Физико-химические и шапероноподобные свойства малого белка теплового шока Hsp22 человека
Диссертация
Впервые проведен детальный анализ структуры и свойств малого белка теплового шока Hsp22 человека. Получены убедительные доказательства наших предположений о том, что Hsp22, в отличие от всех исследованных к настоящему времени малых белков теплового шока, относится к семейству белков с разупорядоченной третичной структурой (IDP). В работе был применен практически весь набор методов, позволяющих… Читать ещё >
Список литературы
- Клюева А.В., Левчук Ю. Н., Набока Ю. Н. (2002) Фотон-корреляционная спектроскопия белков, Укр. биохим. журнал, т. 74, № 5, с. 12—26.
- Панасенко О.О., Ким М.В., Гусев Н. Б. (2003) Структура и свойства малых белков теплового шока. Успехи биологической химии т. 43, 59—98
- Пермяков Е.А. Метод собственной люминесценции белка. Наука, Москва, 2003.
- Пивоварова А.В. «Влияние малых белков теплового шока на тепловую агрегацию F-актина». Диссертация на соискание ученой степени кандидата биологических наук, Институт биохимии им. А. Н. Баха РАН, Москва, 2008 г.
- Попов Е.М., Демин В. В., Шибанова Е. Д. «Проблема белка». Москва, 1996 г., т. 2. С. 418−421.
- Финкельштейн А.В., Иванков Д. Н., Галзитская О. В. (2005) Предсказание скоростей и ядер сворачивания глобулярных белков на основе теории их самоорганизации. Успехи биологической химии, т. 45, С. 3−36.
- Abulimiti A., Fu X., Gu, L., Feng X. and Chang Z. (2003). Mycobacterium tuberculosis Hspl6.3 nonamers are assembled and re-assembled via trimer and hexamer intermediates. J. Mol. Biol. 326, 1013−1023.
- Agius M.A., Kirvan C.A., Schafer A.L., Gudipati E., Zhu S. (1999) High prevalence of anti- alpha-crystallin antibodies in multiple sclerosis: correlation with severity and activity of disease. Acta Neurol. Scand. 100, 139−147.
- Andley U.P., Mathur S., Griest T.A. and Petrash J.M. (1996) Cloning, expression, and chaperone-like activity of human alphaA-crystallin. J. Biol. Chem. 271, 31 973−31 980.
- Barth A, Zscherp C. (2002) What vibrations tell us about proteins. Q. Rev. Biophys. 35, 369−430.
- Bera S., Thampi P., Cho W.J., Abraham E.C. (2002) A positive charge preservation at position 116 of alphaA-crystallin is critical for its structural and functional integrity. Biochemistry 41, 12 421−12 426.
- Bhattacharyya J., and Sharma K.K. (2001) Conformational specificity of mini-aA-crystallin as a molecular chaperone. J. Peptide Res. 57, 428−434.
- Bhattacharyya J., Padmanabha Udupa E. G., Wang J., and Sharma K.K. (2006) Mini-alphaB-crystallin: a functional element of alphaB-crystallin with chaperone-like activity. Biochemistry 45, 3069−3076
- Bova M.P., Huang Q., Ding L., and Horwitz J. (2002) Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J. Biol. Chem. 277, 38 468−38 475.
- Bukach O.V., Seit-Nebi A.S., Marston S.B., and Gusev N.B. (2003) Some properties of human small heat shock protein Hsp20 (HspB6). Eur. J. Biochem. 271, 291−302.
- Bukau B. and Horwich A.L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351−366.
- Burstein E.A., Abornev S.M., and Reshetnyak Y.K. (2001a) Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms. Biophys. J. 81, 1699−1709.
- Burstein E.A., Abornev S.M., and Reshetnyak Y.K. (2001b) Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins. Biophys. J. 81, 1710−1734.
