Помощь в написании студенческих работ
Антистрессовый сервис

Эндонуклеаза рестрикции EcoRII: Исследование каталитического механизма и структуры фермент-субстратного комплекса

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Эндонуклеазы рестрикции (ЭР) типа II представляют собой обширное семейство ферментов с одинаковыми функциями, которые встречаются также у других белков, специфически взаимодействующих с ДНК, в частности у ферментов, обладающих нуклеазной активностью (нуклеазы, рекомбиназы, резольвазы, транспозазы, интегразы, белки, участвующие в репарации и др.). Следовательно, изучение механизма действия ЭР… Читать ещё >

Эндонуклеаза рестрикции EcoRII: Исследование каталитического механизма и структуры фермент-субстратного комплекса (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений

Глава 1. Эндонуклеазы рестрикции типа II, взаимодействующие с двумя участками узнавания в ДНК. (обзор литературы).

1.1. Эффект устойчивости некоторых молекул ДНК к расщеплению необычными эндонуклеазами типа II. j

1.2. Структурное сходство эндонуклеаз типов НЕ и IIF с «классическими» эндонуклеазами типа II и с ферментами других семейств.

1.3. Структура эндонуклеаз типа IIF.

1.4. Структура эндонуклеаз типа НЕ.

1.5. Взаимодействие эндонуклеаз типов НЕ и IIF с ДНК.

1.5.1. Неспецифическое взаимодействие с ДНК- поиск участков узнавания.

1.5.2. Специфическое взаимодействие с ДНК (узнавание).

1.5.3. Цис- и транс- активация.

1.5.3.1. Изгиб или петлеобразование ДНК при г^ыс-активации.

1.5.4. Роль нуклеотидных последовательностей, фланкирующих участок узнавания, во взаимодействии ЭР с ДНК.

1.5.5. Каталитический механизм: кинетика активированного расщепления ДНК и схемы реакций.

1.5.6. Механизм катализа расщепления фосфодиэфирных связей ЭР.

1.5.6.1. Архитектура активного центра.

Глава 2. Эндонуклеаза рестрикции iicoRII: исследование каталитического механизма и структуры фермент-субстратного комплекса (обсуждениерезультатов).

2.1. Препаративное выделение эндонуклеазы? coRII в виде ее гексагистидинового производного. 4 у

2.2. Кинетический анализ механизма расщепления ДНК эндонуклеазой? c0RII.

2.2.1. Кинетические схемы.

2.2.2. Расщепление 71-звенного субстрата с одним участком узнавания эндонуклеазой? coRII в отсутствие или в присутствии 14-ти-звенного активатора. ^

2.3. Определение количества межнуклеотидных связей, расщепляемых эндонуклеазой? coRII за один каталитический акт. ^

2.4. Структурная организация активного комплекса эндонуклеазы ZTcoRII с ДНК.

2.4.1. Взаимодействие коротких ДНК-дуплексов, содержащих фотоактивные группы, с эндонуклеазой EcoRII. ^

2.4.1.1. Дизайн аналогов короткого субстрата.

2.4.1.2. Субстратные свойства модифицированных ДНК-дуплексов- образование комплексов с эндонуклеазой ЕсоШI.^

2.4.1.3. Зависимость ФМ эндонуклеазы ЕсоШ от положения фотометки в ДНК-дуплексе, от ее природы, а также от времени облучения и интенсивности УФ-света.

2.4.2. Определение структуры активного комплекса эндонуклеазы ЕсоШ с ДНК.

2.4.3. Зондирование участков эндонуклеазы ЕсоШ1, взаимодействующих с ДНК.

Глава 3. Экспериментальная часть.

3.1. Материалы.

3.2. Приборы и методы.

3.3. Общие методики.

3.3.1. Выделение ЭР? coRII.

3.3.2. Выделение M.?coRII.

3.3.3. Ферментативное 5'-фосфорилирование олигонуклеотидов.

