ΠΠ»Π΅ΠΊΡΡΠΎΡ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΈΠ½ΡΠ΅Π· ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ Π² ΠΈΠΎΠ½Π½ΡΡ ΡΠ°ΡΠΏΠ»Π°Π²Π°Ρ
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
ΠΡΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΊΠ°ΡΠΎΠ΄Π° Π³ΡΠ°ΡΠΈΡΠ° Π²ΠΌΠ΅ΡΡΠΎ Π°ΠΌΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π΅ΡΠΎΠ΄Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ. Π’Π°ΠΊΠΆΠ΅ Π±ΡΠ»ΠΎ Π½Π°ΠΉΠ΄Π΅Π½ΠΎ, ΡΡΠΎ Π½Π°Π½ΠΎΡΡΡΠ±ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»ΠΈΡΠΈΡ Π½Π° Π³ΡΠ°ΡΠΈΡ, Π½ΠΎ ΠΈ Π΄ΡΡΠ³ΠΈΡ ΡΠ΅Π»ΠΎΡΠ½ΡΡ ΠΈ ΡΠ΅Π»ΠΎΡΠ½ΠΎ-Π·Π΅ΠΌΠ΅Π»ΡΠ½ΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ², ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ Π½Π°ΡΡΠΈΠΉ ΠΈ ΠΊΠ°Π»ΡΡΠΈΠΉ. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π½Π΅Ρ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ ΠΌΠ½Π΅Π½ΠΈΡ ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Hyperion Catalysis International, Inc. (Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΈΠΉ). URL: http://www.fibrils.com/.
- US Patent 4 663 230, Carbon fibrils, method for producing same and compositions containing same / H.G. Tennent (Hyperion Catalysis International, Inc.), first filing: December 1984, publication: May 1987.
- Iijima, S. Helical microtubes of graphitic carbon // Nature. 1991. — Vol.354. — P.56−58.
- Ajayan, P.M. Smallest carbon nanotube / P.M. Ajayan, S. Iijima // Nature. 1992. — Vol.358. -P.23.
- Ebbesen, T.W. Large-scale synthesis of carbon nanotubes / T.W. Ebbesen, P.M. Ajayan // Nature. 1992. — Vol.358. — P.220−222.
- ΠΠ»Π΅ΡΠΊΠΈΠΉ, A.B. Π£Π³Π»Π΅ΡΠΎΠ΄Π½ΡΠ΅ Π½Π°Π½ΠΎΡΡΡΠ±ΠΊΠΈ // Π£ΡΠΏΠ΅Ρ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ. 1997. — Π’. 167, № 9.1. C.945−972.
- ΠΠ»Π΅ΡΠΊΠΈΠΉ, Π.Π. Π£Π³Π»Π΅ΡΠΎΠ΄Π½ΡΠ΅ Π½Π°Π½ΠΎΡΡΡΠ±ΠΊΠΈ ΠΈ ΠΈΡ ΡΠΌΠΈΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° // Π£ΡΠΏΠ΅Ρ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ. 2002. — Π’. 172, № 4. — Π‘.401−438.
- Hamada, N. New One-dimensional conductors graphitic microtubules / N. Hamada, S. Sawada, A. Oshiyama// Physical Review Letters. — 1992. — Vol.68. -P.1579−1581.
- Iijima, S. Single-shell carbon nanotubes of 1-nm diameter / S. Iijima, T. Ichihashi // Nature. -1993.-Vol.363.-P.603−605.
- Thess, A. Crystalline ropes of metallic carbon nanotubes / A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria,
- D. Tomanek, J.E. Fischer, R.E. Smalley // Science. 1996. — Vol.273. — P.483−487.
- Sawada, S. Energetics of carbon nanotubes / S. Sawada, N. Hamada // Solid State Communications. 1992. — Vol.83. — P.917−919.
- Peng, L.-M. Stability of carbon nanotubes: how small can they be? / L.-M. Peng, Z.L. Zhang, Z.Q. Xue, Q.D. Wu, Z.N. Gu, D.G. Pettifor // Physical Review Letters. 2000. — Vol.85. -P.3249−3252.
- Sun, L.F. Materials creating the narrowest carbon nanotubes / L.F. Sun, S.S. Xie, W. Liu, W.Y. Zhou, Z.Q. Liu, D.S. Tang, G. Wang, L.X. Qian //Nature. -2000. — Vol.403. -P.384.