- Bushueva T.L., Busel E.P., and Burstein E.A. (1978) Relationship of thermal quenching of protein fluorescence to intramolecular structural mobility. Biochim. Biophys. Acta 534, 141−152.
- Bushueva T.L., Busel E.P., and Burstein E.A. (1980) Some regularities of dynamic accessibility of buried fluorescent residues to external quenchers in proteins. Arch. Biochem. Biophys. 204, 161−166.
- Bryngelson J.D., Onuchic J.N., Socci N.D., and Wolynes P.G. (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167−195.
- Carral S., Sivilotti M., Zobel A.T.C., Lambert H., and Landry J. (2005) HspB8, small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Human Mol. Gen. 141, 1659−1669.
- Carra S., Brunsting J.F., Lambert H., Landry J., and Kampinga H.H. (2009) HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J. Biol. Chem. 284, 5523−5532.
- Carver J.A., Esposito G., Schwedersky G., and Gaestel M. (1995) !H-NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids. FEBS Lett. 369, 305−310.
- Charpentier A.H., Bednarek A.K., Daniel R.L., Hawkins K.A., Laflin K.J., Gaddis S., MacLeod M.C., and Aldaz C.M. (2000) Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res. 60, 5977−5983.
- Chavez Zobel A.T., Loranger A., Marceau N., Theriault J.R., Lambert H., and Landry J. (2003) Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G alphaB-crystallin mutant. Human Mol. Genet. 12, 1609−1620.
- Chernik I.S., Panasenko O.O., Li Y., Marston S.B., and Gusev N.B. (2004) pH-induced changes of the structure of small heat shock proteins with molecular mass 24/27 kDa (HspBl). Biochem. Biophys. Res. Commun. 324,1199−1203.
- Chowdary Т.К., Raman В., Ramakrishna Т., and Rao C.M. (2004) Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem. J. 381, 379−387.
- Depre C., Hase M., Gaussin V., Zajac A., Wang L., Hittinger L., Ghaleh В., Yu X., Kudej R.K., Wagner Т., Sadoshima J., and Vatner, S. F. (2002) HI 1 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ. Res. 91, 1007−1014.
- Dill K.A., Shortle D. (1991) Denatured states of proteins. Annu. Rev. Biochem. 60, 795 825.
- Dragan A.I., Privalov P.L. (2002) Unfolding of a leucine zipper is not a simple two-state transition. J. Mol Biol. 321, 891−908.
- Dudich I.V., Zav’yalov V.P., Pfeil W" Gastel M., Zav’yalova G.A., Denesyuk A.I., Korpela T. (1995) Dimer structure as a minimum cooperative subunit of small heat-shock proteins. Biochim. Biophys. Acta. 125, 163−168.
- Eaton WA. (1999) Searching for «downhill scenarios» in protein folding. Proc. Natl. Acad. Sci. USA 96, 5897−5899.
- Eifert С., Burgio M.R., Bennett P.M., Salerno J.C., Koretz J.F. (2005) N-terminal control of small heat shock protein oligomerization: Changes in aggregate size and chaperone-like function. Biochim. Biophys. Acta. 1748, 146−156.
- Farnsworth P.N. and Singh K. (2000) Self-complementary motifs (SCM) in alphacrystallin small heat shock proteins. FEBSLett. 482, 175−179.
- Feil I.K., Malfois M., Hendle J., van Der Zandt H., and Svergun D.I. (2001) A novel quaternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. J. Bio. l Chem. 276, 12 024−12 029.
- Feng X., Huang S., Fu X., Abulimiti A., and Chang Z. (2002) The reassembling process of the nonameric Mycobacterium tuberculosis small heat-shock protein Hspl6.3 occurs via a stepwise mechanism. Biochem. J. 363, 329−334.
- Fonte V., Kapulkin V., Taft A., Fluet A., Friedman D., Link C.D. (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc. Natl. Acad. Sci. USA 99, 9439−9444.