3.3.4. Химическое лигирование.

3.3.5. Гидролиз ДНК-дуплексов эндонуклеазой? coRII.

3.3.5.1. Определение начальных скоростей гидролиза.

3.3.5.2. Определение Кдисс фермент-субстратных комплексов ЕсоШ1 с

ДНК и соотношения каталитических констант kAs/fas.

3.3.6. Комплексообразование ЭР iicoRII с ДНК.

3.3.7. Фотоаффинная модификация ЭР EcoRll IU-, BU- или daU-содержащими ДНК-дуплексами. ^

3.3.8. Расщепление ковалентных конъюгатов iscoRII-ON химическими реагентами или протеолитическими ферментами.

3.3.8.1. Подготовка ковалентных конъюгатов к реакциям расщепления химическими реагентами.

3.3.8.2. Расщепление с помощью НТЦБК.

3.3.8.3. Расщепление с помощью ИБК.

3.3.8.4. Частичное расщепление с помощью ХС.

3.3.8.5. Гидролиз протеолитическими ферментами.

Выводы.

Гены систем рестрикции-модификации (РМ) составляют до 1% генома прокариотических организмов. Ферменты РМ типа II узнают определенные короткие последовательности в ДНК и катализируют расщепление обеих цепей (эндонуклеазы рестрикции) или метилирование гетероциклических оснований (ДНК-метилтрансферазы). Системы РМ играют ключевую роль в «геномном метаболизме» прокариот как в плане поддержания целостности генома (защиты от чужеродной ДНК), так и ввиду их способности распространяться в геноме в качестве «эгоистичных генетических элементов».

Эндонуклеазы рестрикции (ЭР) типа II представляют собой обширное семейство ферментов с одинаковыми функциями, которые встречаются также у других белков, специфически взаимодействующих с ДНК, в частности у ферментов, обладающих нуклеазной активностью (нуклеазы, рекомбиназы, резольвазы, транспозазы, интегразы, белки, участвующие в репарации и др.). Следовательно, изучение механизма действия ЭР важно для понимания механизма узнавания и расщепления ДНК ДНК-связывающими ферментами. Помимо того, ЭР могут служить идеальными объектами для изучения эволюционных взаимосвязей между ферментами различных семейств. Поскольку ЭР являются важнейшими инструментами генетической инженерии, информация о структуре и механизме функционирования этих ферментов необходима также для расширения их практического применения.

Объектом исследования в настоящей работе является ЭР ЕсоШ, которая узнает.

5'-^ CCAGG в ДНК пятизвенную нуклеотидную последовательность и в присутствии.

3 — CjCJICC^ ионов Mg2+ гидролизует фосфодиэфирные связи участка узнавания в положениях, указанных стрелками. Особый интерес к этому ферменту определяется тем, что ЭР coRII принадлежит к типу НЕ ЭР, ферментативная активность которых зависит от одновременного связывания двух копий узнаваемого ими участка в ДНК. Данные рентгеноструктурного анализа (РСА) получены только для одной ЭР этого типа — NaeI [1, 2]. К началу данной работы не были ясны многие важные аспекты механизма катализа ЭР iscoRII. Отсутствовала информация о функциональной топографии фермента. Кинетических исследований механизма активации ЭР ZfcoRII для расщепления ДНК не проводилось. Практически не было данных относительно такого фундаментального вопроса, как структурная организация активного фермент-субстратного комплекса.

Целью настоящей работы явилось изучение механизма действия эндонуклеазы рестрикции jEcoRII с помощью кинетического подхода, а также исследование структуры фермент-субстратного комплекса методом фотоаффинной модификации фермента.

В работе решались следующие задачи. (1) Построение кинетических моделей, отражающих взаимодействие эндонуклеазы J5coR. II с ДНК, исследование механизма активации фермента и особенностей расщепления фосфодиэфирных связей. (2) Разработка стратегии структурно-функционального исследования ЕсоШХ с помощью фотоаффинной модификации. Анализ общей архитектуры активного комплекса ЕсоШ1-ДНК и зондирование участков белка, взаимодействующих с ДНК.

