Помощь в написании студенческих работ
Антистрессовый сервис

Физико-химические закономерности формирования пленок фталоцианинов металлов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Измерение температурных зависимостей давления насыщенного пара фталоцианинов металлов позволило разработать режимы осаждения пленок фталоцианинов металлов методом вакуумного термического испарения. Установлено, что основными факторами, определяющими фазовый состав пленок и ориентацию молекул относительно поверхности подложки, являются температура подложки и скорость роста пленки, при этом… Читать ещё >

Физико-химические закономерности формирования пленок фталоцианинов металлов (реферат, курсовая, диплом, контрольная)

Содержание

  • Общая характеристика работы
  • Список сокращений
  • Предисловие
  • РАЗДЕЛ I. ЛЕТУЧИЕ ФТАЛОЦИАНИНЫ МЕТАЛЛОВ
  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРНЫХ ДАННЫХ ПО ИССЛЕДОВАНИЮ ТЕРМИЧЕСКИХ СВОЙСТВ И ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ДАВЛЕНИЯ НАСЫЩЕННОГО ПАРА ЛЕТУЧИХ ФТАЛОЦИАНИНОВ МЕТАЛЛОВ
    • 1. 1. Краткая характеристика термических свойств фталоцианинов металлов в конденсированной фазе
    • 1. 2. Методы исследования температурной зависимости давления пара
    • 1. 3. Литературные данные по температурной зависимости давления насыщенного пара фталоцианинов металлов

Актуальность темы

Развитие в последние десятилетия таких новых научных направлений, как химия наноструктурных материалов, супрамолекулярная химия, молекулярная электроника, которые подразумевают направленный молекулярный дизайн органических интеллектуальных материалов, положило начало применению фталоцианинов металлов в качестве активных слоев различных электронных устройств (транзисторов, молекулярных двигателей, электронных переключателей, сенсоров).

Соединения фталоцианинового ряда привлекают внимание по многим параметрам: они химически инертны и термически устойчивы, образуют тонкие поликристаллические или аморфные пленки, технологичны, обладают полупроводниковыми свойствами. Широкий спектр практически полезных свойств фталоцианинов металлов позволяет рассматривать их как эффективные катализаторы окислительно-восстановительных процессов, материалы для нелинейной оптики и фотодинамической терапии опухолей. К настоящему времени уже реализовано применение фталоцианинов в качестве красящих материалов для лазерных принтеров, активных слоев в оптических устройствах хранения информации и газовых сенсорах. Для разработки и применения большинства из перечисленных устройств необходимо, чтобы фталоцианин был представлен в виде тонких пленок.

Для создания активных слоев различных электронных устройств необходимы как фундаментальные исследования процессов получения и свойств нанометровых тонких пленок фталоцианинов, так и целенаправленные разработки в области синтеза их производных. Интенсивное развитие пленочных технологий во второй половине XX века обусловило значительные успехи в получении монокристаллических, поликристаллнческих и аморфных пленок с контролируемым составом и структурным упорядочением. Последнее обеспечивает проявление новых свойств и способствует переходу на высокие функциональные уровни элементов.

Пленки, образованные из молекулярных соединений, имеют ряд принципиальных отличий от слоев металлов, оксидов или классических неорганических полупроводников. Во-первых, собственные размеры исходных молекул могут достигать нескольких десятков ангстрем. Во-вторых, для них характерен преимущественно Ван-дер-Ваальсовый характер связи как между молекулами в пленке, так и между молекулами пленки и подложкой. В-третьих, они отличаются зонной структурой и типом формирования носителей зарядов. Перечисленные особенности во многом определяют как функциональные параметры, так и области использования молекулярных слоев. Сравнительно низкая механическая прочность, сильная температурная и ориентационная зависимость функциональных параметров, многообразие типов упаковок и ярко выраженные тенденции к самоорганизации являются следствием Ван-дер-Ваальсового характера взаимодействия в молекулярных слоях. Следует также отметить и серьезные методические проблемы, связанные с необходимостью «глубокой» очистки исходных соединений.

Сегодня большое внимание исследователей привлекают процессы самоорганизации на поверхности различных материалов, которые обеспечивают их структурную ориентацию. Особенности структуры (тип упаковки молекул в монокристаллите, ориентация и плотность упаковки монокристаллитов в пленке), в свою очередь, определяют анизотропию спектральных и электрофизических параметров пленок. Это делает актуальными работы по разработке методов управления структурой таких пленок и их использованию при конструировании функциональных устройств оптои наноэлектроники.

Поэтому исследование закономерностей формирования тонких пленок фталоцианинов металлов с контролируемой ориентацией на поверхности подложки и зависимости их свойств от особенностей строения является актуальной задачей.

Целью работы является выявление фундаментальных физико-химических закономерностей получения ориентированных пленок фталоцианинов металлов и исследование влияния структурных особенностей на их характеристики.

Для достижения поставленной цели решались следующие задачи:

— изучение физико-химических свойств фталоцианинов металлов, необходимых для разработки режимов осаждения их пленок, включая измерение температурных зависимостей давления насыщенного пара и расчет термодинамических параметров процессов сублимации летучих фталоцианинов металлов и исследование жидкокристаллических свойств октаи тетразамещенных фталоцианинов металлов с алкоксии алкилтиозаместителями в ароматическом кольце;

— разработка подходов к определению ориентации пленок фталоцианинов металлов методом поляризационной спектроскопии комбинационного рассеяния (КР) света, детальный анализ колебательных (ИК и КР) спектров фталоцианинов металлов;

— экспериментальное и теоретическое исследование процессов формирования пленок фталоцианинов металлов на поверхности, полученных методом вакуумного термического осаждения;

— систематизация собственных и литературных данных с целью установления зависимости структурных особенностей пленок летучих фталоцианинов металлов от параметров процесса осаждения, включая исследование влияния электрического поля, приложенного в процессе их осаждения;

— выявление закономерностей получения ориентированных пленок фталоцианинов металлов, проявляющих жидкокристаллические свойства. Исследование зависимости их структурных особенностей от режимов температурной обработки, типа подложек и границ раздела;

— систематическое исследование зависимости структурных особенностей пленок от природы периферических заместителей в лигандах и геометрии комплексов;

— исследование влияния структурных особенностей пленок фталоцианинов металлов, образующих колончатую гексагональную мезофазу, на их сенсорные и электрофизические свойства.

Научная новизна. Реализован комплексный подход к целенаправленному получению ориентированных пленок фталоцианинов металлов методом вакуумного термического испарения и методом центрифугирования с последующей самоорганизацией молекул фталоцианина на поверхности подложки.

Впервые измерена температурная зависимость давления насыщенного пара ряда незамещенных, гексадекафторзамещенных и тетра-трет-бутилзамещенных фталоцианинов * металлов и рассчитаны значения термодинамических параметров процесса сублимациивыявлены основные закономерности изменения летучести фталоцианинов в зависимости от типа заместителя в кольце, стехиометрии и строения комплексов.

Проведена интерпретация КР-спектров на основе расчета частот и форм нормальных колебаний фталоцианинов меди и алюминия. Впервые анализ колебаний фталоцианина меди выполнен на основе поляризационных измерений монокристалла и измерения изотопных сдвигов в колебательных спектрах при замещении всех атомов азота в молекуле фталоцианина на изотоп.

Разработана методика определения ориентации пленок фталоцианинов металлов методом спектроскопии комбинационного рассеяния.

Проведено теоретическое исследование взаимодействия системы молекул фталоцианина меди с поверхностью подложки с помощью пропагаторной модификации метода молекулярной динамики.

Разработана новая методика осаждения пленок фталоцианинов металлов, имеющих неплоское строение, в электрическом поле, позволяющая изменять ориентацию молекул фталоцианинов относительно поверхности подложки.

Синтезировано 10 новых фталоцианинов меди, свинца, диспрозия, самария, гадолиния, образующих колончатую гексагональную мезофазу в широком интервале температур. Впервые исследованы жидкокристаллические (ЖК) свойства 16 фталоцианинов металлов.