- Franck E., Madsen O., van Rheede Т., Ricard G., Huynen M.A., de Jong W.W. (2004) Evolutionary diversity of Vertebrate small heat shock proteins. Mol. Evol. 59, 792−802.
- Garcia-Mira M.M., Sadqi M., Fischer N., Sanchez-Ruiz J.M., and Munoz V. (2002) Experimental identification of downhill protein folding. Science 298, 2191−2195.
- Gast K., Damaschun H., Eckert K., Schulze-Foster K., Maurer H.R., Mtiller-Frohne M., Zirwer D., Czarnecki J., and Damaschun G. (1995) Prothymosin a: A biologically active protein with random coil conformation. Biochemistry 34, 13 211−13 218.
- Ghosh J.G., Estrada M.R. and Clark J.I. (2005) Interactive domains for chaperone activity in the small heat shock protein, human alphaB crystallin. Biochemistry 44, 14 854−14 869
- Ghosh J.G., and Clark J.I. (2005) Insights into the domains required for dimerization and assembly of human alphaB crystallin. Protein Sci. 14, 684—695.
- Gober M.D., Smith C.C., Ueda K., Toretsky J.A., Aurelian L. (2003) Forced expression of the Hll heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J. Biol. Chem. 278, 37 600−37 609.
- Golitsina N.L., Shnyrov V.L., and Levitsky D.I. (1992) Thermal denaturation of the alkali light chain-20 kDa fragment complex obtained from myosin sub fragment 1. FEBS Lett. 303, 255−257.
- Guo Z., and Cooper L.F. (2000) An N-terminal 33-amino-acid-deletion variant of hsp25 retains oligomerization and functional properties. Biochem. Biophys. Res. Commun. 270, 183−189.
- Hackel M, Hinz H.J., Hedwig G.R. (1999) A new set of peptide-based group heat capacities for use in protein stability calculations. J. Mol. Biol. 291, 197−213.
- Haley D.A., Horwitz J., and Stewart P.L. (1998) The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27−35.
- Hase M., Depre С., Vatner S.F. and Sadoshima J. (2005) Hll has dose-dependent and dual hypertrophic and proapoptotic functions in cardiac myocytes. Biochem. J. 388, 475 483.
- Haslbeck M. (2002) sHsps and their role in the chaperone network. Cell. Moll. Life Sci. 59, 1649−1657.
- Haslbeck M., Ignatiou A., Saibil H., Helmich S., Frenzl E., Stromer Т., and Buchner J. (2004) A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J. Mol. Biol 343,445−455.
- Haslbeck M., Walke S., Stromer Т., Ehrnsperger M., White H.E., Chen S., Saibil H.R., and Buchner J. (1999) Hsp26: a temperature-regulated chaperone. EMBO. J. 18, 67 446 751.
- Haslbeck M., Franzmann Т., Weinfiirtner D., Buchner J. (2005) Some like it hot: the structure and function of small heat-shock proteins. Nature Struct. Mol. Biol. 10, 842 846.
- Haugland R.P. (1996) Handbook of fluorescent probes and research chemicals. Molecular Probes, 6 edition.
- Head M.W., Corbin E., and Goldman J.E. (1993) Overexpression and abnormal modification of the stress proteins alpha B-crystallin and hsp27 in Alexander disease. Am. J. Pathol. 143, 1743−1753.
- Hedges J.C., Dechert M.A., Yamboliev I.A., Martin J.L., Hickey E., Weber L.A., and Gerthoffer W.T. (1999) A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J. Biol. Chem. 274, 24 211−24 219.
- Horwitz J., Huang Q. and Ding L. (2004) The native oligomeric organization of alphacrystallin, is it necessary for its chaperone function? Exp. Eye Res. 79, 817−821.