- Qin, L.-C. Materials science the smallest carbon nanotube / L.-C. Qin, X.L. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima //Nature. — 2000. — Vol.408 — P.50.
- Peng, H.Y. Smallest diameter carbon nanotubes / H.Y. Peng, N. Wang, Y.F. Zheng, Y. Lifshitz, J. Kulik, R.Q. Zhang, C.S. Lee, S.T. Lee // Applied Physics Letters. 2000. — Vol.77. — P.2831−2833.
- Wang, N. Materials science single-walled 4 angstrom carbon nanotube arrays / N. Wang, Z.K. Tang, G.D. Li, J.S. Chen // Nature. — 2000. — Vol.408. — P.50−51.
- Bernaerts, D. Structural aspects of carbon nanotubes / D. Bernaerts, S. Amelinckx, X.B. Zhang,
- Zettl, A. Sharpened nanotubes, nanobearings, and nanosprings / A. Zettl, J. Cumings // Electronic Properties of Novel Materials Molecular Nanostructures: XIV International Winterschool/Euroconference — Melville, 2000. — Vol.544. — P.526−532.
- Mordkovich, V.Z. Intercalation into carbon nanotubes / V.Z. Mordkovich, M. Baxendale, S. Yoshimura, R.P.H. Chang // Carbon. 1996. — Vol.34. — P. 1301−1303.
- Mordkovich, V.Z. New horizons of 7i-electron materials / V.Z. Mordkovich et al. Berlin, Springer-Verlag, 1997.
- Yudasaka, M. Specific conditions for Ni catalyzed carbon nanotube growth by chemical-vapor-deposition / M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura, E. Ota // Applied Physics Letters. 1995. — Vol.67. — P.2477−2479.
- Ruoff, R.S. Radial deformation of carbon nanotubes by Van-Der-Waals forces / R.S. Ruoff, J. Tersoff, D.C. Lorents, S. Subramoney, B. Chan //Nature. 1993. — Vol.364. — P.514−516.
- Zhou, O. Defects in carbon nanostructures / O. Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum // Science. 1994. — Vol.263. — P. 1744−1747.
- Liu, M.Q. Structures of the helical carbon nanotubes / M.Q. Liu, J.M. Cowley // Carbon. 1994. — Vol.32.-P.393−403.
- Liu, M.Q. Structures of carbon nanotubes studied by HRTEM and nanodiffraction / M.Q. Liu, J.M. Cowley // Ultramicroscopy. 1994. — Vol.53. — P.333−342.
- Kosaka, M. Annealing effect of carbon nanotubes an ESR study / M. Kosaka, T.W. Ebbesen,
- H. Hiura, K. Tanigaki // Chemical Physics Letters. 1995. — Vol.233. — P.47−51.
- Hiura, H. Role of sp3 defect structures in graphite and carbon nanotubes / H. Hiura, T.W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada//Nature. 1994. — Vol.367. — P. 148−151.
- Amelinckx, S. A formation mechanism for catalytically grown helix-shaped graphite nanotubes / S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy // Science. 1994. -Vol.265. -P.635−639.
- Biro, L.P. Influence of tunneling voltage on the imaging of carbon nanotube rafts by scanning tunneling microscopy / L.P. Biro, P.A. Thiry, P. Lambin, C. Journet, P. Bernier, A.A. Lucas // Applied Physics Letters. 1998. — Vol.73. — P.3680−3682.
- Π‘Π΅ΡΠ³Π΅Π΅Π², Π. Π. ΠΠ°Π½ΠΎΡ ΠΈΠΌΠΈΡ ΠΠΎΡΠΊΠ²Π°: ΠΠ·Π΄Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΠΠ£, 2003. — 288 Ρ.
- Ajayan, P.M. Capillary-induced filling of carbon nanotubes / P.M. Ajayan, S. Iijima // Nature. -1993.-Vol.361.-P.333−334.
- Saito, R. Electronic structure of chiral graphene tubules / R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus //Applied Physics Letters. 1992. — Vol.60. — P.2204−2206.
- Charlier, J.C. Energetics of multilayered carbon tubules / J.C. Charlier, J.P. Michenaud // Physical Review Letters. 1993. — Vol.70. — P. 1858−1861.
