Биодеградация 2, 4, 6-тринитротолуола клетками дрожжей Yarrowia lipolytica в присутствии ферригидрита и в условиях полунепрерывного режима культивирования
Диссертация
Научная новизна. В настоящей работе показано, что присутствие железосодержащего минерала ферригидрита в среде роста ведет к незначительному снижению скорости трансформации ТНТ штаммом дрожжей У. Иро1уйса А1Ч-Ы5. Однако восстановление ароматического кольца ТНТ с одновременным образованием ТНТ-гидридных комплексов также протекает, как и в системах в отсутствие ферригидрита. Образование гидридных… Читать ещё >
Список литературы
- Зарипов, С.А. Начальные этапы трансформации 2,4,6-тринитротолуола микроорганизмами / С. А. Зарипов, А. В. Наумов, Е. С. Суворова, А. В. Гарусов, Р. П. Наумова // Микробиология. 2004. — Т. 73. — С. 472−478.
- Науменко, Е.А. Участие кислорода в бактериальной трансформации 2,4,6-тринитротолуола / Е. А. Науменко, А. В. Наумов, Е. С. Суворова, Р. Герлах, A.M. Зиганшин, А. П. Ложкин, Н. И. Силкин, Р. П. Наумова // Биохимия. 2008. — Т. 73. — С. 568−575.
- Селивановская, С.Ю. Способ биологической очистки сточных вод / С. Ю. Селивановская, Р. П. Наумова, Н. И. Куликов // Авторское свидетельство РФ № 1 471 493, приоритет от 08.12.1986.
- Чухров, Ф.В. Климатические факторы и образование окислов железа в зоне гипергенеза / Ф. В. Чухров // Гипергенные окислы железа в геологических процессах. М.: Наука, 1975. — С. 141−155.
- Agrawal, A. Reduction of nitro-aromatic compounds by zero-valent iron metal / A. Agrawal, P.G. Tratnyek // Environ. Sci. Technol. 1996. — V. 30 -P. 153−160.
- Amezcua-Allieri, M.A. Impact of microbial activity on copper, lead and nickel mobilization during the bioremediation of soil PAHs / M.A. Amezcua-Allieri, J.R. Lead, R. Rodriguez-Vazquez // Chemosphere. 2005. — V. 61. -P. 484−491.
- Anastassiadis, S. Citric acid production by Candida strains under intracellular nitrogen limitation / S. Anastassiadis, A. Aivasidis, C. Wandrey // Appl. Microbiol. Biotechnol. 2002. — V. 60. — P. 81−87.
- Ayoub, K. Application of advanced oxidation processes for TNT removal: a review / K. Ayoub, E.D. van Hullebusch, M. Cassir, A. Bermond // J. Hazard. Mater.-2010.-V. 178.-P. 10−28.
- Beckman, J.S. The physiological and pathophysiological chemistry of nitric oxide / J.S. Beckman // In J. Lancaster (ed.), Nitric oxide: principles and actions. Academic Press, San Diego, 1996. — P. 1−82.
- Bellinaso, M.D.L. Biodegradation as a biotechnological model for the teaching of biochemistry / M.D.L. Bellinaso, J.A.P. Henriques, C.C. Gaylarde // World J. Microbiol. Biotechnol. 2002. — V. 18. — P. 385−390.
- Berthe-Corti, L. Cytotoxicity and mutagenicity of a 2,4,6-trinitrotoluene (TNT) and hexogen contaminated soil in S. typhimurium and mammalian cells / L. Berthe-Corti, H. Jacobi, S. Kleihauer, I. Witte // Chemosphere. 1998. -V. 37.-P. 209−218.
- Bhattacharya, A. One-step reductive amidation of nitro arenes: application to the synthesis of Acetaminophen / A. Bhattacharya, V.C. Purohit, V. Suarez, R. Tichkule, G. Parmer, F. Rinaldi // Tetrahedron Lett. 2006. — V. 47. — P. 1861−1864.