- Hu Z" Chen L., Zhang J., Li Т., Tang J., Xu N., Wang X. (2007) Structure, function, properties and role in neurological diseases and other diseases of sHsp22. J. Neurosci. Res. 85, 2071−2079
- Irobi J., Van Impe K., Seeman P., Jordanova A., Direck I., Verpooten N., Michalik A., De Vriendt E., Jacobs A., Van Gerwen V., et al. (2004) Hot spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nature Genetics 36, 597−601.
- Ito H., Okamoto K., Nakayama H., Isobe Т., and Kato K. (1997) Phosphorylation of alphaB-crystallin in response to various types of stress. J. Biol. Chem. 272, 29 934−29 941.
- Javid В., MacAry P.A., and Lehner P.J. (2007) Structure and function: heat shock proteins and adaptive immunity. J. Immunol. 179, 2035−40.
- Kappe G., Franck E., Verschuure P., Boelens W.C., Leunissen J.A. and de Jong W.W. (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspBl-10. Cell Stress Chaperones 8, 53−61.
- Kato K., Ito H., Kamei K., Inaguma Y., Iwamoto I., and Saga, S. (1998) Phosphorylation of alphaB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J. Biol. Chem. 273, 28 346−28 354.
- Kataoka M., Kuwajima K., Tokunaga F., and Goto Y. (1997) Structural characterization of the molten globule of alpha-lactalbumin by solution X-ray scattering. Protein Sci. 6, 422—430.
- Kim M.V., Seit-Nebi A.S., Marston S.B. and Gusev N.B. (2004a) Some properties of human small heat shock protein Hsp22 (Hll or HspB8). Biochem. Biophys. Res.1. Commun. 315, 796−801.
- Kim M.V., Seit-Nebi A.S. and Gusev N.B. (2004b) The problem of protein kinase activity of small heat shock protein Hsp22 (HI 1 or HspB8). Biochem. Biophys. Res. Commun. 325, 649 652.
- Kim M.V., Kasakov A.S., Seit-Nebi A.S., Marston S.B., Gusev N.B. (2006) Structure and properties of K141E mutant of small heat shock protein HSP22 (HspB8, HI 1) that is expressed in human neuromuscular disorders. Arch. Biochem. Biophys. 454. 32−41.
- Kim K.K., Kim R., and Kim S.H. (1998) Crystal structure of a small heat-shock protein. Nature 394, 595−599.
- Klemenz R., Frohli E., Steiger R.H., Schafer R., and Aoyama A. (1991) aB-crystallin is small heat shock protein. Proc. Natl. Acad. Sci. USA 88, 3652−3656.
- Kokke B.P., Leroux M.R., Candido E.P., Boelens W.C., de Jong W.W. (1997) Caenorhabditis elegans small heat-shock proteins Hspl2.2 and Hspl2.3 form tetramers and have no chaperone-like activity. FEBSLett. 433, 228−232.
- Kremneva E., Nikolaeva O., Maytum R., Arutyunyan A.M., Kleimenov S.Yu., Geeves M.A., and Levitsky D.I. (2006) Thermal unfolding of smooth muscle and nonmuscle tropomyosin a-homodimers with alternatively spliced exons. FEBS J. 272, 588−600.
- Kumar L.V., Ramakrishna Т., Rao C.M. (1999) Structural and functional consequences of the mutation of a conserved arginine residue in alphaA-crystallin and alphaB-crystallins. J. Biol Chem. 274, 24 137−24 141.
- Kumarapeli A.R., Wang, X. (2004) Genetic modification of heart: chaperones and the cytoskeleton. J. Mol. Cell Cardiol. 37, 1097−1109.
- Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680−685.
- Lambert H., Charette S.J., Bernier A.F., Guimond A., and Landry J. (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J. Biol. Chem. 274, 9378−9385.
- Lebowitz J., Lewis M.S., Schuck P. (2002) Modem analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067−2079.
- Lelj-Garolla В & Mauk AG (2005) Self-association of a small heat shock protein. J. Mol. Biol. 345, 631−642.