Проведено систематическое экспериментальное исследование и выявлены закономерности получения ориентированных пленок фталоцианинов металлов с различными заместителями в ароматическом кольце, образующих колончатую гексагональную мезофазу. Определены условия формирования пленок с планарным и гомеотропным упорядочением колонок из молекул фталоцианинов относительно поверхности подложки.

Практическая значимость. Совокупность термодинамических параметров и данных о летучести фталоцианинов металлов является существенным вкладом в исследование термических свойств координационных соединений с органическими лигандами и может использоваться в качестве справочного материала.

Разработаны режимы осаждения ориентированных слоев фталоцианинов металлов различных модификаций. Полученные результаты были использованы в ИНХ СО РАН для получения слоев на подложках из кремния и на различных металлизированных поверхностях, а также компанией Spansion (USA) для получения гетероструктур на основе фталоцианинов металлов.

Проведенный расчет частот и форм колебаний на примере фталоцианинов меди и алюминия позволяет проводить интерпретацию спектров комбинационного рассеяния и ИК-спектров различных фталоцианинов металлов.

Разработанные методики, основанные на анализе поляризованных КР-спектров, позволяют определять ориентацию молекул не только в пленках фталоцианинов металлов, но также могут быть использованы для определения ориентации ряда молекулярных пленок как на поверхности подложек из любых материалов, так и между двумя подложками.

Выявленные закономерности получения ориентированных пленок жидкокристаллических фталоцианинов металлов позволяют получать пленки, характеризующиеся анизотропией проводимости и подвижности носителей зарядов.

На защиту выносятся:

— данные по исследованию температурных зависимостей давления насыщенного пара и определению термодинамических параметров процесса сублимации летучих фталоцианинов металлов;

— данные по расчету и интерпретации колебательных спектров фталоцианинов металлов, основанные на анализе поляризованных спектров растворов, монокристалла ß—фталоцианина меди (И) (?-CuPc) и его изотопозамещенного аналога;

— методика определения угла наклона молекул относительно поверхности подложки методом поляризационной КР-спектроскопии;

— совокупность установленных физико-химических закономерностей осаждения ориентированных пленок летучих фталоцианинов металлов методом вакуумного термического испарения, включая осаждение в электрическом поле;

— выявленные взаимосвязи между параметрами процессов, осаждения и структурными особенностями полученных тонких пленок фталоцианинов металлов;

— данные по исследованию жидкокристаллических свойств фталоцианинов металлов;

— систематические исследования по выявлению физико-химических закономерностей образования ориентированных пленок фталоцианинов металлов с различными заместителями, образующих колончатую гексагональную мезофазу;

— результаты анализа зависимости сенсорных и электрофизических свойств пленок 10 жидкокристаллических фталоцианинов металлов от их ориентации относительно поверхности подложки.

Личный вклад автора. В цикле исследований, составляющих данную диссертационную работу, автору принадлежит основная роль в выборе направлений исследования, критическом анализе имеющейся литературы, разработке и реализации необходимых экспериментальных подходов, интерпретации и обобщении полученных результатов, формулировке основных положений-' и выводов, а также в написании диссертации. Основная экспериментальная часть работы по исследованию летучих фталоцианинов и их пленок выполнена совместно с аспирантами и студентами лаборатории химии летучих координационных и металоорганических соединений. Исследования температурной зависимости давления насыщенного пара фталоцианинов проводились совместно с сотрудником лаборатории к.х.н. П. П. Семянниковым. Разработка оригинальной методики исследования ориентации^ пленок фталоцианинов проводилась автором в лаборатории оптических исследований ИНХ СО РАН совместно с д.х.н. Б. А. Колесовым. Расчет колебательных спектров фталоцианинов выполнен в сотрудничестве с к.ф.-м.н. В. Г. Киселевым ИХКиГ СО РАН. Теоретическое моделирование процессов роста пленок летучихфталоцианинов было проведено с использованием комплекса программ, разработанных к.ф.-м.н. И. Ф. Головневым в ИТПМ СО РАН.

Работа по синтезу и исследованию свойств жидкокристаллических фталоцианинов металлов выполнена совместно с коллегами из Gebze Institute of Technology (Гебзе, Турция) при непосредственном участии автора. Экспериментальная работа по разработке методов получения и исследованию ориентированных пленок ЖК фталоцианинов проводилась автором. В работе использованы материалы по исследованию сенсорных и электрофизических свойств пленок фталоцианинов, полученные лично автором в Sheffield Hallam University (Шеффилд, Великобритания)' и University of London (Лондон, Великобритания).

Под руководством соискателя выполнено и защищено 2 дипломные и 3 курсовые студенческие работы.

Всем моим соавторам приношу искреннюю признательность за плодотворное сотрудничество.

Апробация работы. Основные результаты диссертационной работы докладывались на Всероссийских конференциях и международных конференциях в виде устных и стендовых докладов: The 7th International Conference on Organized Molecular Films (Numana, Italy, 1995), Национальная конференция по применению Рентгеновского, Синхротронного излучения, Нейтронов и Электронов для исследования материалов, РСПЭ'97 (Москва-Дубна, 1997), the Third Asian symposium on Organised Molecular films for electronics and Photonics (Seoul, South Korea, 2000), the First International Conference on Porphyrins and Phthalocyanines, ICPP-1, (Dijon, France, 2000), 8th European Conference on Organized Films (Otranto, Italy, 2001), International Conference on thin organic films (Smolenice Castle, Slovakia, 2002), X АРАМ topical seminar and III Conference «Materials of Siberia: Nanoscience and technology» (Novosibirsk, Russia, 2003), IX International Conference on chemistry of porphyrins and their analogues, ICPC-IX (Suzdal, Russia, 2003), IX International seminar on inclusion compounds, ISIC-9 (Novosibirsk, Russia, 2003), Вторая Всероссийская конференция молодых ученых «Материаловедение, технологии и экология в третьем тысячелетии» (Томск, Россия, 2003), 9th European Conference on.

Organized Films (Valladolid^ Spain, 2004), The 2004 younger European chemists' conference (Turin, Italy, 2004), 40th IUPAC Congress. Abstracts. Innovation in Chemistry (Beijing, China, 2005), IVth International Conf. on Porphyrins and Phthalocyanines (Rome, Italy, 2006) — 41st IUPAC World Chemistry Congress (Turin, Italy, 2007), 2nd International advanced materials forum for young scientists and ICYS workshop (Tsukuba, Japan, 2007), 4th European Conference on Organic Electronic and Related Phenomena (Varenna, Italy, 2007), VI Школа-конференция молодых ученых стран СНГ по химии порфиринов и родственных соединений (Одесса, Украина, 2007), 5th International Conference on Porphyrins and Phthalocyanines (Moscow, Russia, 2008), XXII National Chemistry Congress (Magusa, Turkey, 2008), IVth International Conference on Molecular Materials MOLMAT2010 (Montpellier, France, 2010), а также на научных семинарах ИНХ СО РАН, университета г. Шеффилд (Великобритания), технического университета (г. Гебзе, Турция) и университета г. Тюбинген (Германия).

Работа была поддержана Российской академией наук (программа отделения РАН- «Химия и физикохимия супрамолекулярных систем и атомных кластеров»), РФФИ (проекты 98−03−32 382, 04−03−32 284, 09−03−91 219-СТ, а также фондами INTAS (гранты YSF 2002;315 и 2002;315/3) и NATO ' (гранты CBP.NR.CLG 981 510 и 983 171), Royal Society (2005/R2) и DFG (РЕ 546/4−1), а, также фондом содействия отечественной науке.

Публикации. Соискатель имеет 90 опубликованных работ по теме диссертации, в том числе: статей в отечественных и международных журналах — 48 (47 из списка ВАК), глав в коллективной монографии — 2, тезисов конференций — 40.