- Boopathy, R. Trinitrotoluene (TNT) as a sole nitrogen source for a sulfatereducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic102digester / R. Boopathy, C.F. Kulpa // Curr. Microbiol. 1992. — V. 25. — P. 235−241.
- Boparai, H.K. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous Fe (II) solutions / H.K. Boparai, S.D. Comfort, T. Satapanajaru, J.E. Szecsody, P.R. Grossl, P.J. Shea // Chemosphere. 2010. — V. 79 — P. 865−872.
- Boparai, H.K. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments / H.K. Boparai, S.D. Comfort, P.J. Shea, J.E. Szecsody // Chemosphere. 2008. — V. 71. — P. 933 941.
- Brown, W.H. Introduction to Organic Chemistry, 2nd ed. / W.H. Brown. -Harcourt Brace College Publishers, 1999.
- Burkhardt, C. Impact of heavy metals on the degradative capabilities of soil bacterial communities / C. Burkhardt, H. Insam, T.C. Hutchinson, H.H. Reber //Biol. Fertil. Soils.-1993.-V. 16.-P. 154−156.
- Burns, J.M. Multivariate examination of Fe (II)/Fe (III) cycling and consequent hydroxyl radical generation / J.M. Burns, P. S. Craig, T.J. Shaw, J.L. Feny // Environ. Sci. Technol. -2010. -V. 44. P. 7226−7231.
- Caballero, A. PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11 / A. Caballero, J.J. Lazaro, J.L. Ramos, A. Esteve-Nunez // Environ. Microbiol. 2005. — V. 7 — P. 12 111 219.
- Cai, Q. Stability of nitrite in wastewater and its determination by ion chromatography / Q. Cai, W. Zhang, Z. Yang // Anal. Sci. 2001. — V. 17. -P.917−920.
- Carlson, L. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues / L. Carlson, J.M. Bigham, U. Schwertmann, A. Kyek, F. Wagner // Environ. Sci. Technol. -2002. V. 36. — P. 1712−1719.
- Chasteen, N.D. Mineralization in ferritin: an efficient means of iron storage / N.D. Chasteen, P.M. Harrison // J. Struct. Biol. 1999. — V. 126. — P. 182 194.
- Coby, A.J. Inhibition of N03~ and N02~ reduction by microbial Fe (III) reduction: evidence of a reaction between N02~ and cell surface bound Fe2+ / A.J. Coby, F.W. Picardal // Appl. Environ. Microbiol. 2005. — V. 71. — P. 5267−5274.
- Cooper, D.C. Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200 / D.C. Cooper, F. Picardal, J. Rivera, C. Talbot // Environ. Sci. Technol. 2000. — V. 34. — P. 100−106.
- Cornell, R.M. The iron oxides: structure, properties, reactions, occurrences and uses / R.M. Cornell, U. Schwertmann. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2003. — 703 p.
- Crawford, R.L. The microbiology and treatment of nitroaromatic compounds / R.L. Crawford // Curr. Opin. Biotechnol. 1995. — V. 6. — P. 329−336.
- Cudennec, Y. The transformation of ferrihydrite into goethite or hematite, revisited / Y. Cudennec, A. Lecerf// J. Solid State Chem. 2006. — V. 179 -P. 716−722.
- Dalgren, K.E. Anaerobic bioremediation of a soil with mixed contaminants: explosives degradation and influence on heavy metal distribution, monitored as changes in concentration and toxicity / K.E. Dalgren, S. Waara, A. Diiker,
- T. von Kronhelm, P.A.W. van Hees // Water Air Soil Pollut. 2009. — V. 202. -P. 301−313.
- Donlon, B.A. Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors / B.A. Donlon, E. Razo-Flores, G. Lettinga, J.A. Field // Biotechnol. Bioeng. 1996. -V. 51.-P. 439−449.
- Duque, E. Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene / E. Duque, A. Haidour, F. Godoy, J.L. Ramos // J. Bacteriol. 1993. — V. 175. — P. 2278−2283.
