ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…: Ρ€ΠΎΠ»ΡŒ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ЦитоплазматичСский Π΄ΠΈΠ½Π΅ΠΈΠ½ прСдставляСт собой ΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ, АВЀ-зависимо ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΠΉΡΡ ΠΏΠΎ ΠœΠ’ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΊ Π΅Π΅ ΠΌΠΈΠ½ΡƒΡ-ΠΊΠΎΠ½Ρ†Ρƒ. Он ΠΎΡΡƒΡ‰Π΅ΡΡ‚вляСт Ρ€Π΅Ρ‚Ρ€ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹ΠΉ транспорт ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ s ΠΎΡ€Π³Π°Π½Π΅Π»Π», взаимодСйствуя с Π½ΠΈΠΌΠΈ Ρ‡Π΅Ρ€Π΅Π· свой ΠΊΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€ — Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ комплСкс Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½. Π’ ΠΌΠΈΡ‚ΠΎΠ·Π΅ ΠΈ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π΅ Π΄ΠΈΠ½Π΅ΠΈΠ½ ΠΈ Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ ассоциированы с Ρ†Π΅Π½Ρ‚росомой, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ, вСроятно, нСзависимо Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π° (Purohit et al., 1999… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…: Ρ€ΠΎΠ»ΡŒ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π’Π’Π•Π”Π•ΠΠ˜Π•
  • 2. ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
    • 2. 1. Π”ΠΈΠ½Π΅ΠΈΠ½
      • 2. 1. 1. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
      • 2. 1. 2. Устройство ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ цитоплазматичСского Π΄ΠΈΠ½Π΅ΠΈΠ½Π°
        • 2. 1. 2. 1. ВяТСлыС Ρ†Π΅ΠΏΠΈ Π΄ΠΈΠ½Π΅ΠΈΠ½Π°
        • 2. 1. 2. 2. ΠŸΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ†Π΅ΠΏΠΈ Π΄ΠΈΠ½Π΅ΠΈΠ½Π°
        • 2. 1. 2. 3. Π›Π΅Π³ΠΊΠΈΠ΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ†Π΅ΠΏΠΈ ΠΈ Π»Π΅Π³ΠΊΠΈΠ΅ Ρ†Π΅ΠΏΠΈ Π΄ΠΈΠ½Π΅ΠΈΠ½Π°. 15 2.2 Π”ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ комплСкс
      • 2. 2. 1. Arpl «ΠΏΠ»Π΅Ρ‡ΠΎ»
      • 2. 2. 2. ПодвиТноС «ΠΏΡ€Π΅Π΄ΠΏΠ»Π΅Ρ‡ΡŒΠ΅»
    • 2. 3. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΄ΠΈΠ½Π΅ΠΈΠ½-Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса
      • 2. 3. 1. ВнутриклСточная локализация Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½Π°
      • 2. 3. 2. ΠŸΡ€ΠΎΡ†Π΅ΡΡΡ‹ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ двиТСния
        • 2. 3. 2. 1. Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½
        • 2. 3. 2. 2. Π―Π΄Ρ€ΠΎ
        • 2. 3. 2. 3. Π”Ρ€ΡƒΠ³ΠΈΠ΅ цитоплазматичСскиС частицы
      • 2. 3. 2. УчастиС Π΄ΠΈΠ½Π΅ΠΈΠ½-Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½Π° Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… процСссах
        • 2. 3. 2. 1. ЦСнтросома ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ систСмы ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ
        • 2. 3. 2. 2. Плюс-ΠΊΠΎΠ½Ρ†Ρ‹ МВ
    • 2. 4. БСмСйство 81Π΅20-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·: классификация ΠΈ ΠΎΡΠ½ΠΎΠ²Π½Ρ‹Π΅ свойства
    • 2. 5. GCK-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹: классификация
    • 2. 6. ΠŸΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOK/xPlkk ΠΈ LOSK
  • 3. Π¦Π•Π›Π˜ И Π—ΠΠ”ΠΠ§Π˜
  • 4. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
    • 4. 1. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
      • 4. 1. 1. ΠšΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 4. 1. 2. Π¨Ρ‚Π°ΠΌΠΌΡ‹ E. col
      • 4. 1. 3. АнтитСла
      • 4. 1. 4. Π”ΠΠš-конструкты
      • 4. 1. 5. Π₯ΠΈΠΌΡ€Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹
        • 4. 1. 5. 1. Для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π•. col
        • 4. 1. 5. 2. Для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
        • 4. 1. 5. 3. Для элСктрофорСза Π±Π΅Π»ΠΊΠΎΠ² Π² ΠŸΠΠΠ“
        • 4. 1. 5. 4. Для полусухого пСрСноса
        • 4. 1. 5. 5. Для со-осаТдСния с ΡΠΊΠ·ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ МВ
        • 4. 1. 5. 6. Для Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ³ΠΎ выдСлСния Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
        • 4. 1. 5. 7. Для ΠΊΠΈΠ½Π°Π·Π½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ
        • 4. 1. 5. 8. Для ΠΌΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΉ
        • 4. 1. 5. 9. Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
      • 4. 1. 6. ΠŸΡ€ΠΈΠ±ΠΎΡ€Ρ‹
      • 4. 1. 7. Π‘ΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹
    • 4. 2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹
      • 4. 2. 1. Врансформация Π•. col
        • 4. 2. 1. 1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. col
        • 4. 2. 1. 2. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coli ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 4. 2. 2. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 4. 2. 3. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² (ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° LOSK, pl50(Glued)
        • 4. 2. 3. 1. ЭкспрСссия Π±Π΅Π»ΠΊΠΎΠ² Π² Π•. col
        • 4. 2. 3. 2. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², слитых с GST, Π½Π° Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½-8-Π°Π³Π°Ρ€ΠΎΠ·Π΅
        • 4. 2. 3. 3. ΠžΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°, слитого с 6His, Π½Π° Ni-NTA-Π°Π³Π°Ρ€ΠΎΠ·Π΅ (Π² Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… условиях)
      • 4. 2. 4. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΈΠ½Π°Π·Π½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ
      • 4. 2. 5. Π‘ΠΎ-осаТдСниС с ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡ΠΊΠ°ΠΌΠΈ
        • 4. 2. 5. 1. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ ΠΈΠ· ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚ΡƒΠ±ΡƒΠ»ΠΈΠ½Π°
        • 4. 2. 5. 2. Π‘ΠΎ-осаТдСниС с ΡΠΊΠ·ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡ΠΊΠ°ΠΌΠΈ
      • 4. 2. 6. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΠΎΠΌ Π³Π΅Π»Π΅ ΠΈ ΠΎΠΊΡ€Π°ΡΠΊΠ° Π³Π΅Π»Π΅ΠΉ
      • 4. 2. 7. Π˜ΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚ΠΈΠ½Π³
      • 4. 2. 8. ΠšΠΎΠ½ΡŒΡŽΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„Π»ΡƒΠΎΡ€ΠΎΡ…Ρ€ΠΎΠΌΠ° Π‘ΡƒΠ— с Ρ‚ΡƒΠ±ΡƒΠ»ΠΈΠ½ΠΎΠΌ
      • 4. 2. 9. Π’Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹
      • 4. 2. 10. ВрансфСкции ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
        • 4. 2. 10. 1. Липосомная трансфСкция
        • 4. 2. 10. 2. ΠœΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½Ρ‹Ρ… Π”ΠΠš
      • 4. 2. 11. ΠœΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°
      • 4. 2. 12. Ѐиксация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
        • 4. 2. 12. 1. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠ΅Ρ€Π΅Π΄ фиксациСй
        • 4. 2. 12. 2. Ѐиксация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠ°Ρ€Π°Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄ΠΎΠΌ
        • 4. 2. 12. 3. Ѐиксация ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ»ΠΎΠΌ
        • 4. 2. 12. 4. Ѐиксация Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ½-ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ»ΠΎΠΌ
        • 4. 2. 12. 5. Ѐиксация ΠΌΠ΅Ρ‚Π°Π½ΠΎΠ»-Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ½ΠΎΠΌ
      • 4. 2. 13. Π˜ΠΌΠΌΡƒΠ½ΠΎΡ„Π»ΡƒΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠ΅ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅
      • 4. 2. 14. ΠŸΡ€ΠΈΠΆΠΈΠ·Π½Π΅Π½Π½Ρ‹Π΅ наблюдСния ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
        • 4. 2. 14. 1. ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ систСмы ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅
        • 4. 2. 14. 2. ΠΡƒΠΊΠ»Π΅ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ цСнтросомы
      • 4. 2. 15. Анализ изобраТСния
      • 4. 2. 16. БтатистичСская ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π΄Π°Π½Π½Ρ‹Ρ…
  • 5. РЕЗУЛЬВАВЫ
    • 5. 1. Π­ΠΊΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡŽ формирования ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…
    • 5. 2. ВлияниС ингибирования активности Π΄ΠΈΠ½Π΅ΠΈΠ½Π° ΠΏΡƒΡ‚Π΅ΠΌ ΠΌΠΈΠΊΡ€ΠΎΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΈ 74.1 Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‚ΠΈΠ½Π° Π½Π° Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…
    • 5. 3. ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ располоТСниС Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°
  • Π“ΠΎΠ»ΡŒΠ΄ΠΆΠΈ послС воздСйствия ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² Π΄ΠΈΠ½Π΅ΠΈΠ½Π°
    • 5. 4. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ основных Π±Π΅Π»ΠΊΠΎΠ² пСрицСнтриолярного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π² Ρ†Π΅Π½Ρ‚росомС послС воздСйствия ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² Π΄ΠΈΠ½Π΅ΠΈΠ½Π°
    • 5. 5. ВлияниС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² Π΄ΠΈΠ½Π΅ΠΈΠ½Π° Π½Π° Π½ΡƒΠΊΠ»Π΅Π°Ρ†ΠΈΡŽ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ Π½Π° Ρ†Π΅Π½Ρ‚росомС
    • 5. 6. Ассоциация Π΄ΠΈΠ½Π΅ΠΈΠ½Π° с Ρ†Π΅Π½Ρ‚росомой Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌ Ρ†ΠΈΠΊΠ»Π΅
    • 5. 7. Локализация Π² ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² экспрСссии ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ массы ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK ΠΈ Π΅Π΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ², слитых с GFP
    • 5. 8. ЀСрмСнтативная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK in vitro, Π΄ΠΎΠΌΠΈΠ½Π°Π½Ρ‚Π½ΠΎ-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π½Ρ‚ ΠΈ ΡƒΡ‡Π°ΡΡ‚ΠΎΠΊ связывания Π΅Π΅ Ρ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡ΠΊΠ°ΠΌΠΈ
    • 5. 9. ВлияниС ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK Π½Π° ΡΠΈΡΡ‚Π΅ΠΌΡƒ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ
    • 5. 10. ВлияниС ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK Π½Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… стрСсс-Ρ„ΠΈΠ±Ρ€ΠΈΠ»Π» Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…
    • 5. 11. ВлияниС ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK Π½Π° ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ основных Π±Π΅Π»ΠΊΠΎΠ² цСнтросомы
    • 5. 12. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π½ΠΎΠ²ΠΎΠ³ΠΎ субстрата ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK
  • 6. ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π• Π Π•Π—Π£Π›Π¬Π’ΠΠ’ΠžΠ’
  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • Π’Π«Π’ΠžΠ”Π«
  • БПИБОК ΠŸΠ£Π‘Π›Π˜ΠšΠΠ¦Π˜Π™