- Leroux M.R., Ma B.J., Batelier G., Melki R., and Candido E.P.M. (1997) Unique Structural Features of a Novel Class of Small Heat Shock Proteins. J. Biol. Chem. 272, 12 847−12 853.
- Leroux M.R., Melki R., Gordon В., Batelier G., and Candido E.P. (1997) Structurefunction studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272, 24 646−24 656.
- Liang J.J. (2000) Interaction between beta-amyloid and alpha B-crystallin. FEBS Lett. 484, 98−101.
- Lindner R.A., Kapur A., and Carver J.A. (1997) The interaction of the molecular chaperone, alpha-crystallin, with molten globule states of bovine alpha-lactalbumin. J. Biol. Chem. 272, 27 722−27 729.
- Litt M., Kramer P., LaMorticella D.M., Murphey W., Lovrien E.W., Weler R.G. (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Human Mol. Genet. 7, 471−474.
- Markov D.I., Pivovarova A.V., Chernik I.S., Gusev N.B., and Levitsky D.I. (2008) Small heat shock protein Hsp27 protects myosin SI from heat-induced aggregation, but not from thermal denaturation and ATPase inactivation. FEBS Lett. 582, 1407−1412.
- Makhatadze G.I., Privalov P.L. (1990) Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J. Mol. Biol. 213, 375−384.
- Makhatadze G.I., Medvedkin V.N., Privalov P.L. (1990) Partial molar volumes of polypeptides and their constituent groups in aqueous solution over a broad temperature range. Biopolymers 30, 1001−1010.
- Makhatadze G.I., Privalov P.L., (1995) Energetics of protein structure. Adv. Protein Chem. 47, 307−425.
- Markovich R.J., Pidgeon C. (1991) Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharm. Res. 8, 663−75.
- Meador W.E., Means A.R., and Quiocho F.A. (1992) Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257, 1251−1255.106.107.108.109.110.111.112.113,114,115,116 117 118 119
- Merrill A.R., Cohen F.S., and Cramer W.A. (1990) On the nature of the structural change of the colicin El channel peptide necessary for its translocation-competent state. Biochemistry 29, 5829−5836.
- Morimoto R.I. (1998). Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Gen. Dev. 12, 3788−3796.
- Muchowski P.J., Hays L.G., Yates J.R., Clark G.I. (1999) ATP and the core «alpha-Crystallin» domain of the small heat-shock protein alphaB-crystallin. J. Biol. Chem. 274, 30 190−30 195.
- Panasenko O.O., Seit Nebi A., Bukach O.V., Marston S.B., and Gusev N.B. (2002) Structure and properties of avian small heat shock protein with molecular weight 25 kDa. Biochim. Biophys. Acta 1601, 64−74.
- Panasenko O.O., Kim M.V., Marston S.B., and Gusev N.B. (2003) Interaction of the small heat shock protein with molecular mass 25 kDa (hsp25) with actin. Eur. J. Biochem. 270, 892−901.
- Pappu R.V., Srinivasan R., and Rose G.D. (2000) The Flory isolated-pair hypothesis is not valid for polypeptide chains: Implications for protein folding. Proc. Natl. Acad. Sci. USA 97, 12 565−12 570.
- Pivovarova A.V., Mikhailova V.V., Chernik I.S., Chebotareva N.A., Levitsky D.I., and
- Gusev N.B. (2005) Effects of small heat shock proteins on the thermal denaturation andaggregation of F-actin. Biochem. Biophys. Res. Commun. 331, 1548−1553.
- Pivovarova A.V., Chebotareva N.A., Chernik I.S., Gusev N.B., and Levitsky D.I. (2007)
- Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by formingsoluble complexes with denatured actin. FEBSJ. 274, 5937−5948.
- Plater M.L., Goode D., and Crabbe M.J. (1996) Effects of site-directed mutations on thechaperone-like activity of alphaB-crystallin. J. Biol. Chem. 271, 28 558−28 566.