- Eilers, A. Metabolism of 2,4,6-trinitrotoluene by the white-rot fungus Bjerkandera adusta DSM 3375 depends on cytochrome P-450 / A. Eilers, E. Riingeling, U.M. Stiindl, G. Gottschalk // Appl. Microbiol. Biotechnol. -1999.-V. 53.-P. 75−80.
- Eriksson, J. Binding of 2,4,6-trinitrotoluene, aniline, and nitrobenzene to dissolved and particulate soil organic matter / J. Eriksson, S. Frankki, A. Shchukarev, U. Skyllberg // Environ. Sci. Technol. 2004. — V. 38. — P. 3074−3080.
- Esteve-Nunez, A. Biological degradation of 2,4,6-trinitrotoluene / A. Esteve-Nunez, A. Caballero, J.L. Ramos // Microbiol. Mol. Biol. Rev. 2001. — V. 65.-P. 335−352.
- Esteve-Nunez, A. Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11 / A. Esteve-Nunez, G. Luchessi, B. Philipp, B. Schink, J.L. Ramos//J. Bacteriol. 2000. — V. 182.-P. 1352−1355.
- Eyers, L. Denitration of 2,4,6-trinitrotoluene by Pseudomonas aeruginosa ESA-5 in the presence of ferrihydrite / L. Eyers, B. Stenuit, S.N. Agathos // Appl. Microbiol. Biotechnol. 2008. — V. 79 — P. 489−497.
- Finogenova, T.V. Organic acid production by the yeast Yarrowia lipolytica: a review of prospects / T.V. Finogenova, I.G. Morgunov, S.V. Kamzolova, O.G. Chernyavskaya // Appl. Biochem. Microbiol. 2005. — V. 41. — P. 418— 425.
- Fletcher, J.H. The synthesis of parathion and some closely related compounds / J.H. Fletcher, J.C. Hamilton, I. Hechenbleikner, E.I. Hoegberg, B.J. Sertl, J.T. Cassaday // J. Am. Chem. Soc. 1950. — V. 72. — P. 2461−2464.
- Fredrickson, J.K. Biotransformation of Ni-substituted hydrous ferric oxide by an Fe (III)-reducing bacterium / J.K. Fredrickson, J.M. Zachara, R.K. Kukkadapu, Y.A. Gorby, S.C. Smith, C.F. Brown // Environ. Sci. Technol. -2001.-V. 35.-P. 703−712.
- French, C.E. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase / C.E. French, S. Nicklin, N.C. Bruce // Appl. Environ. Microbiol. 1998. — V. 64. — P. 28 642 868.
- Frische, T. Screening for soil toxicity and mutagenicity using luminescent bacteria a case study of the explosive 2,4,6-trinitrotoluene (TNT) / T. Frische //Ecotoxicol. Environ. Saf. — 2002. — V. 51. — P. 133−144.
- Fujii, H. Ex vivo EPR detection of nitric oxide in brain tissue / H. Fujii, L.J. Berliner // Magn. Reson. Med. 1999. — V. 42 — P. 599−602.
- Fujii, M. Superoxide-mediated dissolution of amorphous ferric oxyhydroxide in seawater / M. Fujii, A.L. Rose, T.D. Waite, T. Omura // Environ. Sci. Technol. 2006. — V. 40. — P. 880−887.
- Funk, S.B. Initial-phase optimization for bioremediation of munition compound-contaminated soil / S.B. Funk, D.J. Roberts, D.L. Crawford, R.L. Crawford // Appl. Environ. Microbiol. 1993. — V. 59. — P. 2171−2177.
- Galleano, M. Nitric oxide and iron overload. Limitations of ESR detection by DETC / M. Galleano, L. Aimo, M.V. Borroni, S. Puntarulo // Toxicol. 2001. -V. 167.-P. 199−205.
- Galvez, N. Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite / N. Galvez, V. Barron, J. Torrent // Clays Clay Minerals. 1999. — V.47. — P. 304−311.
- Gerlach, R. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6 / R. Gerlach, E.K. Field, S. Viamajala, B.M. Peyton, W.A. Apel, A.B. Cunningham // Biodegradation. -2011. V. 22.-P. 983−995.