Для Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Π° Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎ-симмСтричная систСма ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ (МВ): МВ ΠΎΡ‚Ρ…ΠΎΠ΄ΡΡ‚ ΠΎΡ‚ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ (ЦОМВ) ΠΊ ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. ΠŸΡ€ΠΈ этом Π² Π¦ΠžΠœΠ’ Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ΡΡ минус-ΠΊΠΎΠ½Ρ†Ρ‹, Π° ΠΏΠΎ ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ — плюс-ΠΊΠΎΠ½Ρ†Ρ‹ ΠœΠ’. Радиальная ΡΠ΅Ρ‚ΡŒ ΠœΠ’ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° для ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ двиТСния ΠΎΡ€Π³Π°Π½Π΅Π»Π» ΠΏΠΎ ΡΠ½Π΄ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π½ΠΎΠΌΡƒ ΠΈ ΡΠΊΠ·ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ, для поддСрТания поляризованной Ρ„ΠΎΡ€ΠΌΡ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡ€ΠΈ ΠΈΡ… ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΡΡƒΠ±ΡΡ‚Ρ€Π°Ρ‚Ρƒ ΠΈ Π΄Π»Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ°Ρ€Ρ‚ΠΌΠ΅Π½Ρ‚Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

Π¦Π΅Π½Ρ‚Ρ€ΠΎΠΌ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ сСти ΠœΠ’ Π² ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ являСтся цСнтросома, прСдставлСнная ΠΏΠ°Ρ€ΠΎΠΉ Ρ†Π΅Π½Ρ‚Ρ€ΠΈΠΎΠ»Π΅ΠΉ ΠΈ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΠΈΠΌ ΠΈΡ… ΠΏΠ΅Ρ€ΠΈΡ†Π΅Π½Ρ‚риолярным ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ. На Ρ†Π΅Π½Ρ‚росомС происходит нуклСация ΠœΠ’ (Moudjou et al., 1996; Stearns & Kirschner, 1994) ΠΈ ΠΈΡ… Π·Π°ΡΠΊΠΎΡ€ΠΈΠ²Π°Π½ΠΈΠ΅ (связываниС ΠΈΡ… ΠΌΠΈΠ½ΡƒΡ-ΠΊΠΎΠ½Ρ†ΠΎΠ²) (Mogensen et al., 1997; Mogensen et al., 1999; Quintyne et al., 1999; Mogensen et al., 2000; Bornens et al., 2002; Dammermann & Merdes, 2002). ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π½ΡƒΠΊΠ»Π΅Π°Ρ†ΠΈΠΈ ΠΈ Π·Π°ΡΠΊΠΎΡ€ΠΈΠ²Π°Π½ΠΈΡ МВ, Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ² пСрицСнтриолярного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, Π΄ΠΎ ΡΠΈΡ… ΠΏΠΎΡ€ ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ нСясными. Π‘Ρ‹Π» ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ ряд Ρ€Π°Π±ΠΎΡ‚, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…, Ρ‡Ρ‚ΠΎ дисфункция ΠΌΠ½ΠΎΠ³ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ² с Ρ†Π΅Π½Ρ‚росомной Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Π²Π΅Π΄Ρ‘Ρ‚ ΠΊ ΡƒΡ‚Ρ€Π°Ρ‚Π΅ цСнтросомой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠœΠ’. Π’ Ρ‡Π°ΡΡ‚ности, это Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ для Π΄ΠΈΠ½Π΅ΠΈΠ½-Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса (Quintyne et al., 1999) ΠΈ Π΄Π»Ρ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK (ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ Ρ€Π°Π½Π΅Π΅ Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ).

ЦитоплазматичСский Π΄ΠΈΠ½Π΅ΠΈΠ½ прСдставляСт собой ΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ, АВЀ-зависимо ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΠΉΡΡ ΠΏΠΎ ΠœΠ’ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΊ Π΅Π΅ ΠΌΠΈΠ½ΡƒΡ-ΠΊΠΎΠ½Ρ†Ρƒ. Он ΠΎΡΡƒΡ‰Π΅ΡΡ‚вляСт Ρ€Π΅Ρ‚Ρ€ΠΎΠ³Ρ€Π°Π΄Π½Ρ‹ΠΉ транспорт ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΈ s ΠΎΡ€Π³Π°Π½Π΅Π»Π», взаимодСйствуя с Π½ΠΈΠΌΠΈ Ρ‡Π΅Ρ€Π΅Π· свой ΠΊΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€ — Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ комплСкс Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½. Π’ ΠΌΠΈΡ‚ΠΎΠ·Π΅ ΠΈ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π΅ Π΄ΠΈΠ½Π΅ΠΈΠ½ ΠΈ Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ ассоциированы с Ρ†Π΅Π½Ρ‚росомой, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ, вСроятно, нСзависимо Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π° (Purohit et al., 1999; Quintyne et al., 1999; Tynan et al., 2000, Quintyne et al., 2002; Uetaki et al, 2004). Π’ ΠΎΠΏΡ‹Ρ‚Π°Ρ…, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… добивались ингибирования активности Π΄ΠΈΠ½Π΅ΠΈΠ½Π° ΠΈΠ»ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса, наблюдали Π΄Π΅Π·ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡŽ полюсов митотичСского Π²Π΅Ρ€Π΅Ρ‚Π΅Π½Π° ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ располоТСния ΠœΠ’ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π²ΡˆΠ΅Π΅ΡΡ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ связи ΠœΠ’ с Ρ†Π΅Π½Ρ‚росомой (Gaglio et al., 1996; Gaglio et al., 1997; Burkhard et al., 1997; Quintyne et al., 1999). Роль Π΄ΠΈΠ½Π΅ΠΈΠ½Π° Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ сСти ΠœΠ’ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…, Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΠΏΠΎΠΊΠ° исслСдована нСдостаточно. Π’ Ρ‡Π°ΡΡ‚ности, нСясно, участвуСт Π»ΠΈ нСпосрСдствСнно Π΄ΠΈΠ½Π΅ΠΈΠ½ Π² Π½ΡƒΠΊΠ»Π΅Π°Ρ†ΠΈΠΈ ΠΈΠ»ΠΈ Π² Π·Π°ΡΠΊΠΎΡ€ΠΈΠ²Π°Π½ΠΈΠΈ ΠœΠ’ Π½Π° Ρ†Π΅Π½Ρ‚росомС. Π Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ сСти ΠœΠ’ ΠΏΡ€ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° Ρ€Π°Π½Π΅Π΅ объясняли Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ½Π΅ΠΈΠ½ доставляСт Π² Ρ†Π΅Π½Ρ‚росому Π΅Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π²Π°ΠΆΠ½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, ΠΈ ΠΏΡ€ΠΈ дисфункции Π΄ΠΈΠ½Π΅ΠΈΠ½Π° происходит дСплСция цСнтросомы ΠΏΠΎ ΡΡ‚ΠΈΠΌ Π±Π΅Π»ΠΊΠ°ΠΌ (Young et al., 2000). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π²Π°ΠΆΠ½Ρ‹ΠΌ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΠ»ΠΎΡΡŒ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π½Π½ΠΈΠ΅ эффСкты ингибирования Π΄ΠΈΠ½Π΅ΠΈΠ½Π° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…, ΠΊΠΎΠ³Π΄Π° дСплСция цСнтросомы ΠΏΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π²Π°ΠΆΠ½Ρ‹ΠΌ Π±Π΅Π»ΠΊΠ°ΠΌ Π΅Ρ‰Π΅ маловСроятна.

Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ сСти ΠœΠ’ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π±Ρ‹Π²Π°Π΅Ρ‚ Ρ€Π°Π·Π½ΠΎΠΉ: Π² ΠΎΠ΄Π½ΠΈΡ… Ρ‚ΠΈΠΏΠ°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΎΠ½Π° ΠΏΠΎΡ‡Ρ‚ΠΈ строго Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Π°Ρ, Π° Π² Π΄Ρ€ΡƒΠ³ΠΈΡ…Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ хаотичная. Π­Ρ‚ΠΎ заставляСт ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сСти ΠœΠ’ рСгулируСтся ΠΊΠ»Π΅Ρ‚ΠΊΠΎΠΉ. ВСроятно, Ρ‡Ρ‚ΠΎ Π² Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ сСти ΠœΠ’ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ участиС ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹, связанныС с Ρ†Π΅Π½Ρ‚росомой ΠΈ ΠœΠ’. ΠŸΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ°ΠΌΡ‹Ρ… ΠΎΠ±ΡˆΠΈΡ€Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… супСрсСмСйств эукариот, Π½Π°ΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π΅Π΅ Π΄ΠΎ Ρ‚ысячи прСдставитСлСй. ΠŸΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ пСрСноса Ρƒ-фосфатной Π³Ρ€ΡƒΠΏΠΏΡ‹ АВЀ (ΠΈΠ»ΠΈ Π“Π’Π€) Π½Π° ΡΠΏΠΈΡ€Ρ‚ΠΎΠ²Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ сСрина/Ρ‚Ρ€Π΅ΠΎΠ½ΠΈΠ½Π° (ΠΈΠ»ΠΈ Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Π°) Π² Π±Π΅Π»ΠΊΠ°Ρ… для образования фосфомоноэфиров. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· — ΠΌΠΈΠ½ΠΎΡ€Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ удаСтся ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ молСкулярно-биологичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Однако ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ вызванная дисфункция ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· Π²Π΅Π΄Π΅Ρ‚ ΠΊ Ρ„Π°Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ послСдствиям для ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠŸΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ», Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ, мСтаболичСскиС ΠΏΡƒΡ‚ΠΈ, ΠΌΠΎΡ€Ρ„ΠΎΠ³Π΅Π½Π΅Π·, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ†Π΅ΠΏΡΡ… ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Ρ‹Ρ… сигналов ΠΈ Π² Π·Π°ΠΏΡƒΡΠΊΠ΅ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°.

Π Π°Π½Π΅Π΅ идСнтифицированная Π² Π½Π°ΡˆΠ΅ΠΉ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ сСрин-трСониновая ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π° LOSK (LOng Ste20-like Kinase) ассоциирована с ΠœΠ’ ΠΈ Ρ†Π΅Π½Ρ‚росомой (Zinovkina et al., 1997), ΠΈ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ LOSK ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ систСмы ΠœΠ’ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…. Π­Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ LOSK являСтся ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·ΠΎΠΉ, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ рСгулирования ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы ΠœΠ’.

2 ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π« 2.1 Π”Π˜ΠΠ•Π˜Π 2.1.1 Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅

ЦитоскСлСтныС молСкулярныС ΠΌΠΎΡ‚ΠΎΡ€Ρ‹ Π² ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСской ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ прСдставлСны трСмя основными классами: Π΄ΠΈΠ½Π΅ΠΈΠ½ΠΎΠ², ΠΊΠΈΠ½Π΅Π·ΠΈΠ½ΠΎΠ² ΠΈ ΠΌΠΈΠΎΠ·ΠΈΠ½ΠΎΠ². Они ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΎΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π΅Π½Π½ΡƒΡŽ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° АВЀ для пСрСмСщСния ΠΏΠΎ Ρ†ΠΈΡ‚оскСлСтным Ρ„ΠΈΠ±Ρ€ΠΈΠ»Π»Π°ΠΌ: Π΄ΠΈΠ½Π΅ΠΈΠ½Ρ‹ Π΄Π²ΠΈΠ³Π°ΡŽΡ‚ΡΡ вдоль ΠœΠ’ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΊ ΠΈΡ… ΠΌΠΈΠ½ΡƒΡ-ΠΊΠΎΠ½Ρ†Ρƒ (Paschal & Vallee, 1987), ΠΊΠΈΠ½Π΅Π·ΠΈΠ½Ρ‹ — вдоль ΠœΠ’ ΠΊ ΠΏΠ»ΡŽΡ-ΠΊΠΎΠ½Ρ†Ρƒ, Π° ΠΌΠΈΠΎΠ·ΠΈΠ½Ρ‹ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ вдоль Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚ΠΎΠ² (Vale & Milligan 2000). Π’ Π½Π°ΡΡ‚оящСС врСмя Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ большой прогрСсс Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ ΠΈ ΠΌΠ΅Ρ…анохимичСских Ρ†ΠΈΠΊΠ»ΠΎΠ² ΠΊΠΈΠ½Π΅Π·ΠΈΠ½Π° ΠΈ ΠΌΠΈΠΎΠ·ΠΈΠ½Π° (Vale & Milligan 2000), Π½ΠΎ Π³ΠΎΡ€Π°Π·Π΄ΠΎ мСньшС извСстно ΠΎ Π΄ΠΈΠ½Π΅ΠΈΠ½Π΅. Одной ΠΈΠ· ΠΏΡ€ΠΈΡ‡ΠΈΠ½ этого ΠΌΠΎΠ³Π»ΠΎ ΠΏΠΎΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ слоТноС устройство ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ молСкулярными ΠΌΠΎΡ‚ΠΎΡ€Π°ΠΌΠΈ. Π’ ΠΌΠ½ΠΎΠ³ΠΎΡ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Ρ… сСмСйствах ΠΊΠΈΠ½Π΅Π·ΠΈΠ½ΠΎΠ² ΠΈ ΠΌΠΈΠΎΠ·ΠΈΠ½ΠΎΠ² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ энзимы ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΏΠΎ ΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ тяТСлых Ρ†Π΅ΠΏΠ΅ΠΉ (Hirokawa, 1998; Sellers, 2000), Π° Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнного Ρƒ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΎΠ² класса Π΄ΠΈΠ½Π΅ΠΈΠ½ΠΎΠ² Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ связаны с ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ количСством консСрвативно устроСнных тяТСлых Ρ†Π΅ΠΏΠ΅ΠΉ.

Пока всС Π΅Ρ‰Π΅ остаСтся нСизвСстным, ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠ³ΠΎ биохимичСски Ρ€Π°Π·Π½Ρ‹Ρ… ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° сущСствуСт Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ Π΄Π²Π° Ρ‚ΠΈΠΏΠ° Π΄ΠΈΠ½Π΅ΠΈΠ½ΠΎΠ², Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π² Ρ€Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠ°Ρ€Ρ‚ΠΌΠ΅Π½Ρ‚Π°Ρ…: Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ ΠΈ Π°ΠΊΡΠΎΠ½Π΅ΠΌΠ°Ρ… рСсничСк ΠΈ ΠΆΠ³ΡƒΡ‚ΠΈΠΊΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‚Π°ΠΊ ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ — цитоплазматичСский Π΄ΠΈΠ½Π΅ΠΈΠ½ ΠΈ Π°ΠΊΡΠΎΠ½Π΅ΠΌΠ½Ρ‹ΠΉ. Π’ Π³Π΅Π½ΠΎΠΌΠ΅ Ρ‡Π΅Π»ΠΎΠ²Π΅ содСрТится восСмь Π³Π΅Π½ΠΎΠ² для тяТСлой Ρ†Π΅ΠΏΠΈ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° DHC (Dynein Heavy Chain), ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡˆΠ΅ΡΡ‚ΡŒ ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‚ аксонСмныС Π΄ΠΈΠ½Π΅ΠΈΠ½Ρ‹ ΠΈ Π΄Π²Π° — цитоплазматичСский Π΄ΠΈΠ½Π΅ΠΈΠ½. Π’ ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΡ€Π΅Π²Π°Π»ΠΈΡ€ΡƒΠ΅Ρ‚ цитоплазматичСский Π΄ΠΈΠ½Π΅ΠΈΠ½-1, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΡ‹ Π΄Π°Π»Π΅Π΅ ΠΈ Π±ΡƒΠ΄Π΅ΠΌ для краткости Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π΄ΠΈΠ½Π΅ΠΈΠ½ΠΎΠΌ. ЦитоплазматичСский Π΄ΠΈΠ½Π΅ΠΈΠ½-2 -ΠΌΠΈΠ½ΠΎΡ€Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΉ для ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹ΠΌΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½Ρ‹ΠΌΠΈ рСсничками, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, для ΠΏΠ°Π»ΠΎΡ‡Π΅ΠΊ сСтчатки. Π’ Π³Π΅Π½ΠΎΠΌΠ΅ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° имССтся ΠΎΠ΄ΠΈΠ½ Π³Π΅Π½ для ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†Π΅ΠΏΠΈ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° DIC (Dynein Intermediate Chain), хотя экспрСссируСтся нСсколько сплайс-Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² этого Π±Π΅Π»ΠΊΠ°. Π’ Π³Π΅Π½ΠΎΠΌΠ΅ ΠΌΡ‹ΡˆΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ, Π½Π°ΠΉΠ΄Π΅Π½ΠΎ Π΄Π²Π° Π³Π΅Π½Π° DIC. Π”Π²Π° Π³Π΅Π½Π° Ρƒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‚ Π»Π΅Π³ΠΊΠΈΠ΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ†Π΅ΠΏΠΈ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° DLIC (Dynein Light Intermediate Chains) (Mikami et al., 1993; Zhang et al., 1993; Gill et al., 1994; Hughes et al., 1995; Vaughan & Vallee, 1995). Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ сСмСйства Π»Π΅Π³ΠΊΠΈΡ… Ρ†Π΅ΠΏΠ΅ΠΉ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° DLC (Dynein Light Chains) (King et al., 1996a, b, 1998; Bowman et al, 1999; Wilson et al., 2001).