- Privalov P.L. and Potekhin S.A. (1986) Scanning microcalorimetry in studyingtemperature-induced changes in proteins. Methods Enzyrnol. 131, 4−51.
- Ptitsyn O.B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83−229.
- Romero P., Obradovic Z., Kissinger C., Villafranca J. E, Garner E., Guilliot S., and
- Dunker A.K. (1998). Thousands of proteins likely to have long disordered regions. Рас.
- Symp. Biocomput. 3, 437−448.
- Romero P., Obradovic Z., and Dunker A.K. (2001) Intelligent data analysis for protein disorder prediction. Artif. Intell. Rev. 14, 447−484.
- Sabelko J, Ervin J, Gruebele M. (1999) Observation of strange kinetics in protein folding. Proc. Natl. Acad. Sci. USA 96, 6031−6036.
- Sadqi M., de Alba E., Perez-Jimenez R., Sanchez-Ruiz J.M., Munoz V. (2009) A designed protein as experimental model of primordial folding. Proc. Natl. Acad. Sci. USA 106,4127−4132.
- Santhoshkumar P. and Sharma K.K., (2001) Phe71 is essential for chaperone-like function in aA-crystallin. J. Biol. Chem. 276, 47 094−47 099.
- Sharma K.K., Kumar R.S., Kumar G.S., and Quinn P.T. (2000) Synthesis and characterization of a peptide identified as a functional element in alphaA-crystallin. J. Biol. Chem. 275, 3767−3771.
- Schwarz P.M., Liggins J.R., Luduena R.F. (1998) P-Tubulin isotypes purified from bovine brain have different relative stabilities. Biochemistry 37, 4687—4692.138.139.140.141.142.143.144.145.146.147,148.149 150,151152
- Schweers О., Schonbrunn Hanebeck E., Marx A., and Mandelkow E. (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J. Biol. Chem. 269, 24 290−24 297.
- Solomaha E. and Palfrey H.C. (2005) Conformational changes in dynamin on GTP binding and oligomerization reported by intrinsic and extrinsic fluorescence. Biochem. J. 391, 601−611.
- Sreelakshmi Y. and Sharma K.K. (2005) Recognition sequence 2 (residues 60−70) plays a role in oligomerization and exchange dynamics of aB-crystallin. Biochemistry 44, 1 224 512 252.
- Sreerama N. and Woody R. W. (2004) Computation and analysis of protein circular dichroism spectra. Methods Enzymol. 383, 318−51
- Sreerama N., Woody R.W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252−60.
- Stamler R., Kappe G., Boelens W., and Slingsby C. (2005) Wrapping the alpha-crystallin domain fold in a chaperone assembly. J. Mol. Biol. 353, 68−79.
- Studer S., Obrist M., Lentze N., and Narberhaus F. (2002) A critical motif for oligomerization and chaperone activity of bacterial alpha-heat shock proteins. Eur. J. Biochem. 269, 3578−3586.
- Sudhakar K. and Fay P.J. (1996) Exposed hydrophobic sites in factor VIII and isolated subunits. J. Biol. Chem. Ill, 23 015−23 021.
- Sun X., Fontaine J.-M., Rest J.S., Shelden E.A., Welsh M.J. (2004) Interaction of human Hsp22 (HspB8) with other small heat shock proteins. J. Biol. Chem. 279, 2394−2402.
- Syme C.D., Blanch E.W., Holt C., Jakes R., Goedert M., Hecht L., Barron L.D. (2002) A Raman optical activity study of rheomorphism in caseins, synucleins and tau. Eur. J. Biochem. 269, 148−156
- Taylor R.P. and Benjamin I.J. (2005) Small heat shock proteins: a new classification scheme in mammals. J. Mol. Cell Cardiol. 38, 433−444.
- Theriault J.R., Lambert H., Chavez-Zobel A.T., Charest G., Lavigne P., and Landry J. (2004) Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J. Biol. Chem. 279, 23 463−23 471.