- Ginder-Vogel, M. Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite / M. Ginder-Vogel, B. Stewart, S. Fendorf // Environ. Sci. Technol. 2010. — V. 44. — P. 163−169.
- Gritsenko, A.N. Synthesis in the phenothiazine series / A.N. Gritsenko, Z.I. Ermakova, V.S. Troitskaya, S.V. Zhuravlev // Chem. Heterocycl. Comp. -1971.-№ 6.-P. 715−717.
- Haigler, B.E. Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42 / B.E. Haigler, W.H. Wallace, J.C. Spain // Appl. Environ. Microbiol. -1994. V. 60. — P. 3466−3469.
- Hannink, N.K. Uptake and metabolism of TNT and GTN by plants expressing bacterial pentaerythritol tetranitrate reductase / N.K. Hannink, S.J. Rosser,
- C.E. French, N.C. Bruce // Water Air Soil Pollut. 2003. — V. 3. — P. 251— 258.
- Hawari, J. Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated culture at pH 4.5 / J. Hawari, A. Halasz, S. Beaudet, L. Paquet, G. Ampleman, S. Thiboutot // Appl. Environ. Microbiol. 1999. — V. 65. — P. 2977−2986.
- Heijman, C.G. Reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns / C.G. Heijman, E. Grieder, C. Holliger, R.P. Schwarzenbach // Environ. Sci. Technol. 1995. — V. 29. — P. 775−783.
- Heiss, G. Bioelimination of trinitroaromatic compounds: immobilization versus mineralization / G. Heiss, H.J. Knackmuss // Curr. Opin. Microbiol. -2002.-V. 5.-P. 282−287.
- Hofstetter, T.B. Reduction of nitroaromatic compounds by Fe (II) species associated with iron-rich smectites / T.B. Hofstetter, A. Neumann, R.P. Schwarzenbach // Environ. Sci. Technol. 2006. — V. 40. — P. 235−242.
- Huamin, G. Reduction of structural iron in ferruginous smectite by free radicals / G. Huamin, J.W. Stucki, G.W. Bailey // Clays Clay Minerals. -1992.-V. 40.-P. 659−665.
- Huang, J. Horseradish peroxidase catalyzed nitric oxide formation fromhydroxyurea / J. Huang, E.M. Sommers, D.B. Kim-Shapiro, S.B. King // J.
- Am. Chem. Soc. 2002. — V. 124. — P. 3473−3480.108
- Hundal, L.S. Removal of TNT and RDX from water and soil using iron metal / L.S. Hundal, J. Singh, E.L. Bier, P.J. Shea, S.D. Comfort, W.L. Powers // Environ. Pollut. 1997. — V. 97. — P. 55−64.
- Ignarro, L.J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview / L.J. Ignarro, C. Napoli, J. Loscalzo // Circ. Res. -2002. -V. 90. P. 21−28.
- Jambor, J.L. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide / J.L. Jambor, J.E. Dutrizac // Chem. Rev. -1998. V. 98. — P. 2549−2586.
- Johnson, G.R. Oxidative transformation of aminodinitrotoluene isomers by multicomponent dioxygenases / G.R. Johnson, B.F. Smets, J.C. Spain // Appl. Environ. Microbiol. 2001. — V. 67. — P. 5460−5466.
- Johnson, G.R. Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: an extradiol dioxygenase from the 2,4-dinitrotoluene pathway / G.R. Johnson, R.K. Jain, J.C. Spain // Arch. Microbiol. 2000. — V. 173. — P. 86−90.
- Ju, K.S. Nitroaromatic compounds, from synthesis to biodegradation / K.S. Ju, R.E. Parales // Microbiol. Mol. Biol. Rev. 2010. — V. 74. — P. 250−272.
- Kelm, M. The nitric oxide/superoxide assay / M. Kelm, R. Dahmann, D. Wink, M. Feelisch // J. Biol. Chem. 1997. — V. 272. — P. 9922−9932.