Π’ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ Π΄ΠΈΠ½Π΅ΠΈΠ½Ρ‹ отвСтствСнны Π·Π° ΠΌΠΈΠ½ΡƒΡ-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠœΠ’ транспорт (Holzbaur & Vallee, 1994; Hirokawa, 1998), ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½Π΅Π»Π» (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Π“ΠΎΠ»ΡŒΠ΄ΠΆΠΈ) Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ митотичСского Π²Π΅Ρ€Π΅Ρ‚Π΅Π½Π° дСлСния, Π° Ρ‚Π°ΠΊΠΆΠ΅, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ участиС Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠœΠ’ ΠΈ Π½ΡƒΠΊΠ»Π΅Π°Ρ†ΠΈΠΈ ΠœΠ’ Π½Π° Ρ†Π΅Π½Ρ‚росомС (Malikov et al., 2004). АксонСмныС Π΄ΠΈΠ½Π΅ΠΈΠ½Ρ‹ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΆΠ³ΡƒΡ‚ΠΈΠΊΠΎΠ² ΠΈ Ρ€Π΅ΡΠ½ΠΈΡ‡Π΅ΠΊ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… эукариот.

Π’Π«Π’ΠžΠ”Π«

1. Π˜Π½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ активности Π΄ΠΈΠ½Π΅ΠΈΠ½Π° ΠΈ Π΄ΠΈΡΡΠΎΡ†ΠΈΠ°Ρ†ΠΈΡ Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса приводят ΠΊ Π±Ρ‹ΡΡ‚Ρ€ΠΎΠΌΡƒ (Π·Π° 40−60 ΠΌΠΈΠ½.) Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы ΠœΠ’ Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…, Π½ΠΎ Π½Π΅ ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ ΠΏΡ€ΠΈ этом МВ-Π½ΡƒΠΊΠ»Π΅ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ цСнтросомы.

2. Π˜Π½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ активности Π΄ΠΈΠ½Π΅ΠΈΠ½Π° ΠΈ Π΄ΠΈΡΡΠΎΡ†ΠΈΠ°Ρ†ΠΈΡ Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ влияния Π½Π° ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ Π² Ρ†Π΅Π½Ρ‚росомС Ρƒ-Ρ‚ΡƒΠ±ΡƒΠ»ΠΈΠ½Π°, ΠΏΠ΅Ρ€ΠΈΡ†Π΅Π½Ρ‚Ρ€ΠΈΠ½Π°, Π½Π°ΠΉΠ½Π΅ΠΈΠ½Π°, Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½Π° ΠΈ ΡΠ°ΠΌΠΎΠ³ΠΎ Π΄ΠΈΠ½Π΅ΠΈΠ½Π° Π·Π° 60 ΠΌΠΈΠ½. воздСйствия.

3. Π”ΠΈΠ½Π΅ΠΈΠ½ ассоциирован с Ρ†Π΅Π½Ρ‚росомой Π½Π° ΠΏΡ€ΠΎΡ‚яТСнии всСй ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°. Π˜Π½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π΅Π³ΠΎ активности Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы ΠœΠ’ Π² Π»ΡŽΠ±ΠΎΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Ρ‹.

4. Π˜Π½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ активности сСрин-Ρ‚Ρ€Π΅ΠΎΠ½ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK Π² ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы МВ, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰Π΅Π΅ΡΡ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ содСрТания Π² Ρ†Π΅Π½Ρ‚росомС Π±Π΅Π»ΠΊΠΎΠ² Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса.

5. Π‘Π΅Π»ΠΎΠΊ Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса pl50(Glued) являСтся субстратом ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK in vitro. ΠžΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ Π΄ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ комплСкса ΠΈ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ‹, входящиС Π² ΡΠΎΡΡ‚Π°Π² Π΄ΠΈΠ½Π΅ΠΈΠ½Π°, субстратами LOSK Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ся.

