.

Mikami L.R., Wieseler S., Souza R.L.R., Schopfer L.M., Nachon F., Lockridge O., Chautard-Freire-Maia E.A. Five new naturally occurring mutations of the BCHE gene and frequencies of 12 butyrylcholinesterase alleles in a Brazilian population // Pharmacogenet. Genomics. 2008. V. 18 (3). P. 213−218.

Souza R.L.R., Mikami L.R., Maegawa R.O.B., Chautard-Freire-Maia E.A. Four new mutations in the BCHE gene of human butyrylcholinesterase in a Brazilian blood donor sample // Mol. Genet. Metab. 2005. V. 84. P. 349−353.

Delacour H., Lushchekina S., Mabboux I., Bousquet A., Ceppa F. Characterization of a novel BCHE ``silent'' allele: point mutation (p.Val204Asp) causes loss of activity and prolonged apnea with suxamethonium // PLoS ONE. 2014. V. 9 (7). Электронный ресурс: e101552. doi:10.1371/journal.pone.101 552.

Deakin S., Leviev I., Gomaraschi M. et al. Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism // J. Biol. Chem. 2002. V. 277 (6). P. 4301−4308.

Kalow W., Davies R.O. The activity of various esterase inhibitors towards atypical human serum cholinesterase // Biochem. Pharmacol. 1958. V. 1. P. 183−192.

Masson P., Froment M.T., Bartels C.F., Lockridge O. Asp70 in the peripheral anionic site of human butyrylcholinesterase // Eur. J. Biochem. 1996. V. 235 (1−2). P. 36−48.

Boeck A.T., Fry D.L., Sastre A., Lockridge O. Naturally occurring mutation, Asp70His, in human butyrylcholinesterase // Annals of Clinical Biochemistry. 2002. V. 39 (2). P. 154−156.

Pirmohamed M., Park B.K. Genetic susceptibility to adverse drug reactions // Trends Pharmacol. Sci. 2001. V. 22 (6). P. 298−305.

Blong R.M., Bedows E., Lockridge O. Tetramerization domain of human butyrylcholinesterase is at the C-terminus. Biochem // J. 1997. V. 327. P. 747−757.

Radicґ Z., Pickering N.A., Vellom D.C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyland butyrylcholinesterase inhibitors // Biochemistry. 1993. V. 32 (45). P. 12 074; 12 084.

  • 158. Masson P., Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteretic behavior // Arch. Biochem. Biophys. 2010. V. 494. P. 107−120.
  • 159. Mallender W.D., Szegletes T., Rosenberry T.L. Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway // Biochemistry. 2000. V. 39 (26). P. 7753−7763.

Kamal M.A., Tan Y., Seale J.P., Qu X. Targeting BuChE-inflammatory pathway by SK0506 to manage type 2 diabetes and Alzheimer disease // Neurochem. Res. 2009. V. 34. P. 2163−2169.

Darvesh S., Leblanc A.M., Macdonald I.R., Reid G.A., Bhan V., Macaulay R.J., Fisk J.D., Butyrylcholinesterase activity in multiple sclerosis neuropathology // Chem. Biol. Interact. 2010. V. 187. P. 425−431.

Li B., Duysen E.G., Lockridge O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet // Chem. Biol. Interact. 2008. V. 175 (1−3). P. 88−91.

De Vriese C., Gregoire F., Lema-Kisoka R., Waelbroeck M., Robberecht P., Delporte C. Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites // Endocrinology. 2004. V. 145 (11). P. 4997−5005.

Iwasaki T., Yoneda M., Nakajima A. et al. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance // Intern. Med. 2007. V. 46 (19). P. 1633−1639.

Li B., Sedlacek M., Manoharan I., Boopathy R., Duysen E.G., Masson P., Lockridge O. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma // Biochem. Pharmacol. 2005. V. 70 (11). P. 1673−1684.

Sitar D.S. Clinical pharmacokinetics of bambuterol // Clin. Pharmacokinet. 1996. V. 31 (4). P. 245−256.

Khanna R., Morton C. L., Danks M. K., Potter P. M. Proficient metabolism of irinotecan by a human intestinal carboxylesterase // Cancer Res. 2000. V. 60 (17). P. 4725−4728.

Morton C.L., Wadkins R.M., Danks M.K., Potter P.M. The anticancer prodrug CPT-11 is a potent inhibitor of acetylcholinesterase but is rapidly catalyzed to SN-38 by butyrylcholinesterase // Cancer Res. 1999. V. 59 (7). P. 1458−1463.

Zelinski T., Coghlan G., Mauthe J., Triggs-Raine B. Molecular basis of succinylcholine sensitivity in a prairie Hutterite kindred and genetic characterization of the region containing the BCHE gene // Mol. Genet. Metab. 2007. V. 90. P. 210−216.

Kalow W., Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers // Can. J. Biochem. Physiol. 1957. V. 35 (12). P. 1305−1320.

Yuan J., Yin J., Wang E. Characterization of procaine metabolism as probe for the butyrylcholinesterase enzyme investigation by simultaneous determination of procaine and its metabolite using capillary electrophoresis with electrochemiluminescence detection // J. Chromatogr. 2007. V. 1154. P. 368−372.

Kolarich D., Weber A., Pabst M., Stadlmann J., Teschner W., Ehrlich H., Schwarz HP., Altmann F. Glycoproteomic characterization of butyrylcholinesterase from human plasma // Proteomics. 2008. V. 8. P. 254−263.

Kamendulis L.M., Brzezinski M.R., Pindel E.V., Bosron W.F., Dean R.A. Metabolism of cocaine and heroin is catalyzed by the same human liver carboxylesterases // J. Pharmacol. Exp. Ther. 1996. V. 279. P. 713−717.

Gawin F.H., Ellinwood E.H. Cocaine and other stimulants. Actions, abuse, and treatment // N. Engl. J. Med. 1988. V. 318 (18). P. 1173−1182.

Показать весь текст
Заполнить форму текущей работой