выводы.

1. Предложены и проанализированы две различные кинетические схемы кооперативного взаимодействия эндонуклеазы рестрикции EcoRll с двумя участками узнавания в ДНК. С учетом этих схем получены количественные характеристики постадийного фермент-субстратного взаимодействия в системе ZscoRII-модельные ДНК-дуплексы (протяженный субстрат и короткий субстрат-активатор) — выявлен путь активации.

2. Установлено, что за один каталитический акт эндонуклеаза. EcoRll расщепляет две фосфодиэфирные связи одного из двух участков узнавания, скоординированных в составе одного фермент-субстратного комплекса.

3. Разработан подход, основанный на фотоаффинной модификации эндонуклеазы EcoRll для анализа общей структурной организации фермент-субстратного комплекса и выявления специфических ДНК-белковых контактов. Подход включает использование аналогов субстратов различной длины с одним или двумя участками узнавания EcoRll, содержащих фотоактивные группы различной природы.

4. Найдено, что аминокислотные остатки из обеих субъединиц фермента формируют каждую из двух ДНК-связывающих полостей эндонуклеазы EcoRll в активном фермент-субстратном комплексе.

5. Для поиска ДНК-связывающих участков эндонуклеазы iTcoRII получены ковалентные комплексы iscoRII-ДНК в каталитических условиях. Проведена их фрагментация протеолитическими ферментами или химическими реагентами и обнаружены две области (в Nи С-концевой частях белка), возможно формирующие контакты с центральными нуклеотидными парами двух участков узнавания в ДНК.