- White, C.T. Helical and rotational symmetries of nanoscale graphitic tubules / C.T. White, D.H. Robertson, J.W. Mintmire // Physical Review Π Condensed Matter and Materials Physics. -1993.-Vol.47.-P.5485−5488,
- Mintmire, J.W. Are fullerene tubules metallic / J.W. Mintmire, B.I. Dunlap, C.T. White // Physical Review Letters. 1992. — Vol.68. -P.631−634.
- Tanaka, K. Electronic properties of bucky-tube model / K. Tanaka, K. Okahara, M. Okada, T. Yamabe // Chemical Physics Letters. 1992. — Vol.191. — P.469−472.
- Harigaya, K. From Ceo to a fullerene tube systematic analysis of lattice and electronic structures by the extended Su-Schrieffer-Heeger model // Physical Review Π — Condensed Matter and Materials Physics. — 1992. — Vol.45. — P. 12 071−12 076.
- Yorikawa, H. Electronic properties of semiconducting graphitic microtubules / H. Yorikawa, S. Muramatsu // Physical Review Π Condensed Matter and Materials Physics. — 1994. — Vol.50. -P.12 203−12 206.
- Ebbesen, T.W. Electrical conductivity of individual carbon nanotubes / T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio //Nature. 1996.- Vol.382. -P.54−56.
- Primak, W. Electrical conductivities of natural graphite crystals / W. Primak, L.H. Fuchs // Physical Reviews. 1954. — Vol.95. — P.22−30.
- Postma, H.W.Ch. Electrical transport through carbon nanotube junctions created by mechanical manipulation / H.W.Ch. Postma, M. De Jonge, Z. Yao, C. Dekker // Physical Review Π -Condensed Matter and Materials Physics. -2000. Vol.62. — P. R10653-R10656.
- ΠΡΠ», Π§. ΠΠ°Π½ΠΎΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ / Π§. ΠΡΠ», Π€. ΠΡΡΠ½Π΅. ΠΠΎΡΠΊΠ²Π°: Π’Π΅Ρ Π½ΠΎΡΡΠ΅ΡΠ°, 2005. — 336 Ρ.
- Π‘ΡΠ·Π΄Π°Π»Π΅Π², Π.Π. ΠΠ°Π½ΠΎΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡ: Π€ΠΈΠ·ΠΈΠΊΠΎΡ ΠΈΠΌΠΈΡ Π½Π°Π½ΠΎΠΊΠ»Π°ΡΡΠ΅ΡΠΎΠ², Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡ ΠΈ Π½Π°Π½ΠΎΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΠΎΡΠΊΠ²Π°: ΠΠΎΠΌΠΠ½ΠΈΠ³Π°, 2006. — 592 Ρ.
- Chen, Y. Field emission of different oriented carbon nanotubes / Y. Chen, D.T. Shaw, L. Guo // Applied Physics Letters. 2000. — Vol.76. — P.2469−2471.
- Nilsson, L. Scanning field emission from patterned carbon nanotube films / L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schalier, L. Schlapbach, H. Kind, J.M. Bonard, K. Kern // Applied Physics Letters. -2000. Vol.76. — P.2071−2073.
- Dean, K.A. Current saturation mechanisms in carbon nanotube field emitters / K.A. Dean, B.R. Chalamala // Applied Physics Letters. 2000. — Vol.76. — P.375−377.
- Kratschmer, W. Solid C? o A new form of carbon / W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman // Nature. — 1990. — Vol.347. — P.354−358.
- Journet, C. Production of carbon nanotubes / C. Journet, P. Bernier // Applied Physics A: Materials Science and Processing. 1998. — Vol.67. — P.1−9.
- Zhang, H. The effect of helium gas pressure on the formation and yield of nanotubes in arc discharge / H. Zhang, D. Wang, X. Xue, B. Chen, S. Peng // Journal of Physics D: Applied Physics. 1997. — Vol.30. -P.L1-L4.
- Walker, Jr., P.L. Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts. I. Properties of carbon formed / P.L. Walker, Jr., J.F. Rakszawski, G.R. Imperial // Journal of Physical Chemistry. 1959. — Vol.63. — P. 133−140.
- Ruston, W.R. The solid reaction products of the catalytic decomposition of carbon monoxide on iron at 550 Β°C / W.R. Ruston, M. Warzee, J. Hennaut and J. Waty // Carbon. 1969. — Vol.7. -P.47−50.