- Kim, J.S. Halide salts accelerate degradation of high explosives by zerovalent iron / J.S. Kim, P.J. Shea, J.E. Yang, J.E. Kim // Environ. Pollut. 2007. — V. 147.-P. 634−641.
- Klebanoff, S.J. Nitrite production by stimulated human polymorphonuclearleukocytes supplemented with azide and catalase / S.J. Klebanoff, C.F. Nathan
- Biochem. Biophys. Res. Commun. 1993. -V. 197. — P. 192−196.109
- Knicker, H. Incorporation of 15N-TNT transformation products into humifying plant organic matter as revealed by one- and two-dimensional solid state NMR spectroscopy / H. Knicker // Sci. Total. Environ. 2003. — V. 308. — P. 211−220.
- Knicker, H. Solid-state nitrogen-15 nuclear magnetic resonance analysis of biologically reduced 2,4,6-trinitrotoluene in a soil slurry remediation / H. Knicker, C. Achtnich, H. Lenke // J. Environ. Qual. 2001. — V. 30. — P. 403 410.
- Koppenol, W.H. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide / W.H. Koppenol, J.J. Moreno, W. A .Pryor, H. Ischiropoulos, J.S. Beckman // Chem. Res. Toxicol. 1992. — V. 5. — P. 834−842.
- Kuo, C.H. Peroxone oxidation of toluene and 2,4,6-trinitrotoluene / C.H. Kuo, M.E. Zappi, S.M. Chen // Ozone: Sci. Eng. 2000. — V. 22. — P. 519−534.
- Kuppusamy, P. Characterization of free radical generation by xanthine oxidase / P. Kuppusamy, J.L. Zweier / J. Biol. Chem. 1989. — V. 264. — P. 9880−9884.
- Kutty, R. Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824 / R. Kutty, G.N. Bennett // Arch. Microbiol. 2005. — V. 184. — P. 158 167.
- Lachance, B. Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro / B. Lachance, P.Y. Robidoux, J. Hawari, G. Ampleman, S. Thiboutot, G.I. Sunahara // Mutat. Res. 1999. -v. 444.-P. 25−39.
- Lachance, B. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil / B. Lachance, A.Y. Renoux, M. Sarrazin, J. Hawari, G.I. Sunahara // Chemosphere. 2004. -V. 55.-P. 1339−1348.
- Lendenmann, U. Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fluidized-bed biofilm reactor / U. Lendenmann, J.C. Spain, B.F. Smets // Environ. Sci. Technol. 1998. — V. 32. — P. 82−87.
- Leung, K.H. Mechanism of bioactivation and covalent binding of 2,4,6-trinitrotoluene / K.H. Leung, M. Yao, R. Stearns, S.H. Chiu // Chem. Biol. Interact. 1995. — V. 97. — P. 37−51.
- Li, H. Thermodynamics of nitroaromatic compound adsorption from water by smectite clay / H. Li, B.J. Teppen, C.T. Johnston, S.A. Boyd // Environ. Sci. Technol. 2004. — V. 38. — P. 5433−5442.
- Lloyd, J.R. Microbial detoxification of metals and radionuclides / J.R. Lloyd, D.R. Lovley // Curr. Opin. Biotechnol. 2001. -V. 12. — P. 248−253.
- Lovley, D.R. Rapid assay for microbially reducible ferric iron in aquatic sediments / D.R. Lovley, E.J. Phillips // Appl. Environ. Microbiol. 1987. -V. 53.-P. 1536−1540.
- Matta, R. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals / R. Matta, K. Hanna, S. Chiron // Sci. Total Environ. 2007. — V. 385.-P. 242−251.
- McBride, M.B. Absorption and oxidation of phenolic compounds by Fe and Mn oxides / M.B. McBride // Soil Sci. Soc. Amer. J. 1987. — V. 51. — P. 1466−1472.
- Morgan, B. The effect of pH on the kinetics of spontaneous Fe (II) oxidation by O2 in aqueous solution basic principles and a simple heuristic description / B. Morgan, O. Lahav // Chemosphere. — 2007. — V. 68 — P. 2080−2084.