Показать весь текст

Список литературы

  1. Q. Huai, J.D. Colandene, Y. Chen, F. Luo, Y. Zhao, M.D. Topal and H. Ke (2000). Crystal structure of Nael an evolutionary bridge between DNA endonuclease and topoisomerase. EMBOJ., 19,3110−3118.
  2. Q. Huai, J.D. Colandene, M.D. Topal and H. Ke (2001). Structure of Afael-DNA complex reveals dual-mode DNA recognition and complete dimer rearrangement. Nature Struct. Biol., 8, 665−669.
  3. H.W. Boyer (1971). DNA restriction and modification mechanisms in bacteria. Annu. Rev. Microbiol., 25, 153−176.
  4. R. Yuan (1981). Structure and mechanism of multifunctional restriction endonucleases. Annu. Rev. Biochem., 50, 285−315.
  5. R.J. Roberts et al (2003). A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res., 31, 18 051 812.
  6. D.T. Dryden, N.E. Murray and D.N. Rao (2001) Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res., 29, 3728−3741.
  7. R.J. Roberts and S.E. Halford (1993). Type II restriction endonucleases. In S.M. Linn, R.S. Lloyd and R.J. Roberts (eds), Nucleases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, pp. 35−88.
  8. J. Heitman (1993). On the origins, structures and functions of restriction-modification enzymes. In J.K. Setlow (ed.). Genetic Engineering. Plenum Press, New York, Vol. 15, pp. 57−108.
  9. A. Pingoud and A. Jeltsch (1997). Recognition and cleavage by type-II restriction endonucleases. Eur. J. Biochem., 246, 1−22.
  10. A. Pingoud and A. Jeltsch (2001). Structure and function of type II restriction endonucleases. Nucleic Acids Res., 29, 3705−3727.
  11. M. Muecke, S. Reich, E. Monke-Buchner, M. Reuter and D.H. Krueger (2001). DNA cleavage by type III restriction-modification enzyme? coP15I is dependent of spacer distance between two head tohead oriented recognition sites. J. Mol. Biol., 312, 687−698.
  12. P. Janscak, U Sandmeier, M.D. Szczelkun and T.A. Bickle (2001). Submit assembly and mode of DNA cleavage of the type III restrictionendonucleases Eco? II and EcoPI 51. J. Mol. Biol., 306,417−431.
  13. D.A. Wah, J. Bitinaite, I. Schildkraut and A.K. Agarwal (1998). Structure of Fokl has implications for DNA cleavage. Proc. Natl. Acad. Sci. USA, 95, 10 564−10 569.
  14. D.H. Krueger, G.J. Barcak, M. Reuter and H.O. Smith (1988). ?coRII can be activated to cleave refractory DNA recognition sites. Nucleic Acids Res., 16,3997−4008.
  15. M. Conrad and M.D. Topal (1989). DNA and spermidine provide a switch mechanism to regulate the activity of restriction enzyme Nael Proc. Natl. Acad. Sci. USA, 86, 9707−9711.
  16. D.T. Bilcock, L.E. Daniels, A.J. Bath and S.E. Halford (1999). Reactions of type II restriction endonucleases with 8-base pair recognition sites. J. Biol. Chem., 274, 3 637 936 386.
  17. L.M. Wentzell and S.E. Halford (1998). DNA looping by the Sfil restriction endonuclease. J. Mol. Biol., 281,433−444.
  18. D. Bozic, S. Grazulis, V. Siksnys and R. Huber (1996). Crystal structure of Citrobacterоfreundii restriction endonuclease Cfr 101 at 2.15 A resolution. J. Mol. Biol., 255, 176−186.
  19. M. Deibert, S. Grazulis, G. Sasnauskas, V. Siksnys and R. Huber (2000). Structure of the tetrameric restriction endonuclease NgoMlV in complex with cleaved DNA. Nat. Struct. Biol., 7,792−799.
  20. S. Hattman, C. Gribbin and C.A. Hutchison (1979). In vivo methylation of bacteriophage phi X174 DNA. J. Virol., 32, 845−851.
  21. A.R. Oiler, W.V. Broek, M. Conrad and M.D. Topal (1991). Ability of DNA and spermidine to affect the activity of restriction endonucleases from several bacterial species. Biochemistry, 30, 2543−2549.