- Robertson, S.D. Carbon formation from methane pyrolysis over some transition metal surfaces-1. Nature and properties of the carbons formed // Carbon. 1970. — Vol.8. — P.365−374.
- Baird, T. Structure of fibrous carbon / T. Baird, J.R. Frayer, B. Grant // Nature. 1971. -Vol.233.-P.329−330.
- Jose-Yacaman, M. Catalytic growth of carbon microtubules with fullerene structure / M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, J.G. Santiesteban // Applied Physics Letters. 1993. -Vol.62.-P.202−204.
- Rodriguez, N.M. Carbon nanofibers: A unique catalyst support medium / N.M. Rodriguez, M.S. Kim, R.T.K. Baker // Journal of Physical Chemistry. 1994. — Vol.98. — P. 13 108−13 111.
- Colomer, J.-F. Synthesis of multi-walled carbon nanotubes by catalytic decomposition of hydrocarbons / J.-F. Colomer, G. Bister, I. Willems, Z. Konya, A. Fonseca, G.T. Vantendeloo, J.B. Nagy//Chemical Communications. 1999. — Vol.14. — P. 1343−1344.
- Chen, G.Z. Recent development in electrolytic formation of carbon nanotubes in molten salts / G.Z. Chen and D. J. Fray // Journal of Mining and Metallurgy. 2003. — Vol.39, No. 1−2 B. -P.309−342.
- Hsu, W.K. Condensed-phase nanotubes / W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris // Nature. 1995. — Vol.377. — P.687.
- Hsu, W.K. Electrolytic formation of carbon nanostructures / W.K. Hsu, M. Terrones, J.P. Hare, H. Terrones, H.W. Kroto, D.R.M. Walton // Chemical Physics Letters. 1996. — Vol.262. -P.161−166.
- Chen, G.Z. Electrolytic conversion of graphite to carbon nanotubes in fused salts / G.Z. Chen, X. Fan, A. Luget, M.S.P. Shaffer, D.J. Fray, A.H. Windle // Journal of Electroanalytical Chemistry. 1998. -Vol.446.-P. 1−6.
- Chen, G.Z. Electrochemical investigation of the formation of carbon nanotubes in molten salts /
- G.Z. Chen, I. Kinloch, M.S.P. Shaffer, D.J. Frey and A.H. Windle // Advances in Molten Salts -from Structural Aspects to Waste Processing-New York, Begell House Inc., 1999. P.97−107.
- Fray, D.J. Intercalation from molten salts // Advances in Molten Salts from Structural Aspects to waste Processing-New York, Begell House Inc., 1999. P. 196−207.
- Hsu, W.K. Electrochemical formation of novel nanowires and their dynamic effects / W.K. Hsu, M. Terrones, H. Terrones, N. Grobert, A.I. Kirkland, J.P. Hare, K. Prassides, P.D. Townsend,
- H.W. Kroto, D.R.M. Walton // Chemical Physics Letters. 1998. — Vol.284. — P. 177−183.
- Terrones, M. Advances in the creation of filled nanotubes and novel nanowires / M. Terrones, N. Grobert, W.K. Hsu, Y.Q. Zhu, W.B. Hu, H. Terrones, J.P. Hare, H.W. Kroto, D.R.M. Walton // MRS Bulletin. 1999. — Vol.24, No.8. — P.43−49.
- Xu, Q. Electrochemical investigation of lithium intercalation into graphite from molten lithium chloride / Q. Xu, C. Schwandt, G.Z. Chen, D.J. Fray // Journal of Electroanalytical Chemistry. -2002.-Vol.530.-P.l 6−22.
- Dimitrov, A.T. A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts / A.T. Dimitrov, G.Z. Chen, LA. Kinloch, D.J. Fray // Electrochimica Acta. -2002.-Vol.48.-P.91−102.
- Bai, J.B. Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method / J.B. Bai, A.L. Hamon, A. Marraud, B. Jouffrey, V. Zymla // Chemical Physics Letters. 2002. — Vol.365. -P.184−188.
- Volkov, S.V. Synthesis in salt melts of nanostructures and ways of their functional application / S.V. Volkov and E.V. Panov // Proceedings of the 7th International Symposium on Molten Salts Chemistry & Technology Toulouse, France, 2005. -P.211−214.