- Nefso, E.K. Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron / E.K. Nefso, S.E. Burns, C.J. McGrath // J. Hazard. Mater. 2005. — V. 123 — P. 79−88.
- Nepovim, A. Phytoremediation of TNT by selected helophytes / A. Nepovim, A. Hebner, P. Soudek, A. Gerth, H. Thomas, S. Smrcek, T. Vanek // Chemosphere. 2005 — V. 60 — P. 1454−1461.
- Oh, B.T. TNT nitroreductase from a Pseudomonas aeruginosa strain isolated from TNT-contaminated soil / B.T. Oh, G. Sarath, P.J. Shea // Soil Biol. Biochem. 2001. — V. 33. — P. 875−881.
- Oh, S.Y. Effect of adsorption to elemental iron on the transformation of 2,4,6-trinitrotoluene and hexahydro-l, 3,5-trinitro-l, 3,5-triazine in solution / S.Y. Oh, D.K. Cha, B.J. Kim, P.C. Chiu // Environ. Toxicol. Chem. 2002. — V. 21.-P. 1384−1389.
- Pak, J.W. Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C / J.W. Pak, K.L. Knoke, D.R. Noguera, B.G. Fox, G.H. Chambliss // Appl. Environ. Microbiol. 2000. — V. 66.-P. 4742-^1750.
- Pal, N. Fungal degradation of 2,4-dinitrotoluene and nitroglycerin in batch and fixed-film bioreactors / N. Pal, C. Christodoulatos // J. Energ. Mater.1995.-V. 13.-P. 259−282.
- Pankhurst, Q.A. Structural and magnetic properties of ferrihydrite / Q.A. Pankhurst, R.J. Pollard // Clays Clay Minerals. 1992. — V. 40. — P. 268−272.
- Pavlostathis, S.G. Biotransformation of 2,4,6-trinitrotoluene in a continuous-flow Anabaena sp. system / S.G. Pavlostathis, G.H. Jackson // Water Res. -2002. -V. 36. P. 1699−1706.
- Pryor, W.A. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide / W.A. Pryor, G.L. Squadrito // Am. J. Physiol. -1995. V. 268. — P. 699−722.
- Rhoton, F.E. Natural ferrihydrite as an agent for reducing turbidity caused by suspended clays / F.E. Rhoton, J.M. Bigham // J. Environ. Quality 2009. -V. 38.-P. 1887−1891.
- Riefler, R.G. NAD (P)H:flavin mononucleotide oxidoreductase inactivation during 2,4,6-trinitrotoluene reduction / R.G. Riefler, B.F. Smets // Appl. Environ. Microbiol. 2002. — V. 68. — P. 1690−1696.
- Rieger, P.G. Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence / P.G. Rieger, H.M. Meier, M. Gerle, U. Vogt, T. Groth, H.J. Knackmuss // J. Biotechnol. 2002. — V. 94. -P. 101−123.
- Roberts, D.J. The effect of metals on biological remediation of munitions-contaminated soil / D.J. Roberts, N. Venkataraman, S. Pendharkar // Environ. Eng. Sci. 1998. — V. 15. — P. 265−277.
- Robertson, B.K. Influence of calcium, iron, and pH on phosphate availability for microbial mineralization of organic chemicals / B.K. Robertson, M. Alexander // Appl. Environ. Microbiol. 1992. — V. 58. — P. 38−41.
- Rodgers, J.D. Treatment methods for the remediation of nitroaromatic explosives / J.D. Rodgers, N.J. Bunce // Water Res. 2001. — V. 35. — P. 2101−2111.
- Roldan, M.D. Reduction of poly nitroaromatic compounds: the bacterial nitroreductases / M.D. Roldan, E. Perez-Reinado, F. Castillo, C. Moreno-Vivian // FEMS Microbiol. Rev. 2008. — V. 32. — P. 474−500.
- Rose, A.L. Reduction of organically complexed ferric iron by superoxide in a simulated natural water / A.L. Rose, T.D. Waite // Environ. Sci. Technol. -2005. V. 39. — P. 2645−2650.