  22. C.-D. Pein, M. Reuter, D. Cech and D.H. Krneger (1989). Oligonucleotide duplexes containing CC (a/t)GG stimulate cleavage of refractory DNA by restriction endonuclease EcoRIl. FEBS Lett., 245, 141−144.
  23. D.H. Krueger, D. Kupper, A. Meisel, M. Reuter and C. Schroeder (1995). The significance of orientation of restriction endonuclease recognition sites in viral DNA genomes. FEMS Microbiol. Rev., 17, 177−184.
  24. R.A. Kovall and B.W. Matthews (1999). Type II restriction endonucleases: structural, functional and evolutionary relationships. Curr. Opin. Chem. Biol., 3, 578−583.
  25. C. Ban and W. Yang (1998). Structural basis for MutH activation in E. coli mismatch repair and relationship of MutH to restriction endonucleases. EMBO J., 17, 1526−1534.
  26. S.E. Tsutakawa, H. Jingami and K. Morikawa (1999). Recognition of a TG mismatch: the crystal structure of very short patch repair endonuclease in complex with a DNA duplex. Cell, 99,615−623.
  27. A.B. Hickman, Y. Li, S.V. Mathew, E.W. May, N.L. Craig and F. Dyda (2000). Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol. Cell, 5, 1025−1034.
  28. M. Muecke, G. Grelle, J. Behlke, R. Kraft, D. Krueger and M. Reuter (2002). EcoRII: a restriction enzyme evolving recombination functions? EMBO J., 21, 5262−5268.
  29. S.E. Halford, D.M. Gowers and R. Sessions (2000). Two are better than one. Nat. Struct. Biol., 7, 705−707.
  30. V. Siksnys, R. Skirgaila, G. Sasnauskas, C. Urbanke, D. Cherny, S. Grazulis and R. Huber (1999). The Cfr 101 restriction enzyme is functional as a tetramer. J. Mol. Biol., 291, 11 051 118.
  31. P. Modrich and D. Zabel (1976). EcoRI endonuclease. Physical and catalytic properties of the homogeneous enzyme. J. Biol. Chem., 251, 5866−5874.
  32. L.M. Wentzell, T.J. Nobbs and S.E. Halford (1995). The Sfil restriction endonuclease makes a four-strand DNA break at two copies of its recognition sequence. J. Mol. Biol., 248, 581−595.
  33. M.A. Watson, A.M. Gowers and S.E. Halford (2000). Alternative geometries of DNA looping: an analysis using the Sfil endonuclease. J. Mol. Biol., 298, 461−475.
  34. K. Jo and M.D. Topal (1995). DNA topoisomerase and recombinase activities in Nael restriction endonuclease. Science, 267,1817−1820.
  35. E.X. Zhou, M. Reuter, E.J. Meehan and L. Chen (2002). A new crystal form of restriction endonuclease EcoRII that diffracts to 2.8 A resolution. Acta Crystallogr. D. Biol. Crystallogr., 58, 1343−1345.
  36. D. Kostrewa and F.K. Winkler (1995). Mg2+ binding to the active site of EcoRY endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 Angstrom resolution. Biochemistry, 34, 683−696.
  37. N.C. Horton and J.J. Perona (2000). Crystallographic snapshots along a protein-induced DNA-bending pathway. Proc. Natl. Acad. Sci. USA, 97, 5729−5734.
  38. J.J. Perona and A.M. Martin (1997). Conformational transitions and structural deformability of EcoRY endonuclease revealed by crystallographic analysis. J. Mol. Biol., 273, 207−225.
  39. C.R. Robinson and S.G. Sligar (1998). Changes in solvation during DNA binding and cleavage are critical to altered specificity of the ЕсоШ endonuclease. Proc. Natl. Acad. Sci. USA, 95,2186−2191.
  40. J.R. Wenner and V.A. Bloomfield (1999). Buffer effects on EcoRY kinetics as measured by fluorescent staining and digital imaging of plasmid cleavage. Anal. Biochem., 268, 201 212.
  41. P.H. von Hippel and O.G. Berg (1989). Facilitated target location in biological systems. J. Biol. Chem., 264, 675−678.
  42. M. Szczelkun and S.E. Halford (1996). Recombination by resolvase to analyse DNA communications by the Sfil restriction endonuclease. EMBO J., 15, 1460−1469.