Объем и структура работы. Диссертация состоит из введения, двух разделов, которые содержат 10 глав, включая литературный обзор, выводов, списка цитированной литературы (412 наименований) и приложения. Объем работы — 305 страниц, в том числе 94 рисунка и 42 таблицы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

В работе установлены общие закономерности формирования пленок летучих фталоцианинов металлов МРс, МРс (/-Ви)4 и МРсР16 (М=Си (П), Zn (ll), Со (И), У (1У)0), а также фталоцианинов металлов с длинными углеводородными заместителями, образующих колончатую гексагональную мезофазу, на подложках из различных материалов. Разработан комплексный подход к получению ориентированных пленок фталоцианинов металлов, включающий анализ физико-химических свойств исходных соединений, разработку методик осаждения пленок, установление зависимостей между условиями осаждения, молекулярной структурой фталоцианинов и структурными особенностями и характеристиками пленок. На основе полученных экспериментальных и теоретических результатов сделаны следующие основные выводы.

1. Разработана методика, основанная на анализе соотношения интенсивностей колебаний в поляризационных КР-спектрах пленок фталоцианинов металлов, которая позволяет количественно оценить угол наклона плоской молекулы относительно поверхности подложки, не прибегая к дополнительным данным рентгеноструктурного анализа и других методов. Предложенный метод характеризуется высоким пространственным разрешением и позволяет исследовать образцы размером несколько микрон и проводить анализ пленок как на подложках из любых материалов, так и между подложками. Детальный анализ колебательных спектров фталоцианина меди (И) и фталоцианинатоалюминий (Ш)хлорида, выполненный на основании квантово-химических расчетов и подтвержденный широким набором экспериментальных данных, включая измерение поляризационных КР-спектров монокристалла фталоцианина меди и данными по изотопозамещению всех атомов азота в молекулах фталоцианинов, позволил сделать отнесение колебаний по типам симметрии в КР-спектрах фталоцианинов металлов, что является необходимым шагом при разработке методики определения ориентации молекул в пленках.

2. Исследованы процессы сублимации фталоцианинов металлов, установлены основные закономерности изменения упругости пара в зависимости от природы металла-комплексообразователя и заместителя в кольце. Методом Кнудсена впервые измерены температурные зависимости давления насыщенного пара ряда фталоцианинов металловрассчитаны термодинамические параметры процессов сублимации. Показано, что фталоцианинаты металлов характеризуются меньшей летучестью по сравнению с фталоцианином без металла.

Введение

дополнительных лигандов в аксиальные положения, как правило, — приводит к уменьшению летучести фталоцианинов металлов.

Введение

16 фтор-заместителей в кольцо приводит к понижению летучести фталоцианинов, имеющих плоское строение, по сравнению с их незамещенными аналогами и к незначительному повышению летучести в случае УОРсБ^.

3. Измерение температурных зависимостей давления насыщенного пара фталоцианинов металлов позволило разработать режимы осаждения пленок фталоцианинов металлов методом вакуумного термического испарения. Установлено, что основными факторами, определяющими фазовый состав пленок и ориентацию молекул относительно поверхности подложки, являются температура подложки и скорость роста пленки, при этом материал подложки играет определяющую роль только в случае тонких пленок толщиной до 5 нм. Структурное упорядочение пленок а-МРс и (3-МРс (М=Со (Н), Си (И), 2п (Н)) толщиной более 5 нм определяется особенностями кристаллического строения фталоцианинов металлов. Независимо от типа подложек, при определенных условиях (невысокая скорость роста 0.2−1 А/с, отсутствие электромагнитных полей, отсутствие взаимодействия с подложкой и др.) кристаллиты предпочтительно растут вдоль поверхности подложки, образуя сплошные слои. При этом выделенное направление характеризуется наибольшим межплоскостным расстоянием. Угол наклона молекул МРс при этом составляет 60−65° относительно поверхности подложки в случае пленок а-модификации и 40−45° - в случае (5-модификации МРс.

4. Обнаружено, что фторирование фталоцианинов и введение /ирешбутилзаместителей во фталоцианиновое кольцо препятствует образованию ориентированных пленок. В пленках гексадекафторзамещенных фталоцианинов меди и кобальта толщиной 10−200 нм, при температуре подложки близкой к комнатной образуются аморфные пленки, при повышении температуры подложки до 100−200 °С формируются поликристаллические неориентированные пленки, в то время как пленки незамещенных фталоцианинов, осажденные при тех же самых условиях, характеризуются преимущественной ориентацией. В случае гексадекафторзамещенных фталоцианинов ванадила, имеющих неплоское строение, получаются пленки с преимущественной перпендикулярной ориентацией молекул относительно поверхности подложки.

5. На основании проведенного теоретического исследования взаимодействия системы молекул фталоцианина меди с поверхностью подложки с помощью пропагаторной модификации метода молекулярной динамики было продемонстрировано значительное влияние энергии вращения на ориентацию молекул относительно поверхности подложки. Это позволило предположить, что осаждение при воздействии внешних полей может оказать влияние на структурные особенности получаемых пленок.

6. Показано, что при осаждении пленок фталоцианинов металлов в электрическом поле напряженностью 1.5−2.5 кВ/мм, имеющих плоское строение (СиРс, 2пРс), изменяется только направление упорядочения кристаллитов на поверхности подложки, в то время как в случае фталоцианинов ТЮРс и А1С1Рс, имеющих неплоское строение, изменяется не только направление упорядочения кристаллитов, но также и угол наклона фталоцианинового макроцикла относительно поверхности подложки. Угол наклона в пленках ТЮРс и А1С1Рс, осажденных без электрического поля, составляет 60° и 20°, соответственно. При наложении электрического поля угол наклона молекул увеличивается в пленках ТЮРс до 90°, а в пленках А1С1Рс до 80°.

7. В результате исследования жидкокристаллических свойств 16 тетраи окАИДзамещенных фталоцианинов свинца (П), никеля (Н) и меди (Н) с алкилтио-, алкоксии полиоксозаместителями в периферийных положениях ароматического кольца и о/с/ийзамещенных бисфталоцианинов лютеция и диспрозия с алкилтиозаместителями с помощью комплекса методов РФА, поляризационной микроскопии и дифференциального термического анализа установлено, что синтезированные фталоцианины образуют колончатую гексагональную мезофазу в широком интервале температур. Температуры фазовых переходов зависят от центрального металла-коплексообразователя и типа заместителя во фталоцианиновом кольце.

8. Способность ЖК фталоцианинов металлов к самопроизвольному упорядочению и формированию ими колончатых надмолекулярных ансамблей с двумерным гексагональным упорядочением позволила получить упорядоченные пленки методом центрифугирования с последующей температурной обработкой, режим которой выбирался на основании данных исследования фазовых переходов. Показано, что основным фактором, определяющим гомеотропное или планарное упорядочение пленок, является тип границы раздела. После температурной обработки все исследованные фталоцианины образуют пленки с планарным упорядочением на поверхности одной подложки из стекла, кремния, 1ТО, Си н Аи, если второйграницей раздела является воздух, и с гомеотропным упорядочением между двумя подложками из одинаковых или различных материалов. Тип упорядочения пленок не зависит от природы и количества заместителей, если отсутствует специфическое взаимодействие между молекулой фталоцианина и подложкой. Закономерности формирования пленок фталоцианинов свинца, имеющих неплоское строение, и бисфталоцианинов редкоземельных элементов не отличаются от закономерностей формирования пленок фталоцианинов меди (Н) и никеля (Н).

9. Показано, что ориентация молекул фталоцианинов металлов относительно поверхности подложки является значимым фактором, определяющим сенсорные и электрофизические свойства пленок этих соединений, образующих колончатую мезофазу.

Проведенный анализ зависимости сенсорных свойств на примере жидкокристаллических октазамещенных фталоцианинов никеля (П) показал, что сенсорный отклик на пары летучих органических соединений, измеренный методами поверхностного плазмонного резонанса и микровзвешивания, пленок с планарным упорядочением в 2−9 раз выше по сравнению с откликом неупорядоченных пленок.