- Rylott, E.L. Biodegradation and biotransformation of explosives / E.L. Rylott, A. Lorenz, N. C Bruce // Cur. Opin. Biotechnol. 2011. — V. 22. — P. 434 440.
- Scheibner, K. Screening for fungi intensevely mineralizing 2,4,6-trinitrotoluene / K. Scheibner, M. Hofrichter, A. Herre, J. Michels, W. Fritsche // Appl. Microbiol. Biotechnol. 1997. — V. 47. — P. 452−457.
- Schwandt, H. Sorption of an acidic herbicide on synthetic iron oxides and soils: sorption isotherms / H. Schwandt, I. Kogel-Knaber, H. Stanjek, K. Totsche// Sci. Total Environ. 1992. -V. 123−124. — P. 121−131.
- Schwitzgebel, J. Role of the oxygen molecule and of the photogenerated electron in TiCVphotocatalyzed air oxidation reactions / J. Schwitzgebel, J.G. Ekerdt, H. Gerischer, A. Hellar // J. Phys. Chem. 1995. — V. 99. — P. 56 335 638.
- Shah, M.M. Method of controlled reduction of nitroaromatics by enzymatic reactions of oxygen sensitive nitroreductase enzymes / M.M. Shah, J.A. Campbell // U.S. patent № 5 777 190. 1998.
- Shelley, M.D. Thermodynamic analysis of trinitrotoluene biodegradation and mineralization pathways / M.D. Shelley, R.L. Autenrieth, J.R. Wild, B.E. Dale // Biotechnol. Bioeng. 1996. — V.51. — P. 198−205.
- Shen, J. Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF) / J. Shen, R. He, H. Yu, L. Wang, J. Zhang, X. Sun, J. Li, W. Han, L. Xu//Biores. Technol. -2009. V. 100.-P. 1922−1930.
- Singerman, G.M. 2,3-Dihydro-2,2-dimethyl-7-benzob.thienyl n-methylcarbamate and use as an insecticide / G.M. Singerman //U.S. patent № 4 032 649.- 1977.
- Singh, B. Microbial remediation of explosive waste / B. Singh, J. Kaur, K. Singh // Crit. Rev. Microbiol. 2012. — V. 38. — P. 152−167.
- Singh, S. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase / S. Singh, W. Lee, N.A. Dasilva,
- A. Mulchandani, W. Chen // Biotechnol. Bioeng. 2008. — V. 99. — P. 333 340.
- Spain, J.C. Biodegradation of nitroaromatic compounds / J.C. Spain // Annu. Rev. Microbiol. 1995. — V. 49. — P. 523−555.
- Spanggord, R. Kinetics of aminodinitrotoluene oxidations with ozone and hydroxyl radical / R. Spanggord, D. Yao, T. Mill // Environ. Sci. Technol. -2000.-V. 34.-P. 45054.
- Stahl, J.D. Metabolism and detoxification of TNT by Phanerochaete chrysosporium / J.D. Stahl, S.D. Aust // Biochem. Biophys. Res. Commun. -1993.-V. 192.-P. 477482.
- Stenuit, B. Aerobic denitration of 2,4,6-trinitrotoluene in the presence of phenazine compounds and reduced pyridine nucleotides / B. Stenuit, G. Lamblin, P. Cornelis, S.N. Agathos // Environ. Sci. Technol. 2012. — V. 46. -P. 10 605−10 613.
- Stenuit, B. Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistiy for bioremediation and vice versa? / B. Stenuit, S.N. Agathos // Appl. Microbiol. Biotechnol. 2010. — V. 88. — P. 1043−1064.
- Stenuit, B. Promising strategies for the mineralization of 2,4,6-trinitrotoluene /
- B. Stenuit, L. Eyers, S.E. Fantroussi, S.N. Agathos // Rev. Environ. Sci. Bio/Technol. 2005. — V. 4 — P. 39−60.