6. Участок связывания ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ располоТСн Π² Π‘-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ части ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK. Π­Ρ‚ΠΎΡ‚ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ структурного Π΄ΠΎΠΌΠ΅Π½Π° LOSK, Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ дСйствия Π½Π° Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ участок ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ LOSK (аминокислотныС остатки 339−663) ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Ρ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ LOSK.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π—ΠΈΠ½ΠΎΠ²ΠΊΠΈΠ½Π°, J1.A., ΠŸΠΎΠ»Ρ‚Π°Ρ€Π°ΡƒΡ, А.Π‘., Боловьянова, О.Π‘. ΠΈ ΠΠ°Π΄Π΅ΠΆΠ΄ΠΈΠ½Π°, Π•.Π‘. (1998) Новая прСдполагаСамя ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π°, ассоциированная с ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…. Мол Π‘ΠΈΠΎΠ», 32: 341−8.
  2. Π•.Π‘. (2001) Бубстратная ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡ активности Ste20-noflo6Hbix ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· LOSK, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°. Дисс Π½Π° ΡΠΎΠΈΡΠΊΡƒΡ‡ стСп ΠΊ.Π±.Π½., 3−105.
  3. Π•., Π—ΠΈΠ½ΠΎΠ²ΠΊΠΈΠ½Π° Π›., НадСТдина Π•. Π‘. (2003) ЀСрмСнтативная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ LOSK: возмоТная рСгуляторная Ρ€ΠΎΠ»ΡŒ структурного Π΄ΠΎΠΌΠ΅Π½Π°. Биохимия, 68(2): 188−95.
  4. Π•., НадСТдина Π•. (2002) ΠœΠΈΡ‚ΠΎΠ³Π΅Π½-Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π½Ρ‹Π΅ каскады ΠΈ ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ Π² Π½ΠΈΡ… 81Π΅20-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·. УспСхи биологичСской Ρ…ΠΈΠΌΠΈΠΈ, 42: 235−56.
  5. A., Hoogenraad Π‘.Π‘. (2005) Microtubule plus-end-tracking proteins: mechanisms and functions. Current Opinion in Cell Biology, 17: 47−54
  6. , V. (1995). Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro. J. Cell Biol., 128, 179−191.
  7. Alves P., Gordinho S., Tavares. (2006) The Drosophila orthologue of xPlkkl is not essential for Polo activation and is necessary for proper contractile ring formation. Exp Cell Res, 312(3): 308−21
  8. Anafi M., Kiefer F., Gish G.D., Mbamalu G., Iscove N.N. and Pawson T. (1997) SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1. Biol, 272: 27 804−11.
  9. Benashski, S. E., Patel-King, R. S. and King, S. M. (1999). Light chain 1 from the Chlamydomonas outer dynein arm is a leucine-rich repeat protein associated with the motor domain of the a-heavy chain. Biochemistry, 38: 7253−7264
  10. M., Meredith R. (1977) Continuation of mitosis after selective laser microbeam destruction of the centriolar region. J. Cell Biol, 75: 977−82
  11. Berrueta L, Tirnauer JS, Schuyler SC, Pellman D, Bierer BE. (1999) The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol, 9: 425−28
  12. J.B., King S.J., Schroer T.A. (1998) Purification of dynein and dynactin from brain tissue. Methods Enzymol, 298, 171 184 Bingham JB, Schroer Π’А. 1999. Self-regulated polymerization of the actin-relatedprotein, Arpl. Curr. Biol. 9: 223−26
  13. Bowman, A.B., Patel-King, R.S., Benashski, S.E., McCaffery, J.M., Goldstein, L.S.B., and King, S.M. (1999) Drosophila roadblock and
  14. Chlamydomonas LC7: A conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J. Cell Biol., 146: 165−179.
  15. K., Serr M., Hays T. (2000) A molecular genetic analysis of the interaction between the cytoplasmic dynein intermediate chain and the Glued (dynactin) complex. Molecular Biology of the Cell, 11 6 3791−3803
  16. Blangy A, Arnaud L, Nigg EA. (1997) Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit pi50. J. Biol. Chem., 272: 19 418−24
  17. Bu W, Su LK. (2003) Characterization of functional domains of human EB1 family proteins. J. Biol. Chem., 278: 49 721−31
  18. Burgess SA, Walker ML, Sakakibara H, Knight PJ, Oiwa K. (2003) Dynein structure and power stroke. Nature, 421: 715−718.
  19. Burgess SA, Walker ML, Sakakibara H, Oiwa K, Knight PJ: The structure of dynein-c by negative stain electron microscopy. J Struct Biol (2004), 272: 198−211.
  20. J., Echeverri C., Nilsson Π’., Valee B. (1997) Overexpression of the Dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol., 139: 469−84.
  21. Cantalupo G, Alifano P, Roberti V, Bruni CB, Bucci C. (2001) Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBOJ., 20: 683- 93
  22. Centonze V.E. and Borisy G.G. (1990) Nucleation of microtubules from mitotic centrosomes is modulated by a phosphorylated epitope. J. Cell Sci, 95: 405−411
  23. Cau J., Faure S., Comps M., Delsert C. and Morin N. (2001) A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol, 155(6): 1029−42
  24. Chadee D.N., Yuasa T. and Kyriakis J.M. (2002) Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol Cell Biol, 22: 737−49
  25. Chang L. and Karin M. (2001) Mammalian MAP kinase signalling cascades. Nature, 410: 37−40
  26. Cheung P., Zhang Y., Long J., Lin S., Zhang M., Jiang Y., and Wu Z. (2004) pl50Glued, Dynein, and Microtubules Are Specifically Required for Activation of MKK3/6 and p38 MAPKs J. Biol Chem, 279(44): 45 308−45 311
  27. Chung C.Y. and Firtel R.A. (1999) PAKa, a putative РАК family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J Cell Biol, 147: 559−76.
  28. S.W., Meyer D.I. (1992). Centractin is an actin homologue associated with the centrosome. Nature, 359: 246−50
  29. Corcoran L.J., Mitchison T.J., Liu Q. (2004) A novel action of histone deacetylase inhibitors in a protein aggresome disease model. Curr. Biol., 12: 488−92
  30. Creasy C.L., Ambrose D.M. and Chernoff J. (1996) The Ste20-like protein kinase, Mstl, dimerizes and contains an inhibitory domain. J BiolChem, 271:21 049−53.
  31. Criswell, P. S. and Asai, D.J. (1998) Evidence for four cytoplasmic dynein heavy chain isoforms in rat testis. Mol. Biol. Cell. 9: 237−247.
  32. E., Rodionov V., Mogilner A. (2004) Computational model of dynein-dependent self-organization of microtubule asters. J. Cell Sci., 117(8): 1381−97.
  33. Dan I., Watanabe N.M. and Kusumi A. (2001) The Ste20 group kinases as regulators of MAP kinase cascades. Trend Cell Biol, 116 220−30.
  34. De Brabander M, Nuydens R, Geerts H, Hopkins CR. (1988) Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil. Cytoskelet., 9: 307
  35. Deacon SW, Serpinskaya AS, Vaughan PS, Lopez FanarragaM, Vernos I, (2003) Dynactin is required for bidirectional organelle transport. J. Cell Biol., 160:297−301
  36. Diaz-Nido J. and Avila J. (1989) Characterization of proteins immunologically related to brain microtubule-associated protein MAP-IB in non-neural cells. J. Cell Sci., 92: 607−620.
  37. Dick, Π’., Ray, K., Salz, H.K., and Chia, W. (1996) Cytoplasmic dynein (ddlcl) mutations cause morphogenetic defects and apoptoticcell death in Drosophila melanogaster. Mol. Cell Biol. 16: 19 661 977.
  38. J., Zimmerman W. (1998) Pericentrin and D—tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol., 141(1): 163−174.
  39. Diener K., Wang X.S., Chen C., Meyer C.F., Keesler G., Zukowski M., Tan Π’.Н. and Yao Z. (1997) Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc Natl Acad Sci USA, 94: 9687−92.
  40. Dominguez J.E., Buendia Π’., Lopez-Otin C., Antony C., Karsenti E., Avila J. (1994) A protein related to brain microtubule-associated protein MAP IB is a component of the mammalian centrosome. J. Cell Sci., 107(2): 601−11.
  41. Dohner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, (2002) Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell, 13: 2795−809.
  42. D.L., Barnhart L.E., Stehman S.A., Gomes E.R., Gundersen G.G. (2003) A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol., 163:1205−11.
  43. D.L., Vallee R.B. (2002) Dynein at the cortex. Curr. Opin. Cell Biol., 14: 4449.
  44. J.E., Warrior R. (2002) The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Curr. Biol, 12: 1982−91.
  45. Ebneth A., Godemann R., Stamer K., Illenberger S., Trinczek B.1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum— implications for Alzheimers-disease. J. Cell Biol, 143:777−94
  46. C., Paschal Π’., Vaughan K., Vallee R. (1996) Molecular characterization of 50kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol, 132: 617−633
  47. C.J., Vallee R.B. (1996) Domain analysis of dynamitin, the 50 kD subunit of dynactin.M?/. Biol Cell, 7: 404a (Abst.)
  48. Eckley D. M, Gill S. R, Melkonian K.A., Bingham J.B., Goodson H.V., 1999) Analysis of dynactin subcomplexes reveals a novel actin-related protein associated with the Arpl filament pointed end. J. Cell Biol, 147: 307−19
  49. D.M., Schroer T.A. (2003) Interactions between the evolutionarily conserved, actin-related protein, Arpll, actin, and Arpl. Mol. Biol Cel, l 14: 2645−54
  50. Ellinger-Ziegelbauer H., Karasuyama H., Yamada E., Tsujikawa K., Todokoro K. and Nishida E. (2000) Ste20-like kinase (SLK), a regulatory kinase for polo-like kinase (Plk) during the G2/M transition in somatic cells. Genes Cells, 5(6): 491−8.
  51. Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A, (1997) Huntingtin-associated protein 1 (HAP1) interacts with the pl50Glued subunit of dynactin. Hum.Mol. Genet., 6: 2205−12
  52. Fashori and Holzbaur (1997)
  53. Faulkner N.E., D.L. Dujardin, C.Y. Tai, K.T. Vaughan, C.B. O’Connell, Y. Wang, R.B. Vallee, (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function, Nat. Cell. Biol., 2: 784−791.
  54. J., Marshall W. (2004) Centrioles: bad to be bald? Curr. Biol., 14(16): R659−60
  55. Felix M.A., Antony C., Wright M. and Maro B. (1994) Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation. J. Cell Biol., 124: 19−31