— Удельная проводимость пленок октазамещенных фталоцианинов никеля и цинка, имеющих планарное упорядочение, измеренная в направлении параллельном поверхности подложки, увеличивается на 1−2 порядка, при этом подвижность носителей заряда возрастает на 1−3 порядка по сравнению с неупорядоченными пленками. В пленках октазамещенных фталоцианинов лютеция и диспрозия с гомеотропным упорядочением удельная проводимость, измеренная в направлении перпендикулярном поверхности подложки, возрастает на 2 порядка по сравнению с неупорядоченной пленкой, при этом разница между значениями проводимости, измеренными в направлении перпендикулярном и параллельном поверхности подожки, составляет 3−4 порядка. Установлено, что в пленках октазамещенного фталоцианина свинца, осажденных между двумя электродами из золота и характеризующихся гомеотропным упорядочением, наблюдается эффект электрического переключения, в то время как в пленках с неориентированной структурой, этот эффект отсутствует.

БЛАГОДАРНОСТИ.

Приношу благодарность всем моим соавторам и коллегам, без сотрудничества с которыми работа могла бы не состояться. Особенно я благодарна моему научному консультанту д.х.и., профессору Игорю Константиновичу Игуменову, благодаря общению с которым рождались новые научные идеи и начинания, а также д.х.н. Борису Алексеевичу Колесову, который является моим первым учителем в области колебательной спектроскопии, и в лаборатории которого я проработала в течение 5 лет. Хочется выразить особую признательность д.ф.-м.н. Юрию Генриховичу Кригеру, который явился инициатором развития в нашем институте такого нового научного направления, как молекулярная электроника, что положило начало моей исследовательской работе в области исследования пленок фталоцианинов металлов.

Выражаю искреннюю благодарность к.х.н. Петру Петровичу Семянникову за проведение экспериментов по исследованию температурной зависимости давления насыщенного пара фталоцианинов, к.ф.-м.н. Виталию Георгиевичу Киселеву (ИХКиГ СО РАН) за проведение квантово-химических расчетов, необходимых для отнесения колебательных спектров, к.ф.-м.н. Лилии Андреевне Шелудяковой, Нине Иннокентьевне Алферовой и Ирине Викторовне Юшиной за помощь в проведении исследований фталоцианинов металлов спектральными методами, д.ф.-м.н. Сергею Александровичу Громилову за проведение исследований пленок методом РФА, к.ф.-м.н. Игорю Федоровичу Головневу (ИТПМ СО РАН) за помощь в проведении расчетов методом молекулярной динамики. Хочется поблагодарить моих аспирантов Евгения Кольцова и Владимира Пляшкевича, а также сотрудников нашей лаборатории Сергея Владимировича Трубина и Виталия Петровича Махнанова за всяческую поддержку и помощь в выполнении экспериментов по осаждению пленок. Выразкшо свою искреннюю признательность д.х.н., профессору Станиславу Васильевичу Ларионову за полезные советы в ходе написания диссертации.

Часть работы была выполнена во время стажировок в зарубежных университетах Великобритании, Германии и Турции. Своим коллегам из Sheffield Hallam University и Queen Mary, University of London (Великобритания) приношу искреннюю благодарность за помощь в проведении эллидсометрических исследований и исследований сенсорных свойств пленок фталоцианинов металлов. Коллективу лаборатории Prof. V. Alisen (Gebze Institute of Technology, Турция) приношу благодарность за предоставление ряда производных фталоцианинов металлов для исследования и ресурсов их лаборатории для синтеза соединений в ходе нашей многолетней совместной работы. Благодарю сотрудников лаборатории Prof. T. Chasse (Tubingen University, Германия) за помощь в проведении экспериментов по исследованшо процессов осаждения фталоцианинов металлов в электрическом поле.

Заключение

.

Таким образом, в данной главе был проведен анализ зависимости электрофизических характеристик пленок жидкокристаллических фталоцианинов от их структурных особенностей. Подтвержден вывод о том, что упорядочение пленок является значимым фактором, определяющим электрофизические свойства пленок фталоцианинов металлов. Показано, что удельная проводимость пленок октазамещенных фталоцианинов никеля и цинка, имеющих планарное упорядочение, измеренная в направлении параллельном поверхности подложки, увеличивается на 1−2 порядка, при этом подвижность носителей заряда возрастает на 1−3 порядка по сравнению с неупорядоченными пленками. В пленках октазамещенных фталоцианинов лютеция и диспрозия с гомеотропным упорядочением удельная проводимость, измеренная в направлении перпендикулярном поверхности подложки, возрастает на 2 порядка по сравнению с неупорядоченной пленкой, при этом разница между значениями проводимости, измеренной в направлении перпендикулярно и параллельно поверхности подожки, составляет 3−4 порядка. Установлено, что в пленках октазамещенного фталоцианинов свинца, осажденного между двумя электродами из золота, характеризующихся гомеотропным упорядочением, наблюдается эффект электрического переключения, в то время как в пленках с неориентированной структурой, этот эффект отсутствует.