- Stucki, J.W. Iron in soils and clay minerals / J.W. Stucki, B.A. Goodman, U. Schwertmann. Nato Sci. Ser. C, 1988. — 894 p.
- Sublette, K.L. Degradation of munition wastes by Phanerochaete chrysosporium / K.L. Sublette, E.V. Ganapathy, S. Schwartz // Appl. Biochem. Biotechnol. 1992. — V. 34/35. — P. 709−723.
- Szabo, C. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics / C. Szabo, H. Ischiropoulos, R. Radi // Nat. Rev. Drug Discov. -2007.-V. 6.-P. 662−680.
- Tope, A.M. Transformation of 2,4,6-trinitrotoluene (TNT) by immobilized and resting cells of Arthrobacter sp. / A.M. Tope, K. Jamil, T.R. Baggi // J. Hazard. Subst. Res. 1999. — V.2. — P. 3.1−3.9.
- Vasquez-Vivar, J. Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion / J. Vasquez-Vivar, A. Denicola, R. Radi, O. Augusto // Chem. Res. Toxicol. 1997. — V. 10. — P. 786−794.
- Villamena, F.A. Detection of reactive oxygen and nitrogen species by EPR spin trapping / F.A. Villamena, J.L. Zweier // Antioxid. Redox Signal. 2004. -V. 6.-P. 619−629.
- Voelker, B.M. Iron reduction by photoproduced superoxide in seawater / B.M. Voelker, D.L. Sedlak // Mar. Chem. 1995. — V. 50. — P. 93−102.
- Vorbeck, C. Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain / C. Vorbeck, H. Lenke, P. Fischer, H.J. Knackmuss // J. Bacteriol. 1994. — V. 176. — P. 932 934.
- Vorbeck, C. Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene / C. Vorbeck, H. Lenke, P. Fischer, J.C. Spain, H.J. Knackmuss // Appl. Environ. Microbiol. 1998. — V. 64. — P. 246−252.
- Wang, Z. Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter / Z. Wang, Z. Ye, M. Zhang, X. Bai // Process Biochem. 2010. — V. 45.-P. 993−1001.
- Watrous, M.M. 2,4,6-Trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum / M.M. Watrous, S. Clark, R. Kutty, S. Huang, F.B. Rudolph, J.B. Hughes, G.N. Bennett // Appl. Environ. Microbiol. 2003. -V. 69.-P. 1542−1547.
- Winkler, R. Sequential enzymatic oxidation of aminoarenes into nitroarenes via hydroxylamines / R. Winkler, C. Hertweck // Angew. Chem. Int. Ed. Engl. 2005. — V. 44. — P. 4083-^1087.
- Wittich, R.M. Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-source for growth / R.M. Wittich, J.L. Ramos, P. van Dillewijn // Environ. Sci. Technol. 2009. — V. 43. — P. 27 732 776.
- Yao, D. Determination of nitric oxide in biological samples / D. Yao, A.G. Vlessidis, N.P. Evmiridis // Microchim. Acta. 2004. — V. 147. — P. 1−20.
- Zachara, J.M. Biomineralization of poorly crystalline Fe (III) oxides by dissimilatory metal reducing bacteria (DMRB) / J.M. Zachara, R.K. Kukkadapu, J.K. Fredrickson, Y.A. Gorby, S.C. Smith // Geomicrobiol. J. -2002.-V. 19.-P. 179−207.
- Zaripov, S.A. Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts / S.A. Zaripov, A.V. Naumov, J.F. Abdrakhmanova, A.V. Garusov, R.P. Naumova//FEMS Microbiol. Lett. 2002. — V. 217. — P. 213−217.
- Ziganshin, A.M. Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica / A.M. Ziganshin, R.P. Naumova, A.J. Pannier, R. Gerlach 11 Chemosphere. 2010. — V. 79. — P. 426-^33.
- Zweier, J.L. Enzyme-independent formation of nitric oxide in biological tissues / J.L. Zweier, P. Wang, A. Samouilov, P. Kuppusamy // Nat. Med. -1995.-V. l.-P. 804−809.