  56. Friesen H., Lunz R., Doyle S. and Segall J. (1994) Mutation of SPS-encoded protein kinase of Sacharimyces cerevisiae lead to defects in transcription and morphology during spore firmatioa Genes Dev, 8: 2162−75.
  57. Π’., Dionne M., Compton D. (1997) Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J. Cell Biol, 138 (5): 055−66.
  58. Π’., Saredi J. (1996) Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J. Cell Biol., 135:399114.
  59. Garces JA, Clark IB, Meyer DI, Vallee RB. (1999) Interaction of the p62 subunit of dynactin with Arpl and the cortical actin cytoskeleton. Curr. Biol., 9: 1497−500.
  60. Garcia-Mata R, Gao YS, Sztul E. (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic, 3: 388−96
  61. Gee MA, Heuser JE, Vallee RB. (1997) An extended microtubule-binding structure within the dynein motor dom&m.Nature, 390:636 639.
  62. Geiser JR, Schott EJ, Kingsbury TJ, Cole NB, Totis LJ. (1997) Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol. Biol. Cell, 8: 1035−50
  63. Gergely F., Karlsson C., Still I., Cowell J., Kilmartin J. and Raff J. W. (2000) The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl. Acad. Sci. USA., 97: 14 352−14 357
  64. Gibbons IR, Lee-Eiford A, Mocz G, Phillipson Π‘ A, Tang W-JY, Gibbons Π’Н. (1987) Photosensitized cleavage of dynein heavy chains: cleavage at the «VI site» by irradiation at 365 nm in the presence of ATP and vanadate. J Biol Chem 262:2780 -2786.
  65. Giet R., McLean D., Descamps S., Lee M.J., Raff J.W., Prigent C. and Glover D.M. (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol., 156:437−451.
  66. Gill, S.R., Cleveland, D.W., and Schroer, T.A. (1994) Characterization of DLC-A and DLC-B, two families of cytoplasmic dynein light chain subunits. Mol. Biol. Cell. 5: 645−654.
  67. Gill S.R., Schroer T.A., Szilak I, Steuer E.R., Sheetz M.P., and Cleveland D.W. (1991) Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol., 115: 1639−50
  68. Goto H., Tanabe K., Manser E., Lim L., Yasui Y. and Inagaki M. (2002) Phosphorylation and reorganization of vimentin by p21-activated kinase (РАК).Genes Cells, 7(2), 91−7.
  69. Habermann A, Schroer ВА, Griffiths G, Burkhardt JK. (2001) Immunolocalization of cytoplasmic dynein and dynactin subunits in cultured macrophages: enrichment on early endocytic organelles. J. Cell Sci., 114:22910
  70. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science, 300: 808−12
  71. E., Oegema K. (2002) The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is gamma-tubulin dependent. J. Cell Biol., 157 (4): 591−602, 2002.
  72. Hayashi I., l, Wilde A., Kumar Mai Π’., Ikura M. (2005) Structural Basis for the Activation of Microtubule Assembly by the EB1 and pl50Glued Complex. Molecular Cell, 19: 449−460
  73. R., Tournebize R., Blank Π’., Sandaltzopoulos R., Becker P., Hyman A., Karsenti E. (1996)Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature, 382(6590): 420−5
  74. Helfand Π’Π’, Chang L, Goldman RD. (2004) Intermediate filaments are dynamic and motile elements of cellular architecture. J. Cell Sci., 117: 133−41
  75. Helfand Π’Π’, Loomis P, Yoon M, Goldman RD. (2003) Rapid transport of neural intermediate filament protein. J. Cell Sci., 116: 2345−5
  76. Helfand Π’Π’, Mikami A, Vallee RB, Goldman RD. (2002) A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J. Cell Biol., 157: 795 806
  77. , I. (1995) MAP kinase pathway in yeast: for mating and more. Cell, 80: 187−97.
  78. N. (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 279: 519−27.
  79. E.A., Karki S., Holzbaur E.L. (1998). The role of the dynactin complex in intracellular motility. Int. Rev. Cytol., 182: 69 109
  80. E.A., Ligon L.A., Tokito M., Stankewich M.C., Morrow J.S. (2001). Beta III spectrin binds to the Arpl subunit of dynactin. J. Biol.Chem., 276: 36 598−605
  81. Holleran E.A., Tokito M.K., Karki S., Holzbaur E.L.F. (1996). Centractin (Arpl) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J. Cell Biol., 135:1815−29
  82. Holzbaur E. L, Hammarback J.A., Paschal B.M., Kravit N.G., Pfister K.K., Vallee R.B. (1991) Homology of a 150K cytoplasmic dyneinassociated polypeptide with the Drosophila gene Glued, Nature (Lond.), 351: 579−583 .
  83. Hoogenraad C.C., P. Wulf, N. Schiefermeier, T. Stepanova, N. Galjart, J.V. Small, F. Grosveld, C.I. de Zeeuw, A. Akhmanova (2003) Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport, EMBO J., 22: 6004−6015.
  84. Hu, M.C., Qiu, W.R., Wang, X., Meyer, C.F. and Tan, Π’.Н. (1996) Human HPK1, a novel human hematopoietic progenitor kinase that actives the JNK/SAPK kinase cascade. Genes Dev, 10: 2251−64
  85. Hughes, S.M., Vaughan, K.T., Herskovits, J.S., and Vallee, R.B. (1995) Molecular analysis of a cytoplasmic dynein light intermediate chain reveals homology to a family of ATPases. J. Cell Sci. 108: 17−2
  86. Jang J., Ma S., Terada Y., and Erikson R. (2002) Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase. J. Biol. Chem., 277(46): 44 115−44 120
  87. Januschke J, Gervais L, Dass S, Kaltschmidt JA, Lopez-Schier H (2002) Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Curr. Biol., 12: 1971−81
  88. Jin T, Yue L, Li J. (2001) In vivo interaction between dynamitin and MacMARCKS detected by the fluorescent resonance energy transfer method. J. Biol. Chem., 276: 12 879−84
  89. Johnston JA, Illing ME, Kopito RR. (2002) Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskelet., 53: 26−38
  90. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol., 11: 1680−95
  91. Joshi H., Palacios M., McNamara L., Cleveland D. (1992) Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature, 356, 80−83
  92. Itoh, S., Kameda, Y., Yamada, E., Tsujikawa, K., Mimura, T. and Kohama, Y. (1997) Molecular cloning and characterization of a novel putative STE20-like kinase in guinea pigs. Arch Biochem Biophys, 340: 201−7.
  93. Karki S, Holzbaur E. (1995) Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem., 270: 28 806−11 b
  94. Karki, S. and Holzbaur, E.L.F. (1999) Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11:45−53.
  95. Karki S, LaMonte B, Holzbaur ELF. (1998) Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells. J. Cell Biol., 142:1023−34
  96. Karki S, Tokito MK, Holzbaur EL. (2000) A dynactin subunit with a highly conserved cysteine-rich motif interacts directly with Arpl. J. Biol Chem., 275: 4834−39
  97. Π’.J., Borisy G.G. (2000) Immunostructural evidence for the template mechanism of microtubule nucleation. Nat Cell Biol., 2(6), 352−357
  98. Kelm, O., Wind, M., Lehmann, W.D. and Nigg EA. (2002) Cell cycle-regulated phosphorylation of the Xenopus Polo-like kinase Plxl. J Biol Chem, 227 (28): 25 247−25 256
  99. Kennelly, P.J. and Krebs, E.G. (1991) Consensus sequencas as substrate specificity determinants for protein kinases and protein phosphotases. J Biol Chem, 266: 1555−8.
  100. A., Cole R., Oakley Π’., Rieder C. (2000) Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol., 10(2): 59−67
  101. King, S.M., Barbarese, E., Dillman, III, J.F., Patel-King, R.S., Carson, J.H., and Pfister, K.K. (1996a) Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J. Biol. Chem. 271: 19 358−19 366.
  102. King, S.M., Dillman III, J.F., Benashski, S.E., Lye, R.J., Patel-King, R.S., and Pfister, K.K. (1996b) The mouse t-complex-encoded protein Tctex-1 is a light chain of brain cytoplasmic dynein. J. Biol. Chem. 271:32 281−32 287.
  103. King, S.M., and Patel-King, R.S. (1995) The M® 8,000 and 11,000 outer arm dynein light chains from Chlamydomonas flagella have cytoplasmic homologues. J. Biol. Chem. 270: 11 445−11 452.
  104. , S. M. (2000). The dynein molecular motor. Biochim. Biophys. Acta differentially expressed light chains. Biochemistry 37: 15 033−15 041.
  105. King S., Brown C., Kerstin C., Quintyne N., Schroer T.(2003) Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol Biol of the Cell, 14: 5089−97.
  106. King, S. M., Haley, Π’. E. and Witman, G. B. (1989). Structure of the a. and b. heavy chains of the outer arm dynein from Chlamydomonas flagella. Nucleotide binding sites. J. Biol. Chem. 264, 10 210−10 218.
  107. King SJ, Schroer Π’А. (2000) Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol., 2: 2024
  108. Kiosses, W.B., Daniels, R.H., Otey, C., Bokoch, G.M. and Schwartz, M.A. (1999) A role for p21-activated kinase in endothelial cell migration. J Cell Bio, 147(4): 831−44.
  109. Kloc M, Zearfoss NR, Etkin LD. (2002). Mechanisms of subcellular mRNA localization. Cell, 108: 533−44
  110. , M. P. (1997). Identification of a microtubule-binding domain in a cytoplasmic dynein heavy chain. J. Biol. Chem. 272, 19 714−19 718.
  111. Koonce, M. P. and Tikhonenko, I. (2000). Functional elements within the dynein microtubule-binding domain. Mol. Biol. Cell 11, 523−529.
  112. R. (2003). The missing linker: an unexpected role for a histone deacetylase. Mol. Cell 12:1349−51
  113. Kuhle V, Jackel D, Hensel M. (2004) Effector proteins encoded by Salmonella pathogenicity island 2 interfere with the microtubule cytoskeleton after translocation into host cells. Traffic, 5: 356−70
  114. Kumar S, ZhouY, Plamann M. (2001) Dynactin membrane interaction is regulated by the C-terminal domains of pl50(Glued). EMBORep., 2: 9394
  115. Kuramochi, S., Moriguchi, Π’., Kuida, K., Endo, J., Semba, K., Nishida, E. and Karasuyama, H. (1997) LOK is novel mouse STE20-like protein that is expressed predominantly in lymphocytes. J Biol Chem, 272: 22 679−84.
  116. R. (1989) 225-Kilodalton phosphoprotein associated with mitotic centrosomes in sea urchin eggs. Cell Motil. Cytoskeleton., 12: 90−103.