  43. T.A. Bickle (1993). The ATP-dependent restriction enzymes. In S.M. Linn, R.S. Lloyd and R.J. Roberts (eds), Nucleases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, pp. 89−109.
  44. A.A. Yolov, E.S. Gromova and Z.A. Shabarova (1985). Processive cleavage of concatemer DNA duplexes by EcoRll restriction endonuclease. Mol. Biol. Rep., 10,173−176.
  45. M. Reuter, D. Kupper, A. Meisel, C. Schroeder and D. Krueger (1998). Cooperative binding properties of restriction endonuclease ЕсоШ with DNA recognition sites. J. Biol. Chem., 273, 8294−8300.
  46. A. Jeltsch, J. Alves, H. Wolfes, G. Maass and A. Pingoud (1994). Pausing of the restriction endonuclease? coRI during linear diffusion on DNA. Biochemistry, 33, 1 021 510 219.
  47. S.E. Milsom, S.E. Halford, M.L. Embleton and M. Szczelkun (2001). Analysis of DNA looping interaction by type II of restriction enzymes that require two copies of their recognition sites. J. Mol. Biol., 311, 515−527.
  48. N.Y. Sidorova and D.C. Rau (1996). Differences in water release for the binding of. EcoRI to specific and nonspecific DNA sequences. Proc. Natl. Acad. Sci. USA, 93, 12 272−12 277.
  49. V. Pingoud, E. Kubareva, G. Stengel, P. Friedhoff, J.M. Bujniscki, C. Urbanke, A. Sudina and A. Pingoud (2002). Evolutionary relationship between different subgroups of restriction endonucleases. J. Biol. Chem., 277, 14 306−14 314.
  50. M. Muecke, V. Pingoud, G. Grelle, R. Kraft, D. Krueger and M. Reuter (2002). Asymmetric photocross-linking pattern of restriction endonuclease iscoRII to the DNA recognition sequence. J. Biol. Chem., 277,14 288−14 293.
  51. M.L. Embleton, V. Siksnys and S.E. Halford (2001). DNA cleavage reactions by type II restriction enzymes that require two copies of their recognition sites. J. Mol. Biol., 311, 503 514.
  52. O.V. Petrauskene, E.A. Kubareva, E.S. Gromova and Z.A. Shabarova (1992). Mechanism of the interaction of EcoRll restriction endonuclease with two recognition sites. Eur. J. Biochem., 208, 617−622.
  53. M.D. Topal, R.J. Thresher, M. Conrad and J. Griffith (1991). Nael endonuclease binding to pBR322 DNA induces looping. Biochemistry, 30, 2006−2010.
  54. M. Lewis, G. Chang, N.C. Horton, M.A. Kercher, H.C. Pace, M.A. Schumacher, R.G. Brennan and P. Lu (1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science, 271, 1247−1254.
  55. F. Guo, D.N. Gopaul and G.D. van Duyne (1999). Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA, 96, 7143−7148.
  56. S. Oehler, E.R. Eismann, H. Kraemer and B. Mueller-Hill (1990). The three operators of the lac operon cooperate in repression. EMBO J., 9, 973−979.
  57. F. Guo, D.N. Gopaul and G.D. van Duyne (1997). Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 389, 40−46.
  58. D.N. Gopaul, F. Guo and G.D. van Duyne (1998). Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J., 17, 4175−4187.
  59. E.S. Gromova and Z.A. Shabarova (1990). DNA-protein interactions: the use of synthetic oligo- and polynucleotides for studying single-stranded-DNA-binding proteins and restriction endonucleases. Progr. Nucleic Acids Res. Mol. Biol., 39, 1−47.
  60. A.A. Yolov, E.S. Gromova, E.A. Kubareva, V.K. Potapov and Z.A. Shabarova (1985). Interaction of EcoRIl restriction and modification enzymes with synthetic DNA fragment. V. Study of single-strand cleavages. Nucleic Acids Res., 13, 8969−8981.
  61. Е.А. Кубарева, Е. С. Громова, Т. С. Орецкая и З. А. Шабарова (1987). Взаимодействие ферментов рестрикции и модификации EcoRIl с синтетическими фрагментами ДНК. X. Гидролиз субстратов со структурными аномалиями. Биоорганич. химия, 13, 1205−1211.