Показать весь текст

Список литературы

  1. Braun A., Tcherniac J. Uber die Produkte der Einwirkung von Acetanhydrid auf Phthalamid // Ber. Dtsch. Chem. Ges. 1907. — V. 40, N 2. — P 2709−2714.
  2. DeDiesbaeh H., Von der Weid E. Quelques sels complexes des o-dinitriles avec le cuivre et la pyridine // Helv. Chim. Acta 1927. — V. l 0, N 1. — P. 886−888.
  3. The Porphyrin Handbook. Ed. by Kadish K.M., Smith K.M., Guilard R. V. l5−20. San Diego, CA: Academic Press, 2003.
  4. Phthalocyanines: Properties and Applications. Ed. by Leznoff C.C., Lever A.B.P. V. 14. Weinheim, Germany: VCH, 1989, 1992, 1993, 1996.
  5. Robertson J.M. An X-Ray study of the structure of the phthalocyanines. Part I. The metal-free, nickel, copper and platinum compounds //J. Chem. Soc. 1935. -P.615−621.
  6. Robertson J.M. An X-Ray study of the structure of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound // J. Chem. Soc. 1936. -P.1195−1209.
  7. Linstead R.P., Robertson J.M. The stereochemistry of metallic phthalocyanines // J.Chem. Soc. 1936.-P.1736−1738.
  8. Robertson J.M., Woodward I. An X-Ray study of the structure of the phthalocyanines. Part IV. Direct quantitative analysis of the platinum compound // J. Chem. Soc. 1940. -P.36−48.
  9. Brown C.J. Crystal structure of ?-copper phthalocyanine // J. Chem. Soc. A. 1968. -N 10. -P.2488−2493.
  10. Brown C.J. Crystal structure of platinum phthalocyanine: a re-investigation // J. Chem. Soc. A. 1968. -N 10. -P.2494−2498.
  11. Mason R., Williams G.A., Fielding P.E. Structural chemistry of phthalocyaninato-cobalt (II) and -manganese (II) // J. Chem. Soc. Dalton Trans. 1979. — N 4. — P.676−683.
  12. Kirner J.E., Dow W., Scheidt W.R. molecular stereochemistry of two intermediate-spin complexes. Iron (II) phthalocyanine and manganese (II) phthalocyanine // Inorg. Chem. 1976. — V.14, N 7. -P.1685−1690.
  13. Friedel M.K., Hoskin B.F., Martin R.L. A new metal (II) phthalocyanine structure: X-ray and Mossbauer Studies of the triclinic tin (II) phthalocyanine // J. Chem. Soc. Chem. Communs. 1970. — N 7. — P.400−401.
  14. Jones J. G., Twigg M.V. A Fluorinated Iron phthalocyanine // Inorg. Chem. 1969. -V. 8, N9.-P. 2018−2019.
  15. Birchall J.M., Haszeldine R.N., Morley J.O. Polyfluoroarenes. Part XIV. Synthesis of Hologenophthalocyanines // J. Chem. Soc. C. 1970. — P. 2667−2672.
  16. Bao Z., Lovinger A.J., Brown J. New Air-Stable n-Channel organic thin film transistors // J. Am. Chem. Soc. 1998. — V. 120, № 1. — P. 207−208.
  17. Hiller S., Schlettwein D., Armstrong N.R., Wohrle D. Influence of surface reactions ionisation gradients on junction properties of Fi6PcZn // J. Mater. Chem. 1998. — V.8, N 4.-P. 945−954.
  18. Suito E., Uyeda N. Solvent effects on crystal growth and transformation of zinc phthalocyanine // J. Phys. Chem. 1980. — V.84, N 24. -P.3223−3230.
  19. Abkowitz M., Chen I. Exchange effects on the ESR of metal phthalocyanine metalfree phthalocyanine solid solution // J. Chem. Phys. — 1971. — V.54, N 2. — P.811−813.
  20. Elshereaiy e., Abd El-Ghaffar M.A. Electrical and thermal studies on copper complexes of phthalocyanine and biphthalocyanine and their derivatives // Thermochim. Acta. 1991. — V.186, N 2. — P.179−185.
  21. Mindorff M.S., Brodie D.E. Some properties of metal-free amorphous phthalocyanine vacuum deposited films // Can. J. Phys. 1981. — V.59, N 2. — P.249−254.
  22. Sharp J.H., Miller R.L. Kinetics of the thermal a→{3 polymorphic conversion in metal-free phthalocyanine // J. Phys. Chem. 1968. — V.72, N 9. — P.3335−3337.
  23. Wihksne К., Newkirk A.E. Electrical conductivity of a- and p-phthalocyanines // J. Chem. Phys. 1961. — V.34, N 6. — P.2184−2185.
  24. Harrison S.E., Ludevvig K.H. Conductivity and crystal phase change in phthalocyanine // J. Chem. Phys. 1966. — V.45, N 1. — P.343−348.
  25. A.H., Франк-Каменецкая O.B. Кристаллическая структура соединений. фталоцианина с металлами. Связь с особенностями переноса заряда // Проблемы кристаллохимии. М.: Наука, 1988. — С.117−135.
  26. Ashida M., Uyeda N., Suito E. Unit cell metastable-form constants of various phthalocyanine // Bull. Chem. Soc. Jpn. 1966. — V.39, N 12. — P.2616−2624.
  27. Heutz S., Bayliss S. M., Middleton R. L., Rumbles G., Jones T. S. Polymorphism in Phthalocyanine Thin Films: Mechanism of the a—>{3 transition // J. Phys. Chem. В -2000. V. 104, N 30. — P. 7124−7129.
  28. Lebedeva N.S., Parfenyuk E.V., Malkova E.A. X-ray diffraction and IR spectral characteristics of zinc (II)tetra-tert-butylphthalocyanine // Spectrochimica Acta. A. -2007. V. 68, N 3. — P. 491−494.
  29. Brinkmann M., Turek P., Andre J.J. EPR study of the x, a and p structures of lithium phthalocyanine // J. Mater. Chem. 1998. — V. 8, N 3. — P. 675−685.
  30. Hiller W., Strahle J., Kobel W., Hanack M. Synthesis and properties of one-dimentional conductors. 14. Polymorphism, conductivity and crystal structure of oxo-phthalocyaninato titanium (IV) // Z. Kristallogr. 1982. — V. 159, N 1−4. — P 173−183.
  31. Oka K., Okada O., Nukada K. Study of the Crystal Structure of Titanylphthalo-cyanine by Rietveld Analysis and Intermolecular Energy Minimization Method // Jpn. J. Appl. Phys. 1992. -V. 31, N 7. — P. 2181−2184.
  32. Saito T., Sisk W., Kobayashi T., Suzuki S., Iwayanagi T. Photocarrier generation processes of phthalocyanines studied by photocurrent and electroabsorption measurements // J. Phys. Chem. 1993.-V.97,N30.-P. 8026−8031.
  33. Schlettwein D., Graaf H., Meyer J.-P., Oekermann T., Jaeger N.I. Molecular Interactions in Thin Films of Hexadecafluorophthalocyaninatozinc (Fi6PcZn) as
  34. Compared to Islands of AyV'-Dimethylperylene-3,4,9,10-biscarboximide (MePTCDI) // J. Phys. Chem.B. 1999.-V. 103, N16.-P. 3078−3086.
  35. ., Андре Ж.-Ж. Молекулярные полупроводники.-М.: Мир, 1988.-345 с.
  36. Lawton Е.А. The thermal stability of copper phthalocyanine // J. Phys. Chem. -1958. V.62, N 3. -P.384.
  37. Seoudi R., El-Bahy, Sayed El. FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes // J. Mol. Struct. 2005. — V. 753, N 1−3. — P. 119−126.
  38. Griffiths C.H., Walker M.S., Goldstein P. Polymorphism in Vanadyl Phthalocyanine //Mol. Cryst. Liq. Cryst. 1976. -V. 33. — P. 149−170.
  39. Venugopala Reddy K.R., Keshavayya J., Seetharamappa J. Synthesis, spectral, magnetic and thermal studies on symmetrically substituted metal (II) 1,3,8,10,15,17,22,24-octachlorophthalocyanines // Dyes Pigments. 2003. — V. 59, N 3. -P. 237−244.
  40. Venugopala Reddy K.R., Keshavayya J. Synthesis of symmmetrically substituted octabromophthalocyanine pigments and their characterization // Dyes Pigments 2002. -V. 53, N3,-P. 187−194.
  41. A.B. Термодинамическая химия парообразного состояния. Д.: Химия, 1970.-207с.
  42. JI. Н., Коробов М. В., Журавлева JI. В. // Масс-спектральные термодинамические исследования. -М.: Изд. МГУ. 1985.
  43. В.М., Семянников П. П. Источник ионов и высокотемпературный источник молекулярного пучка к масс-спектрометру МИ-1201 В // ПТЭ. 1991. — N 4. — С.129−132.