- Xu, Q. Electrochemical investigation of lithium and tin reduction at a graphite cathode in molten chlorides / Q. Xu, C. Schwandt, D.J. Fray // Journal of Electroanalytical Chemistry. 2004. -Vol.562.-P.15−21.
- ΠΠ΄Π°ΠΌΠΎΠΊΠΎΠ²Π°, M.H. ΠΠ»Π΅ΠΊΡΡΠΎΠ²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΎΠ»ΡΡΡΠ°ΠΌΠ°, ΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½Π° ΠΈ ΠΈΡ ΠΊΠ°ΡΠ±ΠΈΠ΄ΠΎΠ² ΠΈΠ· Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ Π³Π°Π»ΠΎΠ³Π΅Π½ΠΈΠ΄Π½ΠΎ-ΠΎΠΊΡΠΈΠ΄Π½ΡΡ ΡΠ°ΡΠΏΠ»Π°Π²ΠΎΠ²: ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ° Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ. ΠΠΊΠ°ΡΠ΅ΡΠΈΠ½Π±ΡΡΠ³, 2005. — 141 Ρ.
- Devyatkin, S.V. Electrochemical synthesis of carbon nanotubes in molten carbonates // Proceedings of the 7th International Symposium on Molten Salts Chemistry & Technology -Toulouse, France, 2005. -P.515−517.
- Ajayan, P.M. Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures / P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex // Nature. 1995. — Vol.375. -P.564−567.
- Niu, C. High-power electrochemical capacitors based on carbon nanotube electrodes / C. Niu, E.K. Sichel, R. Hoch, D. Moy, H.G. Tennent // Applied Physics Letters. 1997. — Vol.70. -P.1480−1482.
- Saito, Y. Cathode ray tube lighting elements with carbon nanotube field emitters / Y. Saito, S. Uemura, K. Hamaguchi // Japanese Journal of Applied Physics Part 2. 1998. — Vol.37. -P.L346-L348.
- Sugie, H. Carbon nanotubes as electron source in an X-ray tube / H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, F. Okuyama // Applied Physics Letters. 2001. — Vol.78. -P.2578−2580.
- Rosen, R. Application of carbon nanotubes as electrodes in gas discharge tubes / R. Rosen, S. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, O. Zhou // Applied Physics Letters. 2000. — Vol.76. — P. 1668−1670.
- Π₯Π°ΡΡΠΈΡ, Π. Π£Π³Π»Π΅ΡΠΎΠ΄Π½ΡΠ΅ Π½Π°Π½ΠΎΡΡΡΠ±Ρ ΠΈ ΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΡ. ΠΠΎΠ²ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ XXI Π²Π΅ΠΊΠ° ΠΠΎΡΠΊΠ²Π°: Π’Π΅Ρ Π½ΠΎΡΡΠ΅ΡΠ°, 2003. — 336 Ρ.
- ΠΠ°Π»ΡΡ, 3. Π’Π΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΠΎΡΠΊΠ²Π°: ΠΠΈΡ, 1974. — 552 Ρ.
- Kemula, W, Kublik, Z. // Roczniki Chem. 1958. — Vol.32. — P.941.
- Kemula, W., Kublik, Z. // Bull. Acad. Polon. Sci. 1958. — Vol.6. — P.653.
- Matsuda, H. // Zeitschrift ffir Elektrochemie. 1957. — Vol.61. — P.489.
- ΠΠΎΡ ΡΡΠ΅ΠΉΠ½, Π―.Π. // ΠΠΠ Π‘Π‘Π‘Π . 1959. — T. 126. — C.598.
- Nicholson, R.S. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems / R.S. Nicholson, I. Shain // Analytical Chemistry. 1964. — Vol.36. — P.706−723.
- Binnig, G. Atomic force microscope / G. Binnig, C.F. Quate, C. Gerber // Physical Review Letters. 1986. — Vol.56. — P.930−933.
- ΠΠΈΡΠΎΠ½ΠΎΠ², Π.Π. ΠΡΠ½ΠΎΠ²Ρ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅ΠΉ Π·ΠΎΠ½Π΄ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΠΈΠΆΠ½ΠΈΠΉ ΠΠΎΠ²Π³ΠΎΡΠΎΠ΄: ΠΠ½ΡΡΠΈΡΡΡ ΡΠΈΠ·ΠΈΠΊΠΈ ΠΌΠΈΠΊΡΠΎΡΡΡΡΠΊΡΡΡ Π ΠΠ, 2004. — 110 Ρ.