  117. Kyhse-Andersen, J. (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of protein from polyacrylamide to nitrocellulose. JBiochem Biophys Methods, 1: 2039.
  118. , J.M. (1999) Signaling by the germinal center kinase family of protein kinases. J Biol Chem, 274: 5259−62.
  119. , U.K. (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature, 221: 680−5
  120. Lafont F, Burkhardt JK, Simons K. (1994) Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature, 372:801−3
  121. LaMonte BH, Wallace KE, Holloway BA. (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron- 34: 715−727
  122. Lane JD, Vergnolle MA, Woodman PG, Allan VJ. (2001). Apoptotic cleavage of cytoplasmic dynein intermediate chain andpl50(Glued) stops dynein-dependent membrane motility .J. Cell Biol., 153: 1415−26
  123. BM. (2002). Integration of the centrosome in cell cycle control, stress response and signal transduction pathways. Curr. Opin. Cell Biol., 14: 35−43
  124. Li S, Finley J, Liu ZJ, Qiu SH, Chen H, et al. (2002). Crystal structure of the cytoskeletonassociated protein (CAP-Gly) domain. J.Biol. Chem., 277: 48 596−601
  125. Li S., Gutekunst C., Hersch S.M., Li X. (1998) Interaction of Huntingtin-associated protein with dynactin pl50Glued. The Journal of Neuro science, 18(4), 1261−1269
  126. Liang Y, Yang Z, Yan X. (2004) Nudel functions in membrane traffic mainly through association with Lisl and cytoplasmic dynein. J. Cell Biol., 164: 557−66
  127. Ligon LA, Shelly SS, Tokito M, Holzbaur EL. (2003) The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol. Biol. Cell, 14: 1405−17
  128. Liu J., Mailer J. (2005) Xenopus Polo-like kinase Plxl: a multifunctional mitotic kinase. Oncogene, 24: 238−247
  129. Lo KW, Naisbitt S, Fan JS, Sheng M, Zhang M. (2001) The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif. J Biol Chem 276:14 059- 14 066.
  130. Ma S., Trivinos-Lagos L. (1999) Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organizationand centrosome replication and separation in Dictyostelium. J. Cell Biol., 147: 1261−73.
  131. MacDougall N, Clark A, MacDougall E, Davis I. (2003). Drosophila gurken (TGFalpha) mRNAlocalizes as particles thatmove within the oocyte in two dynein-dependent steps. Dev. Cell, 4: 307−19
  132. R., Gross S. (2004) Molecular motors:strategies to get along. Curr. Biol, 14: R971−82,
  133. V., Kashina A., Rodionov V. (2004) Cytoplasmic dynein nucleates microtubules to organize them into radial arrays in vivo. Mol Biol Cell., 15(6): 2742−9.
  134. Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T. (2002) Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat. Cell Biol., 4: 986−92
  135. Matteoni R, Kreis Π’Π•. (1987) Translocation and clustering of endosomes and lysosomes depends on microtubules. J. Cell Biol., 105: 1253−65
  136. Meraldi P. and Nigg E.A. (2002) The centrosome cycle. FEBS Lett., 521: 9−13.
  137. McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG. (2002) Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol., 159:441−52
  138. McGrail M., Gepner J. (1995) Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex. J. Cell Biol., 1316 411−25
  139. Mikami A, Tynan SH, Hama T, Luby-Phelps K, Saito T, Crandall JE, Besharse JC, Vallee RB. (2002) Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J Cell Sci 115:4801−4808.
  140. Мок YK, Lo KW, Zhang M. (2001) Structure of Tctex-1 and its interaction with cytoplasmic dynein intermediate chain. J Biol Chem 276:14 067−1407
  141. Mogensen M.M., Malik A., Piel M., Bouckson-Castaing V. and Bornens M. (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci., 113: 30 133 023
  142. M., Braunfeld M., Sedat J., Alberts Π’., Agar D. (1995) Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature, 378(6557): 638−40.
  143. Morris JA, Kandpal G, Ma L, Austin CP. (2003) DISCI (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAPI A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum. Mol. Genet., 12:1591−608
  144. C., Sedlmeier R., Meyer Π’., Homberg V., Sperfeld A.D., Kurt A., Prudlo J., Peraus G., Hanemann C.O., Stamm G., Ludolph A.C. (2004) Point mutations of the pl50 subunit of dynactin (DCTN1) gene in ALS. Neurology, 63: 724 726
  145. Muresan V, Stankewich MC, Steffen W, Morrow JS, Holzbaur EL. (2001) Dynactin-dependent, dynein-driven vesicle transport in theabsence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell, 7: 173−83
  146. Neer, E.J., Schmidt, C.J., Nambudripad, R., and Smith, T.F. (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297−300.
  147. Neuwald AF, Aravind L, Spouge JL, Koonin EV. (1999) AAA: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27−43
  148. O’Reilly P.G., Wagner S., Franks D., Cailliau K., Browaeys E., Dissous C., and Sabourin L. (2005) The Ste20-like Kinase SLK Is Required for Cell Cycle Progression through G2. J. Biol. Chem., 280 (51): 42 383−42 390
  149. Ogura T, Wilkinson AJ: (2001) AAAR superfamily ATPases: common structure-diverse function. Genes Cells, 6:575−597.
  150. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L. (2003) Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc. Natl. Acad. Sci. USA, 100: 289−94
  151. Parisi G, Fornasari M, Echave J. (2004). Dynactins p25 and p27 would be LbH proteins. FEBS Lett., 562:
  152. Paschal BM, Holzbaur ELF, Pfister KK, Clark S, Meyer DI. (1993) Characterization of a 50-kDa polypeptide in cytoplasmic dynein preparations reveals a complex with pl50Glued and a novel actin. J. Biol. Chem., 268: 15 318−23
  153. Paschal BM, Shpetner HS, Vallee RB. 1987. MAP 1Π‘ is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol 105:1273−1282.
  154. Paschal BM, Vallee RB. 1987. Retrograde transport by the microtubule associated protein MAP 1Π‘. Nature 330:181−183.
  155. Purohit A, Tynan SH, Vallee R, Doxsey SJ. 1999. Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J Cell Biol 147:481— 492.
  156. Pawson T, Scott JD. (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science, 278(5346): 2075−80
  157. Perez-Ferreiro C.M., Vernos I., Correas I. Protein 4.1R regulates interphase microtubule organization at the centrosome. J. Cell Sci. 2004. V.117. P.6197−6206.
  158. Pfister KK, Benashski SE, Dillman JF III, Patel-King RS, King SM. (1998) Identification and molecular characterization of the p24 dynactin light chain. Cell. Motil. Cytoskelet., 41: 154−67
  159. Pfister, K.K., M.W. Salata, J.F. Dillman III, E. Torre, and R.J. Lye. (1996a) Identification and developmental regulation of a neuron-specific subunit of cytoplasmic dynein. Mol. Biol. Cell. 7:331−343.
  160. Pombo C.M., Kehrl J.H., Sanchez L., Katz P., Avruch, Zon L.I., Woodgett J.R., Force T. and Kyriakis J.M. (1995) Activation of the МАРК pathway by the human STE20 homologue germinal centre kinase. Nature, 377: 750−4.
  161. Pombo C.M., Bonventre J.V., Molnar A., Kyriakis J. and Force T. (1996) Activation of a human Ste20-like kinase by oxidant stress defines a novel stress response pathway. EMBOJ, 15: 4537−46.
  162. Popov A.V., Severin F. and Karsenti E. (2002) XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr. Biol., 12: 1326−1330
  163. Presley JF, Zaal KJM, Schroer ВА, Cole NB, Lippincott-Schwartz J. ((1997) ER to Golgi transport visualized in living cells. Nature, 389: 81−85
  164. Puis I., Jonnakuty C., LaMonte B.H., Holzbaur E.L.F., Tokito M., Mann E., Floeter M.K., Bidus K., Drayna D., Oh S.J., Brown R.H., Ludlow C.H., Fischbeck K.H. (2003) Mutant dynactin in motor neuron disease. Nature genetics, 33: 455 456
  165. Puis I., Oh S.J., Sumner C.J., Wallace K.E., Floeter M.K., Mann E.A., Kennedy W.R., Wendelschafer-Crabb G., Vortmeyer A., Powers R., Finnegan K., Holzbaur E.L.F., Fischbeck K.H., Ludlow
  166. C.L. (2005) Distal spinal and bulbar atrophy caused by dynactin mutation. Ann Neurol, 57: 687 694
  167. Purchit A., Tynan S.H., Vallee R. and Doxsey S.J. (1999) Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J. Cell Biol., 147:481−491
  168. Qian Y.W., Erikson E. and Mailer J.L. (1998) Purification and cloning of a protein kinase that phosphorylates and activates the pololike kinase Plxl. Science, 282: 1701−4.
  169. N., Gill S., Schroer Π’. (1999) Dynactin is required for microtubule anchoring at fibroblast centrosomes. J. Cell Biol., 147: 321−34.
  170. N., Schroer T. (2002) Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J. Cell Biol., 159: 24 554.
  171. Rattner J.B. and Bazett-Jones D.P. (1988) Electron spectroscopic imaging of the centrosome in cells of the Indian muntjac. J. Cell Sci., 91:5−11
  172. Reinsch S, Karsenti E. (1997) Movement of nuclei along microtubules in Xenopus egg extracts. Curr. Biol., 7: 211−14
  173. Riehemann K, Sorg C. (1993) Sequence homologies between four cytoskeleton-associated proteins. Trends Biochem. Sci., 18: 82−83
  174. V., Borisy G. (1997) Self-centring activity of cytoplasm. Nature, 386(6621): 170−173.
  175. V., Nadezhdina E., Borisy G. (1999) Centrosomal control of microtubule dynamics. PNAS, 966: 115−120
  176. Sakato M, King SM: (2004) Design and regulation of the AAAR microtubule motor dynein. J Struct Biol
  177. Sabourin, L.A. and Rudnichi, M.A. (1999) Induction of apoptosis by SLK, a Ste20-related kinase. Oncogene, 18: 7566−75.
  178. Sabourin, L.A., Tamai, K., Seale, P., Wagner, J. and Rudnichi, M.A. (2000) Caspase3 cleavage of the Ste20-related kinase SLK release and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Mol Cell Biol, 20: 684−96.
  179. Salina D, Bodoor K, Eckley DM, Schroer ВА, Rattner JB. (2002) Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell, 108: 97−107
  180. J. (2003) Centrosomes: coiled-coil organize the cell center. Curr. Biol., 13: R88−90.