  44. Curry J., Shaw W. The vapor pressure of copper phthalocyanine // J. Phys.Chem. -1965. V.69, N 1. -P.344−346.
  45. Bonderman D., Cater E.D., Brnnet W.E. Vapor pressure, mass spectra, magnetic susceptibilities and thermodynamics of some phthalocyanine compounds // J. Chem. Eng. Data. 1970.- V.15, N 3.-P.396−400.
  46. Yase K., Takahashi Y., Ara-Kato N., Kawazu A. Evaporation rate and saturated vapor pressure of functional organic materials // Jpn. J. Appl. Phys. 1995. — V.34, N 2A. -P.636−637.
  47. Ю.Х., Лопаткина И. Л., Кирюхин И. А., Красулин Г. А. Определение давления пара ряда фталоцианинов // Ж. Физ.хим. 1975. — Т. 49, N 1. — С. 252−253.
  48. Ю.Х., Приселков Ю. А., Лопаткина И. Л., Маркова И. Я. Давление насыщенного пара фталоцианинов кремния и германия // Ж. Физ. хим. 1972. — Т. 46, N4.-С. 857−859.
  49. Edwards L., Gouterman М. Porphyrins: XV. Vapor absorption spectra and stability: Phthalocyanines // J. Mol. Spectr. 1970. — V. 33, № 2. ~ P. 292−310.
  50. Yase K., Yoshida Y. Quantitative estimation of organic molecular beams by using quadrupole mass spectroscopy // Thin Solid Films 1996. — V. 281−282, N 1−2. — P. 525 528.
  51. Schlettwein D., Tada H., Mashiko S. Substrate-Induced order and multiplayer epitaxial growth of substituted phthalocyanine thin films // Langmuir 2000. — V. 16, N 6.-P. 2872−2881.
  52. Kamiya K., Momose M., Kitamura A., Harada Y., Ueno N., Hasegawa S., Miyazakij >
  53. Kanai M., Kawai Т., Motai K., Wang X.D., Iiashizume Т., Sakura T. Scanning tunneling microscopy observation of copper-phthalocyanine molecules on Si (100) and Si (l 11) surfaces // Surf. Sci. 1995. — V. 329, N 3. — P. L619-L623.
  54. Sharp J.H., Abkowitz M. Dimeric structure of a copper phthalocyanine polymorph // J. Phys. Chem. 1973. — V.77, N 4. — P.477−481.
  55. Kobayashi T. The infrared spectra of phthalocyanine and its metal derivatives I I Spectrochim. Acta. A 1970. — V.26, N 5−6. — P. 1313−1320.
  56. Sakai Y., Sadaoka Y., Yokouchi H. Electrical properties of evaporated thin films of copper phthalocyanine // Bull. Chem. Soc. Jpn. 1974. — V.47, N 8. — P.1886−1888.
  57. Bayliss S. M., Heutz S., Rumbles G., Jones T. S. Thin film properties and surface morphology of metal free phthalocyanine films grown by organic molecular beam deposition // Phys. Chem. Chem. Phys. 1999. — V. 1, N 15. — P. 3673−3676.
  58. El-Nahassa M.M., El-Goharyb Z., Solimana H.S. Structural and optical studies of thermally evaporated CoPc thin flms // Optics Laser Technol. 2003. — V. 35, N 7. — P. 523−531.
  59. Fujita K., Muto J., Itoh K. M. Morphological, electrochemical and optical properties of heat-treated magnesium phthalocyanine films // J. Mater. Sei. Lett. 1997. — V. 16, N 23.-P. 1894−1897.
  60. Auerhammer J.M., Knupfer M., Peisert IL, Fink J. The copper phthalocyani-ne/Au (100) interface studied using high resolution electron energy-loss spectroscopy // Surf. Sei. 2002. — V. 506, N 3. — P. 333−338.
  61. Tokito S. j Sakata J., Taga Y. The molecular orientation in copper phthalocyanine thin films deposited on metal film surfaces // Thin Solid Films. 1995. — V. 256, N 1−2. — P. 182−185.
  62. Kobayashi T., Fujiyoshi Y., Iwatsu F. Uyeda N. High-resolution TEM images of zinc phthalocyanine polymorphs in thin films // Acta Cryst. A 1981. — V. 37, N 5 — P. 692 697.
  63. Dowdy J., Hoagland J.J., Hipps K.W. Infrared and Raman spectroscopic study of ultrathin copper phthalocyanine films vapor deposited on oxidized alumina // J. Phys. Chem. 1991. — V. 95, N 9. — P. 3751−3755.
  64. Hiesgen R., Rabisch M., Bottcher H., Meissner D. STM investigation of the*growth structure of Cu-phthalocyanine films with submolecular resolution // Solar Energy Mater. Solar Cell. 2000. — V. 61, N 1. — P. 73−85.
  65. Hipps K. W., Hoagland J. J. Top metal and bias effects in the tunneling spectrum of copper (Il) phthalocyanine I I Langmuir. 1991. -V. 7, N 10. — P. 2180−2187.
  66. Schoch K.F., Greggi J., Temofonte T.A. Morphology of metal phthalocyanine thin films//J. Vac. Sci. Technol. Sect. A. 1988. -V. 6, N 1. -P. 155−158.
  67. Chizhov I, Scoles G., Kahn A. The Influence of Steps on the Orientation of Copper Phthalocyanine Monolayers on Au (l 11) // Langmuir. 2000. — V. 16, N 9. — P. 43 584 361.
  68. Walzer K., Hietschold M. STM and STS investigation of ultrathin tin phthalocyanine layers adsorbed on HOPG (OOOl) and Au (ll l) // Surf. Sci. 2001. — V. 471, N 1−3. — P. 1−10.
  69. Buchholz J.C., Somorjai G. A. The surface structures of phthalocyanine monolayers and vapor-grown films: A low-energy electron difiraction study// J. Chem. Phys. 1977. — V. 66, N 2. — P. 573−580-
  70. Ishii H., Sgiyama K., Ito E., Seki K. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces // Adv. Mater. -1999. V. 11, N 8. — P. 605−625.
  71. Peisert H., Schwieger T., Knupfer M., Golden M: S., Fink J. Interface properties of organic/indium-tin oxide and organic/GeS (001) — studied using photoemission spectroscopy // J. Appl. Phys. -2000. V. 88, N 3. — P. 1535−1540.
  72. Nakamura M., Morita Y., Mori Y., Ishitani A., Tokumoto H. Molecular arrangement, of copper phthalocyanine on hydrogen terminated Si (lll): Influence of surface- roughness // J. Vac. Sci- Technol. Sect. B., — 1996. ~ V.14, N 2. P. 1109−1113.
  73. Peisert H., Schwieger T., Auerhammer J.M., Knupfer M., Golden M. S., Fink J., Bressler P. R., Mast M. Order on disorder: Copper phthalocyanine thin films on technical substrates // J. Appl. Phys. 2001. — V. 90, N 1. — P. 466−469.
  74. Zhu S., C.E. Banks, D.O. Frazier, Penn B., Abdeldayem H., Hicks R., Burns H. D., Thompson G. W. Structure and morphology of phthalocyanine films grown in electrical fields by vapor deposition // J. Cryst. Growth. 2000. — V. 211, N 1−4. — P. 308−312.
  75. Nakamura M., Tokumoto H. Molecular arrangement of copper phthalocyanine on Si (001)-(2×1)-H: a high-resolution frictional force microscopy and molecular mechanics study// Surf. Sei. 1998. -V. 398, N 1−2. — P. 143−153.
  76. Ashida M., Uyeda N., Suito E. Thermal transformation of vacuum-condensed thin films of copper phthalocyanine // J. Cryst.Growth. 1971. -V. 8, N 1−2. — P.45−56.
  77. Adolphi B., Berger O., Fischer W.-J. Angle-resolved XPS measurements on copper phthalocyanine thin films // Appl. Surf. Sei. 2001. -V. 179, N 1−4. — P. 102−108.
  78. Osso O.J., Schreiber F., Kruppa V., Dosch H., Garriga M., Alonso I. M., Cerdeira F. Controlled molecular alignment in phtpalocyanine thin films on stepped sapphire surfaces It Adv. Funct. Mater. 2002. — V. 12, N 6−7. — P. 455−460.
  79. Ottaviano L., Lozzi L., Rispoli F., Santucci S. Hexadecafluoro-copper-phthalocyanine UHV deposited onto Si (III) 7×7 substrate: an XPS study // Surf. Sei. -1998.-V. 402−404.-P. 518−522.
  80. Lozzi L., Ottaviano L., Rispoli F., Picozzi P., Santucci S. X-ray photoelectron spectroscopy studies on hexadecafluoro-copper-phthalocyanine ultrathin films deposited onto Si (100)2×1 //Surf. Sei.- 1999. V. 433−435. —P.157−161.