  62. С.С. Yang and M.D. Topal (1992). Nonidentical DNA-binding sites of endonuclease Nael recognize different families of sequences flanking the recognition site. Biochemistry, 31, 9657−9664.
  63. B.K. Baxter and M.D. Topal (1993). Formation of cleavasome: enhancer DNA-2 stabilizes an active conformation of Nael dimer. Biochemistry, 32, 8291−8298.
  64. M. Newman, K. Lunnen, G. Wilson, J. Greci, I. Schildkraut and S.E.V. Phillips (1998). Crystal structure of restriction endonuclease Bgll bound to its interrupted recognition sequence. EMBO J., 17, 5466−5476.
  65. S. Gabbara and A.S. Bhagwat (1992). Interaction of EcoRIl endonuclease with DNA substrates containing single recognition sites. J. Biol. Chem., 267, 18 623−18 630.
  66. E.S. Gromova, E.A. Kubareva, M.N. Vinogradova, T.S. Oretskaya and Z.A. Shabarova (1991). Peculiarities of recognition of CCA/TGG sequences in DNA by restriction endonucleases Mval and EcoBll. J. Mol. Recognition, 4,133−141.
  67. E.A. Karpova, E.A. Kubareva, E.S. Gromova and Y.I. Buryanov (1993). Peculiarities of the binding restriction endonuclease ЕсоШ1 to synthetic DNA duplexes. Biochem. Mol. Biol. Intl., 29, 113−121.
  68. O.V. Petrauskene, E.A. Karpova, E.S. Gromova and W. Guschlbauer (1994). Two subunits of ЕсоШ! restriction endonuclease interact with two DNA recognition sites. Biochem. Biophys. Res. Commun., 198, 885−890.
  69. C.C. Yang, B.K. Baxter and M.D. Topal (1994). DNA cleavage by Nael: protein purification, rate-limiting step, and accuracy. Biochemistry, 33, 14 918−14 925.
  70. T.J. Nobbs and S.E. Halford (1995). DNA cleavage at two recognition sites by the Sfil restriction endonuclease: salt dependence of cis and trans interaction between distant DNA sites. J. Mol. Biol. 252, 399−411.
  71. M.L. Embleton, S.A. Williams, M.A. Watson and S.E. Halford (1999). Specificity from the synapsis of DNA elements by the Sfil endonuclease. J. Mol. Biol. 289, 785−797.
  72. B.J. Terry, W.E. Jack and P. Modrich (1987). Mechanism of specific site location abd DNA cleavage by ЕсоШ endonuclease. Gene Amplif. Anal., 5,103−118.
  73. T.J. Nobbs, M.D. Szczelkun, L.M. Wentzel and S.E. Halford (1998). DNA excision by the Sfil restriction endonuclease. J. Mol. Biol., 281, 419−432.
  74. S.G. Erskine, G.S. Baldwin and S.E. Halford (1997). Rapid reaction analysis of plasmid DNA cleavage by EcoRY restriction endonuclease. Biochemistry, 36, 7567−7576.
  75. G. Sasnauskas, A. Jeltsch, A. Pingoud and V. Syksnys (1999). Plasmid DNA cleavage by Muni restriction enzyme: single-turnover and steady-state kinetik analysis. Biochemistry, 38, 4028−4036.
  76. B.A. Connoly, F. Eckstein and A. Pingoud (1984). The stereochemical course of the restriction endonuclease ZscoRI-catalyzed reaction. J. Biol. Chem., 259, 10 760−10 763.
  77. J.A. Grasby and B.A. Connoly (1992). Stereochemical outcome of the hydrolysis reaction catalysed by the EcoKV restriction endonuclease. Biochemistry, 31, 7855−7861.
  78. J.E. Anderson (1993). Restriction endonucleases and modification methylases. Curr. Opin. Struct. Biol., 3, 24−30.
  79. G. Tamulaitis, A.S. Solonin and V. Siksnys (2002). Alternative arrangements of catalytic residues at the sites of restriction enzymes. FEBS Lett., 518, 17−22.
  80. J.R. Horton and X. Cheng (2000). Pvull endonuclease contains two calcium ions in active sites. J. Mol. Biol., 300, 1049−1056.
  81. H. Viadiu and A.K. Aggarwal (1998). The role of metals in catalysis by the restriction endonuclease BamHl. Nature Struct. Biol., 5, 910−916.