- Tompa P. (2002) Intrinsically unstructured proteins. Trends in Biochem. Sci. 27, 527−533.
- Turoverov K.K., Khaitlina S.Yu., Pinaev G.P. (1976) Ultra-violet fluorescence of actin. Determination of native actin content in actin preparations. FEBS Lett. 62, 4−7.
- Turoverov K.K. and Kuznetsova I.M. (2003) Intrinsic fluorescence of actin, J. Fluoresc. 13,41−57.
- Uversky V.N. and Ptitsyn O.B. (1996a) Further evidence on the equilibrium «pre-molten globule state»: Four-state GdmCl-induced unfolding of carbonicanhydrase В at low temperature. J. Mol. Biol. 255, 215−228.
- Uversky V.N., Winter S., and Lober G. (1996b) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys. Chem. 60, 79−88.
- Uversky V.N. (1997) Diversity of compact forms of denatured globular proteins. Protein Pept. Lett. 4, 355−367.
- Uversky V.N., Gillespie J.R., and Fink A.L. (2000a) Why are «natively unfolded» proteins unstructured under the physiological conditions? Proteins Struct. Funct. Genet. 41,415−427.
- Uversky V.N. Gillespie J.R., and Fink A.L. (2000c) Why are 'natively unfolded' proteins unstructured under physiologic conditions? Proteins 41, 415—427
- Uversky V.N. (2002) Natively unfolded proteins: A point where biology waits for physics. Prot. Sci. 11, 739−756.
- Wandingerl S.K., Richter K., and Buchner J. (2008) The Hsp90 chaperone machinery. J. Biol. Chem. 283, 18 473−18 477.
- Wang K., Spector A. (1994) The chaperone activity, of bovine alpha crystalline. Interaction with other lens crystallins in native and denatured states. J. Biol. Chem. 269, 13 601−13 608.
- Wang L., Zajac A., Hedhli N., and Depre C. (2004) Increased expression of Hll kinase stimulated glycogen synthesis in the heart. Mol. Cell Biochem. 265, 71−87.
- Weast R. (1976−1977) Handbook of chemistry and physics, 57th edition, CRC Press, Cleveland.
- Weeds A.G. and Taylor R.S. (1975) Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature 257, 54−56.
- Weinreb P.H., Zhen W., Poon A.W., Conway K.A., and Lansbury P.T., Jr. (1996) NACP, a protein implicated in Alzheimer’s diseases and learning, is natively unfolded. Biochemistry 35, 13 709−13 715.
- Williamson M.P. (1994) The structure and function of proline-rich regions in proteins. Biochem. J. 297, 249−260
- Wright P.E. and Dyson H.J. (1999) Intrinsically unstructured proteins: Reassessing the protein structure-function paradigm. J. Mol. Biol. 293, 321−331.
- Yang C, Trent S, Ionescu-Tiba V, Lan L, Shioda T, Sgroi D, Schmidt EV. (2006) Identification of cyclinDl and estrogen-regulated genes contributing to breast carcinogenesis and progression. Cancer Res. 66, 11 649−11 658.
- Zwanzig R. (1995) Simple model of protein folding kinetics. Proc. Natl. Acad. Sci. USA 92, 9801−9804.1. БЛАГОДАРНОСТИ
- Я искренне признателен своему научному руководителю доктору биологических наук, профессору Дмитрию Ивановичу Левицкому за внимательное, чуткое и доброжелательное руководство, а также плодотворное участие в моей судьбе.
- Я благодарен своим коллегам и друзьям из Института биохимии им. А. Н. Баха РАН за неоценимую помощь в работе, поддержку и доброту.
- Я благодарен моим родным и близким за моральную поддержку даже в самые смутные времена.
- Данная работа выполнена при финансовой поддержке грантов РФФИ и Программы «Молекулярная и клеточная биология» Президиума РАН.