  81. Lozzi L., Santucci S. Soft X-ray photoemission spectroscopy study on the interaction between CuFPc molecules and Si (l 11) 7×7 surface // Surface Science. 2001. — V. 482 485, N1.- P. 669−674.
  82. Lozzi L., Ottaviano L.} Santucci S. Growth and electronic structure of CuFPc on Si (100)// Surface Science. -2002. V. 507−510.-P. 351−356.
  83. Peisert H., Liu X., Olligs D., Pert A., Dunsch L., Schmidt T., Chasse T., Knupter M. Highly ordered phthalocyanine thin films on a techically relevant polymer substrate // J. Appl. Phys. 2004. — V. 96, N 7. — P. 4009−4011.
  84. Biswas I., Peisert H., Zhang L., Knupfer M., Hanack M., Dini D., Schmidt T., Batchelor D., T. Chasse Orientation of differently substituted plithalocyanines: First layers and thin films // Mol. Cryst. Liq. Cryst. 2006. — V. 455. — P. 241−249.
  85. Okudaira K.K., Setoyama H., Yagi H" Mase K., Kera S., Kahn A., Ueno N. Study of excited states of fluorinated copper phtpalocyanine by inner shell excitation // J. Electron Spectrosc. Relat. Phenom. 2004. — V. 137−140. — P. 137−140.
  86. Barrena E. Self-organization of phtpalocyanines on A1203 (1120) in aligned ordered films // J. Mater. Res. 2002. — V. 19, N 7. — P. 2061−2067.
  87. Schon J.H., Bao Z. Influence of disorder on the electron transport properties in fluorinated copper-phthalocyanine thin films // J. Appl. Phys. 2001. — V. 89, N 6. — P. 3526−3528.
  88. Pakhomov G.L., Drozdov Yu.N. Mixed crystal phthalocyanine films // Crystal Engineering 2003. — V. 6, N 1. — P. 23−29.
  89. Hayashi K., Horiuchi T., Matsushige K. Simultaneous analysis of total reflection X-ray diffraction and fluorescence from copper-phthalocyanine thin films during evaporation process // Jpn. J. Appl. Phys. 1995. — V.34, N 12A. — P.6478−6482.
  90. Uyeda N., Ashida M., Suito E. Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated onto cleaved face of mica // J. Appl. Phys. -1965.-V.36, N4.-P. 1453−1460.
  91. Uyeda N., Kobayashi T., Suito E., Molecular image resolution in electron microscopy // J. Appl. Phys. 1972.-V.43, N 12. -P. 5181−5189.
  92. Kong X.-H., Deng К., Yang Y.-L., Zeng Q.-D., Wang C. H-Bond Switching Mediated Multiple Flexibility in Supramolecular Host-Guest Architectures // J. Phys. Chem. C. -2007.- V. Ill, N46. -P. 17 382−17 387.
  93. Peisert H., Biswas I., Zhang L., Knupfer M., Hanack M., Dini D., Batchelor D., Chasse T. Molecular orientation of substituted phthalocyanines: influence of the substrate roughness // Surf. Sci. -2006. V. 600, N 18. — P. 4024−4029.
  94. Biswas I., Peisert H., Zhang L., Knupfer M., Hanack M., Dini D., Schmidt T., Batchelor D., Chasse T. Orientation of differently substituted phthalocyanines: First layers and thin films // Mol. Cryst. Liq. Cryst. 2006. — V. 455. — P. 241−249.
  95. Ueno N., Suzuki K., Hasegava S., Kamiya K, Seki K., Inokuchi H. Angle-resolved photoemission spectroscopy of ultrathin films of H2-phthalocyanine on MoS2 surfaces // J. Chem. Phys. 1993. — V.99, N 9. -P.7169−7177.
  96. Haug A., Harbeck S., Dini D., Hanack M., Cook M.J., Peisert H., Chasse T. Alkyl chain effects in thin films of substituted phthalocyanines studied using infrared spectroscopy // Appl. Surf. Sci. 2005. — V. 252, N 1. — P. 139−142.
  97. Debe M.K. Extracting physical information from thin organic films with reflection absorption infrared spectroscopy // J. Appl. Phys. 1984. — V. 55, N 9. — P. 3354−3366.
  98. К.З. ИК-спектры и ориентация молекул в сублимированном слое а-СиРс // Оптика и спектроскопия. 1974. — Т.37, N 3. — С.600−602.
  99. Kamiya К., Momose M., Harada Y., Ueno N. Determination of azimuthal orientation of metal-free phthalocyanine on MoS2 surface // UVSOR Activity Report, -1994. -P.202−203.
  100. Okudaira K.K., Tutui M., Hasebe T., Azuma Y., Harada Y., Ueno N. Angle-resolved UPS of thin films of cloroalminium phthalocyanine (ClAlPc) on MoS2 surfaces // UVSOR Activity Report. 1998. — P. 186−187.
  101. Yoneyama M., Sugi M., Saito M., Ikegami K., Kuroda S. Iizima S. Photoelectric Properties of copper phthalocyanine Langmuir-Blodgett film // Jpn. J. Appl. Phys. -1986. V.25, N 7. — P. 961−965.
  102. Ximing D., Huijun X. The Synthesis and Film-forming- Property of a New Amphiphilic Phthalocyanine // Dyes Pigments. 1998. — V. 39, N 4. — P. 223−229.
  103. Nanai N., Yudasaka M., Ohki Y., Yoshimura S. Polarized optical absorption spectra of orientation aligned vanadyl phthalocyanine films // Thin Solid Films 1997. — V. 298, N 1−2.-P. 83−88.
  104. Aroca R., Thedchanamoorthy A. Vibrational Studies of Molecular Organization in* Evaporated Phthalocyanine Thin Solid Films // Chem. Mater. 1995. — V. 7, N 1. — P. 69−74.
  105. Del Cano T., Parra V., Rodnguez-Mendez M.L., Aroca R.F., De Saja J.A. Characterization of evaporated trivalent and. tetravalent phthalocyanines thin films: different degree of organization // Appl. Surf. Sci. 2005. — V. 246, N 4. — P. 327−333.
  106. Smolenyak P., Peterson R., Nebesny K., Torker M., O’Brien D.F., Armstrong N.R. Highly Ordered Thin Films of Octasubstituted Phthalocyanines // J. Am. Chem. Soc. -1999. V. 121, N 37. — P. 8628−8636.
  107. Chen H.-Z., Wang M., Yang S.-L. Orientation, characterization, and photoconductive property of ethylenediamine bridged silicon phthalocyanine polymer thin film // Thin Solid Films 1999. — V.357, N 2. — P. 208−213.
  108. Aroca R., Jennings C., Loutfy R.O., Hor A.-M. Structure of organic thin films: Raman polarization studies // J. Phys. Chem. -1986. V.90, N 21. — P.5255−5257.
  109. Kuwahara M., Mizutani G., Sakamoto K., Ushioda S. Absolute Raman scattering-cross section of surface adsorbed Cu-phthalocyanine molecules // Surf. Sci. 1991. -V.242, N 1−3. -P.544−548.
  110. Ushioda S. Absolute Raman scattering cross-sections of surface adsorbed molecular layers // J. Elect. Spectrosc. Relat. Phenom. 1990. — V.54−55, N 4. — P.881−894.
  111. Aroca R. Raman spectra of phthalocyanines // J. Mol. Struct. C. 1986. — V.143. -P.131−134.
  112. Pisula W., Kastler M., El Hamaoui В., Garcia-Gutierrez M.-C., Davies RJ., Riekel C., Mullen K. Dendritic Morphology in Homeotropically Aligned Discotic Films // ChemPhysChem 2007. — V. 8, N 7. — P. 1025−1028.
  113. Kol’tsov E., Basova Т., Semyannikov P., Igumenov I. Synthesis and investigations of copper hexadecafluorophthalocyanine CuPcF16 // Mater. Chem. Phys. 2004. — V. 86, № l.-P. 222−227.
  114. B.A., Басова T.B., Юшина И. В., Игуменов И. К. Исследование структурных особенностей пленок гексадекафторзамещенных фталоцианинов меди и цинка // Поверхность 2008. — № 6. — С. 3−8.
  115. Basova Т., Plyashkevich V., Hassan. A. Spectral characterization of thin films of vanadyl hexadecafluorophthalocyanine VOPcF, 6 // Surf. Sci. 2008. — V. 602, № 14. -P. 2368−2372.
  116. Plyashkevich V., Basova Т., Semyannikov P., Hassan A. Vapour pressure of tetra-tert-butyl substituted phthalocyanines // Thermochim. Acta 2010. — V. 501, № 1−2. — P. 108−111.
  117. T.B., Колесов Б.А. KB спектры фталоцианина меди: эксперимент и расчет // Ж.структ. хим. 2000. — V. 41, № 5. — С. 940−948.
  118. В.Ф., Усачева K.B. Синтез фталоцианина меди из фталевого ангидрида// Изв. вузов. Химия и хим.технология. 1958. -N 3. — С.142−145.