- Smirnov, M.V. The thermodynamic properties of sodium and potassium dissolved in their molten chlorides, bromides and iodides / M.V. Smirnov, V.V. Chebykin, L.A. Tsiovkina // Electrochimica Acta. 1981. — Vol.26. — P.1275−1288.
- Suzuki, R.O. Calciothermic reduction of titanium oxide in molten CaCl2 / R.O. Suzuki, S. Inoue // Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2003. — Vol.34B, No.6. — P.277−286.
- Nagy, P. Y-branching of single walled carbon nanotubes / P. Nagy, R. Ehlich, L.P. Biro, J. Gyulai // Applied Physics A: Materials Science and Processing. 2000. — Vol.70. — P.481−483.
- Zhou, D. Complex branching phenomena in the growth of carbon nanotubes / D. Zhou, S. Seraphin // Chemical Physics Letters. 1995. — Vol.238. — P.286−289.
- Ajayan, P.M. Growth of carbon micro-trees Carbon deposition under extreme conditions causes tree-like structures to spring up / P.M. Ajayan, J.M. Nugent, R.W. Siegel, B. Wei, P. Kohler-Redlich // Nature. — 2000. — Vol.404. — P.243.
- Martel, R. Ring formation in single-wall carbon nanotubes / R. Martel, H.R. Shea, P. Avouris//Journal ofPhysical Chemistry B. 1999. — Vol.103. — P.7551−7556.
- Martel, R. Rings of single-walled carbon nanotubes / R. Martel, H.R. Shea, P. Avouris // Nature. 1999. — Vol.398. — P.299.
- Nagy, P. Structure comparison of nanotubes produced by different processes / P. Nagy, J. Miklosi, P. Poczik, K. Papp, Z. Konya, I. Kiricsi, G. Palinkas, E. Kalman // Applied Physics A: Materials Science and Processing. 2001. — Vol.72. — P. S 185-S188.
- Haddon, R.C. Electronic properties of carbon toroids // Nature. 1997. — Vol.388. — P.31−32.
- Ehlich, R. // Proceedings of ERC 99 Conference on Chemistry and Physics of Multifunctional Materials Spain, 1999.
- Kaptay G., Sytchev I., Miklosi J., Nagy P., Poczik P., Papp K., Kalman E. Electrochemical synthesis of carbon nanotubes and microtubes from molten salts // Progress in Molten Salt Chemistry 1. Paris, Elsevier. -2000. -P.257−262.
- Miklosi J., Poczik P., Sytchev I., Kaptay G., Nagy P., Kalman E. Atomic force microscopy investigation of electrochemically produced carbon nanotubes // Applied Physics A: Materials Science and Processing. Vol. A72. 2001. P. S189-S 192.
- Sytchev J., Borisenko N., Kaptay G., Some aspects of the electrolytic formation of carbon nanotubes in molten alkali chlorides // Proceedings of the EUCHEM 2004 Conference on Molten Salts. Piechowice, Poland, 2004. Abstract # ΠΠ ΠΠ.
- Sytchev J., Borisenko N., Kaptay G. Intercalation of lithium into graphite as the first step to produce carbon nanotubes in an electrochemical way // Materials Science Forum. Vol.473−474. 2005. P.147−152.
- Π‘ΡΡΠ΅Π² Π―.Π., ΠΠΎΡΠΈΡΠ΅Π½ΠΊΠΎ Π. Π., ΠΠ°ΠΏΡΠ°ΠΈ Π., ΠΡΡΡ ΠΎΠ² Π₯. Π. ΠΠ½ΡΠ΅ΡΠΊΠ°Π»ΡΡΠΈΡ Π½Π°ΡΡΠΈΡ ΠΈ Π»ΠΈΡΠΈΡ Π² Π³ΡΠ°ΡΠΈΡ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²Π°Ρ ΡΡΠ°Π΄ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΡ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ // ΠΠ»Π΅ΠΊΡΡΠΎΡ ΠΈΠΌΠΈΡ. 2005. Π’.41, № 9. Π‘. 1079−1086.