  181. Samso M, Radermacher M, Frank J, Koonce MP. (1998) Structural characterization of a dynein motor domain. J Mol Biol 276:927−937.
  182. Schafer DA, Gill SR, Cooper JA, Heuser JE, Schroer Π’А. (1994a). Ultrastructural analysis of the dynactin complex: An actin-related protein is a component of a filament that resembles F-actin. J. Cell Biol., 126:403−12
  183. Schafer DA, Korshunova YO, Schroer ВА, Cooper JA. (1994b) Differential localization and sequence analysis of capping protein /?-subunit isoforms of vertebrates. J. Cell Biol., 127: 453−65
  184. Scheich C, Niesen FH, Seckler R, Bussow K. (2004) An automated in vitro protein folding screen applied to a human dynactin subunit./Vo/Сш Sci., 13: 370−80
  185. Schnapp BJ, Reese TS. (1989) Dynein is the motor for retrograde axonal transport of organelles. Proc. Natl. Acad. Sci. USA, 86:1548−52
  186. Schrader M, King SJ, Stroh ВА, Schroer Π’А. (2000) Real time imaging reveals a peroxisomal reticulum in living cells. J. Cell Sci., 113:3663−71
  187. , T.A. 1996. Structure and function of dynactin. Semin. Cell Devel. Biol. l: 321−328.
  188. , T.A. (2001). Microtubules don and doff their caps: dynamic attachments at plus and minus ends. Curr. Opin. Cell Biol., 13, 92−96.
  189. T. (2004) Dynactin. Annu. Rev. Cell Biol., 20: 159−79.
  190. Π’., Sheetz M. (1991) Two activators of microtubule-based vesicle transport J. Cell Biol., 115: 1309−18.
  191. Schuyler SC, Pellman D. (2001) Microtubule «plus-end-tracking proteins»: The end is just the beginning. Cell, 105:421−24
  192. , J.R. 2000. Myosins: A diverse superfamily. Biochim. Biophys. Acta. 1496: 3−22.
  193. Shiroguchi, K., and Toyoshima, Y.Y. (2001). Regulation of monomeric dynein activity by ATP and ADP concentrations. Cell Motil. Cytoskel. 49, 189−19
  194. Π’., Π‘. Preisinger, J. Schaletzky, R. Kopajtich, F.A. Barr, (2002) The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes, Curr. Biol., 12: 1792- 1795
  195. Silvanovich A, Li MG, Serr M, Mische S, Hays TS: (2003)The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol Biol Cell, 14:1355−1365.
  196. Smith GA, Enquist LW. (2002). Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells. Annu. Rev. Cell Dev. Biol, 18:135−61
  197. Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E., and
  198. , P.B. (1996) Crystal structure of a GA proteindimer at 2.1angstrom resolution. Nature 379: 369−374.
  199. Y., Mandelkow E. (1993) Recombinant kinesin motor domain binds to beta-tubulin and ddecorates microtubules with, Π° Π’ surface lattice. PNAS, 90 (5): 1671−5
  200. Starr DA, Williams Π’Π‘, Hays TS, Goldberg ML. (1998) ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol, 142: 763−74
  201. Su, Y.C., Han, J., Xu, S., Cobb, M. and Skolnik, Π•.Π£. (1997) NIK is a new Ste20-related kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved regulatory domain. EMBOJ, 16: 1279−90.
  202. Suomalainen M, NakanoMY, Keller S, ВойскС K, Stidwill RP. (1999) Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J. Cell Biol, 144: 657−72
  203. Susalka SJ, Hancock WO, Pfister KK. (2000) Distinct cytoplasmic dynein complexes are transported by different Dynein: An Ancient Motor Protein 199 mechanisms in axons. Biochim Biophys Acta 1496:76−88.
  204. Swaroop A, Swaroop M, Garen A. (1987). Sequence analysis of the complete cDNA and encoded polypeptide for the glued gene of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 84: 6501−5
  205. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH. (1999)Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97:877- 887.
  206. Tai AW, Chuang JZ, Sung CH. 2001. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol 153:1499−1509.
  207. Tokito MK, Holzbaur EL. (1998) The genomic structure of DCTN1, a candidate gene for limb-girdle muscular dystrophy (LGMD2B). Biochim. Biophys. Acta, 1442: 432−36
  208. Tokito MK, Howland DS, Lee VM-Y, Holzbaur ELF. (1996) Functionally distinct isoforms of dynactin are expressed in human neurons. Mol. Biol. Cell, 7: 1167−80
  209. Tynan SH, Gee MA, Vallee RB. (2000a) Distinct but overlapping sites within the cytoplasmic dynein heavy chain fordimerization and for intermediate chain and light intermediate chain binding. J Biol Chem 275:32 769- 32 774.
  210. Tynan SH, Purohit A, Doxsey SJ, Vallee RB. (2000b) Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin. J Biol Chem 275:32 763−32 768.
  211. Vaisberg EA, Grissom PM, Mcintosh JR. (1996) Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 133:831- 842.
  212. Vallee RB, Wall JS, Paschal BM, Shpetner HS. (1988) Microtubule-associated protein 1Π‘ from brain is a two headed cytosolic dynein. Nature 332:561−563.
  213. Vale, R.D. and Milligan, R.A. (2000) The way things move: Looking under the hood of molecular motor proteins. Science 288: 88−95.
  214. R.B., Williams J.C., Varma D. (2004) Dynein: An ancient motor protein involved in multiple modes of transport. // J. Neurobiol. 58: 189−200
  215. Valetti C, Wetzel DM, Schrader M, Hasbani MJ, Gill SR. (1999) Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell, 10: 4107−20
  216. Vandre D.D., Feng Y. and Ding M. (2000) Cell cycle-dependent phosphorylation of centrosomes: localization of phosphopeptide specific antibodies to the centrosome. Microsc. Res. Tech., 49: 458−466.
  217. К. T. (2005) Microtubule plus ends, motors, and traffic of Golgi membranes. Biochimica et Biophysica Acta, 1744: 316−324
  218. P., Miura P., Henderson M., Byrne Π’., Vaughan K. (2002) A role for regulated binding of pl50(Glued) to microtubule plus ends in organelle transport. J. Cell Biol., 158: 305−1.
  219. Vaughan KT, Tynan SH, Faulkner NE, Echeverri CJ, Vallee RB. (1999) Colocalization of cytoplasmic dynein with dynactin and CLIP- 170 at microtubule distal ends. J. Cell Sci., 112: 1437−47
  220. Vaughan KT, Vallee RB. (1995) Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p 150Glued. J. Cell Biol. 131:1507−16.
  221. I., Malikov V., Rodionov V. (2001) Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules. PNAS, 98 (18): 10 160−5.
  222. Wagner S., Flood Π’., O’Reilly P., Sabourin L. (2002) Association of the Ste20-like kinase (SLK) with the microtubule. J. of Biol. Chem., 277 (40): 37 685−37 692.
  223. Wall, M.A., Coleman, D.E., Lee, E., Iniguez-Lluhi, J.A., Posner, B.A., Gilman, A.G., and Sprang, S.R. 1995. The structure of the G protein heterotrimer Gill2. Cell 83: 1047−1058.
  224. Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R. (1998). A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol., 8: 90 313
  225. Wang L, Ho CL, Sun D, Liem RK, Brown A. 2000. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol., 2: 137−41
  226. Wang Y, Jerdeva G, Yarber FA, da Costa SR, Xie J, et al. 2003. Cytoplasmic dynein participates in apically targeted stimulated secretory traffic in primary rabbit lacrimal acinar epithelial cells. J. Cell Sci., 116:2051−65
  227. Wang Z., Khan, S., Sheetz, M.P. (1995) Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys, 69: 2011−2023
  228. Waterman-Storer C., Karki S., Holzbaur E. (1995) The pl50Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). PNAS, 92: 1634−38.
  229. Waterman-Storer C., Salmon E. (1997) Microtubule dynamics: treadmilling comes around again. Curr. Biol., 7(6): R369−72
  230. Watson P., R. Forster, K.J. Palmer, R. Pepperkok, D.J. Stephens (2005) Coupling of ER exit to microtubules through direct interaction of COPII with dynactin, Nat. Cell Biol., 7: 48- 55.
  231. Wiemer EA, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S. 1997. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J. Cell Biol., 136: 71−80
  232. G.S., Davis I. 2001. Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell, 105: 209−19
  233. Wilson, K.L., Zastrow, M.S., and Lee, K.K. (2001). Lamins and dis- ease: insights into nuclear infrastructure. Cell 104, 647−650
  234. Π’., Hyman A. (1999) Recombinant p50/dynamitin as a tool to examine the role of dynactin in intracellular processes. San Diego: Academic Press, 137—143.
  235. Xiang X, Plamann M. 2003. Cytoskeleton and motor proteins in filamentous fungi. Curr. Opin. Microbiol., 6: 628−33
  236. Yamada, E., Tsujikawa, K., Itoh, S., Kameda, Y., Kohama, Y. and Yamamoto, H. (2000) Molecular cloning and characterization of a novel human STE20-like kinase, hSLK. Biochim Biophys Act, 1495: 250−62.
  237. Yamamoto A, Hiraoka Y. 2003. Cytoplasmic dynein in fungi: insights from nuclear migration. J. Cell ScL, 116: 4501−12
  238. Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ. 2000. Cytoplasmic dyneinmediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol. Biol. Cell, 11: 2047−56
  239. Young MR, D’Arcy Hart P. 1986. Movements and other distinguishing features of small vesicles identified by darkfield microscopy in living macrophages. Exp. Cell Res., 164: 199−210
  240. Yustein, J.T., Li, D., Robinson, D. and Kung, H3. (2000) KFC, a Ste20-like kinase with mitogenic potential and capability to activate the SAPK/JNK pathway. Oncogene, 19: 710−8
  241. Zhang, J., G. Han, and X. Xiang. 2002. Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Mol. Microbiol. 44:381−392.
  242. Y., Wong M., Alberts Π’., Mitchison T. (1995) Nueleation of microtubule assembly by a gamma-tubulin-contaning ring complex. Nature, 378: 578−83.
  243. ZimmermanW, Doxsey SJ. (2000) Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles. Traffic, 1: 927−34
  244. Zinovkina, L.A., Poltaraus, A.B., Solovyanova, O.B. and Nadezhdina, E.S. (1997) Chinese hamster protein homologous to human putative protein kinase KIAA0204 is associated with nuclei, microtubules and centrosomes in CHO-K1 cells. FEBS Lett, 414: 1359Π©
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