  82. Y.G. Kosykh, Y.I. Buryanov and A.A. Baev (1980). Molecular cloning of the? coRII endonuclease and methylasegenes. Mol. Gen. Genet., 178, 717−725.
  83. В.Г. Косых, A.B. Репик, A.B. Калиман, Я. И. Бурьянов и A.A. Баев (1989). Докл. АН СССР, 308, 1497−1499.
  84. S. Som, A.S. Bhagwat and S. Friedman (1987). Nucleotide sequence and expression of the gene encoding the ЕсоШ1 modification enzyme. Nucleic Acids Res., 15, 313−332.
  85. В.Г. Косых, C.A. Пунтежис, Я. И. Бурьянов и A.A. Баев (1982). Выделение, очистка и характеристика рестрикционной эндонуклеазы ЕсоШ1. Биохимия, 47, 619−625.
  86. A.S. Bhagwat, B. Johnson, K. Weule and R.J. Roberts (1990). Primary sequence of the EcoRII endonuclease and properties of its fusions with beta-galactosidase. J. Biol. Chem., 265, 767−773.
  87. M.W. Wyszynski, S. Gabbara and A.S. Bhagwat (1992). Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes. Nucleic Acids Res., 20,319−326.
  88. H.H. Матвиенко, JI.А. Железная, Е. Э. Чернышова, Я. И. Бурьянов и Н. И. Матвиенко (1997). Биохимия, 62, 1314−1318.
  89. Б.И. Курганов (1978). Аллостерические ферменты. М.: Наука.
  90. С.Д. Варфоломеев и К. Г. Гуревич (1999). Биокинетика: практический курс. М.: ФАИР-ПРЕСС, 720 с.
  91. В. Эллиот и Д. Эллиот (1999). Биохимия и молекулярная биология. Москва, 372 с.
  92. М.С. Willis, B.J. Hicke, О.С. Uhlenbeck, T.R. Cech and Т.Н. Koch (1993). Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science, 262, 12 551 257.
  93. B.J. Hicke, M.C. Willis, Т.Н. Koch and T.R. Cech (1994). Telomeric protein-DNA point contacts identified by photo-cross-linking using 5-bromodeoxyuridine. Biochemistry, 33, 3364−3373.
  94. T.M. Dietz, R.J. von Trebra, B.J. Swanson and Т.Н. Koch (1987). Photochemical coupling 5-bromouracil (BU) to a peptide linkage. A model for BU-DNA protein photocrosslinking. J. Am. Chem. Soc., 109,1793−1797.
  95. K.M. Meisenheimer and Т.Н. Koch (1997). Photocross-linking of nucleic acids to assotiated proteins. Crit. Rev. Biochem. Mol. Biol., 32,101−140.
  96. C.L. Norris, P.L. Meisenheimer and Т.Н. Koch (1996). Mechanistic studies of the 5-iodouracil chromophore relevant to its use in nucleoprotein photo-cross-linking. J. Am. Chem. Soc., 118, 5796−5803.
  97. R.O. Rahn (1992). Photochemistry of halogen pyrimidines: iodine release studies. Photochem. Photobiol., 56, 9−15.
  98. Г. А. Коршунова, H.B. Сумбатян, A.H. Топин и M.T. Мчедлидзе (2000). Фотоактивируемые реагенты на основе арил (трифторметил)диазиринов: синтез и использование для изучения нуклеиново-белковых взаимодействий. Молекуляр. Биология, 34, 1966−1983.
  99. E.A. Karpova, E.A. Kubareva and Z.A. Shabarova (1999). A model of EcoRll restriction endonuclease action: the active complex is most likely formed by one protein subunit and one DNA recognition site. IUBMB Life, 48, 91−98.
  100. I.B. Vipond, G.S. Baldwin and S.E. Halford (1995). Divalent metal ions at the active sites of the EcoRW and EcoRl restriction endonucleases. Biochemistry, 34, 697−704.
  101. E. Ferrer, M. Wiersma, B. Kazimierczak, C.W. Mueller and R. Eritja (1997). Preparation and properties of oligodeoxynucleotides containing 5-iodouracil and 5-bromo- and 5-iodocytosine. Bioconjugate Chem., 8, 757−761.
  102. U.K. Laemmli (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680−685.
  103. JI.A Остерман (1981). Методы исследования белков и нуклеиновых кислот: Электрофорез и ультрацентрифугирование (практическое пособие). М.:Наука, 288 с.
  104. J, Sambrook, E.F. Fritch and Т. Maniatis (1989). Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor, 1989.
Заполнить форму текущей работой