  119. Linsky J., Paul Т., Nohr R., Kenney M. Studies of a Series of Haloaluminum, gallium, and indium Phthalocyanines // Inorg. Chem 1980 — V. 19, N 10. — P. 31 313 135.
  120. Beynon J.H., Saunders R.A., Williams A.E. The mass spectrum of tetrachloro copper phthalocyanine II Appl. Spectrosc. 1963. — V.17, N 3. — P.63−65.
  121. Hill H.C., Reed R.I. Electron impact and molecular dissociation Part XVII. Mass spectra of some halogenated copper phlhalocyanines // Appl. Spectrosc. — 1967. — V.21, N2. — P.122−123.
  122. Hill H.C., Reed R.I. Electron impact and molecular dissociation-XIV. The mass spectra of phthalonitrile and various phthalocyanines // Tetrahedron. 1964. — V.20, N 5. -P.1359−1366.
  123. Varmuza K., Maresch G., Meller A. Massenspektrometrische Untersuchungen von phthalocyaninen Pc-MeXn // Monatsh. Chem. 1974. — V.105, N 2. — P.327−333.
  124. Semyannikov P.P., Basova T.V., Grankin V.M., Igumenov I.K. Vapour pressure of some phthalocyanines // J. Porphyrins Phthalocyanines 2000. — V.4, N 3. — P. 271−277.
  125. Semyannikov P., Basova Т., Trubin S., Kol’tsov E., Igumenov I. Vapor pressure measurements and thermodynamics of some volatile phthalocyanines // J. Porphyrins Phthalocyanines. 2006. -V. 10, N 8. — P. 1034−1039.
  126. T.B., Семяингасов П. П., Игуменов И. К. Давление насыщенного пара фталоцианинов / В кн.: Успехи химии порфиринов (под ред. О.А. Голубчикова), т. 5, Санкт-Петербург, 2007. с.136−147.
  127. Basova Т., Semyannikov P., Plyashkevich V., Hassan A., Igumenov I. Volatile phthalocyanines: Vapour pressure and thermodynamics // Critical Rev. Solid State Mater. Sci. -2009. V. 34, № 3.-P. 180−189.
  128. П.П., Басова T.B., Трубин C.B., Пляшкевич В. А., Игуменов И. К. Исследование давления пара некоторых фталоцианинов металлов // Ж. физ. хим. -2008. Т. 82, № 2. — С. 221−226.
  129. R., Griffiths С. Н., Troup J. М. Crystal structure of vanadyl phthalocyanine, phase II // J. Chem. Soc. Dalton Trans. 1980. — N 11. — P. 2300−2302.
  130. Wynne K. J. Crystal and molecular structure of chloro (phthalocyaninato)-gallium (III), Ga (Pc)Cl, and chloro (phthalocyaninato)aluminum (III), Al (Pc)Cl //Tnorg. Chem. 1984. — V. 23, N 26. — P. 4658−4663.
  131. Nohr R. S., Wynne K. J. X-Ray crystal structure of a conducting polymer precursor: bridge-stacked phthalocyanine gallium fluoride // J. Chem. Soc. Chem. Comm. — 1981. — N 23. P. 1210−1211.
  132. Wynne K.J. Two ligand-bridged phthalocyanines: crystal and molecular structure of fluoro (phthalocyaninato)gallium (III), Ga (Pc)F.", and (p-oxo)bis[(phthalocyaninato)-aluminum (III)], [Al (Pc)]20 // Inorg. Chem. 1985. — V. 24. N 9. — P. 1339−1343.
  133. Rodgers D., Osborn R. S. X-Ray crystal stiucture of dichlorophthalocyanina-totin (IV) // J. Chem. Soc. Chem. Commun. 1971. -N 23. — P. 840−841.
  134. Engel M.K. Single-Crystal Structures of Phthalocyanine Complexes and Related Macrocycles. In: The Porphyrin Handbook. Applications of Phthalocyanines. V. 20. Ed. by Kadish K.M., Smith K.M., Guilard R. San Diego, CA: Academic Press, 2003. P. 1−41.
  135. Kasha M., Rawls H.R., El-Bayoumi A. The excition model in molecular spectroscopy // Pure Appl. Chem. 1965. — V. 11. — P. 371−392.
  136. Mizugushi Z., Rihs G., Karfunkel H.R. Solid-State Spectra of Titanylphthalocyanine. As Viewed from Molecular Distortion // J. Phys. Chem. 1995. — V. 99, N 44. — P. 16 217−16 227.
  137. Law K.Y. Organic photoconductive materials: recent trends and developments // Chem. Rev. 1993. — V. 93, N 1. — P. 449−486.
  138. Nanai N., Yudasaka M., Ohki Y., Yoshimura S. Structure of vanadyl phthalocyanine in bilayers of vanadyl phthalocyanine and pyrylenetetracarboxylic dianhydride // Thin Solid Films 1995. — V. 265, N 1−2. — P. 1−2.
  139. Brinkmann M., Wittmann J.-C., Barthel M., Hanack M., >Chaumont C. Highly Ordered Titanyl Phthalocyanine Films Grown by Directional Crystallization on Oriented Poly (Tetrafluoroethylene) Substrate // Chem. Mater. 2002. — V. 14, N 2. — P. 904−914.
  140. А. И. // Молекулярные кристаллы. M.: Наука, 1971.
  141. Г. JI., Нанеишвили Б. К., Голубчиков О. А. Термодинамические характеристики сублимации металлокомплексов тетрафенилпорфирина // Журн. физ. химии. Т. 68, № 11. — С. 1932−1935.
  142. Zemskova S.M., Stabnikov Р.А., Sysoev S.V., Igumenov I.K. MOCVD Precursors: Thermodynamic Properties and Crystal Lattice Energy // The Electrochem. Soc. Meetings Abstract. 1998. — V. 2. — P. 812.
  143. И. К., Чумаченко Ю. В., Земеков С. В. Исследование летучести некоторых ß--дикетонатов меди(И) // Коорд. химия. 1978. — Т. 4, № 2. — Р. 163 168.
  144. Т.И., Семянников П. П., Байдина И. А., Стабников П.А., Первухина
  145. T.B. Диссертация на соискание ученой степени кандидата химических наук «Получение, физико-химическое и КР-спекгральное исследование фталоцианинов меди и алюминия и пленок на их основе», Новосибирск. 1999.
  146. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. — V. 98, N 7. — P. 5648−5652.
  147. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. В 1988. — V. 37, N 2. — P. 785−789.
  148. Ding H., Wang S., Xi S. Vibrational spectra and structure of zinc phthalocyanine // J. Mol. Struct. 1999.-V. 475, N2−3.-P. 175−180.
  149. Tackley D R., Dent G., Smith W.E. IR and Raman assignments1 for zinc phthalocyanine from DFT calculations // Phys. Chem. Chem. Phys. 2000. — V. 2, N 18. -P. 3949−3955.
  150. Tackley D.R., Dentand G., Smith W.E. Phthalocyanines: structure and- vibrations // Phys: Chem. Chem. Phys. 2001. — V.3, N 8: — P. 1419−1426.
  151. Li D-, Peng Z., Deng L., Shen Y., Zhou, Y. Theoretical studies on molecular structure and vibrational spectra of copper: phthalocyanine // Vib. Spectrosc. 2005- - V. 39, N2.-P. 191−199.
  152. Gardiner D.J. Practical Raman spectroscopy. Berlin: Springer-Verlag, 1989.
  153. Basova T.V., Kolesov B.A. Raman Polarization Studies off Orientation of molecular thin films-// Thin-Solid Films 1998. — V.325, № 1−2. — P. 140−144:
  154. Schuster B.-E., Basova T.V., Peisert IT., Chasse T. Electrical Field Assisted Effects on Molecular Orientation and Surface Morphology of Thin Titanyl (IV)phthalocyanine Films // ChemPhysChcm -2009. V. 10, N 11.-P. 1874−1881.
  155. Basova T.V., Kolesov B.A., Gurek A. G., Ahsen V. Raman polarization study of the film orientation of liquid crystalline NiPc // Thin Solid Films 2001. — V.385, N 1−2. -P. 246−251.
  156. .М., Басова T.B., Прохорова C.A., Игуменов И. К. Исследование пленок фталоцианинов металлов методами эллипсометрии и спектрофотометрии в видимой области спектра // Поверхность. 1997. — N 10. — С. 110−113.
  157. Saito Y., Shiojiri M. Molecular energetics of the epitaxial growth of chlorinated copper phthalocyanine on KC1 surfaces // J. Cryst. Growth. 1984. — 67, N 1−2. — P. 9196.
  158. Tada H., Mashiko S. Computer Simulation for Molecular Orientation of Vanadyl Phthalocyanine in Epitaxial Form // Jpn. J. Appl. Phys. 1995. — 34, N 7B. — P. 38 893 897.
  159. Golovnev I., Basova Т., Aleksandrova N., Igumenov I. Numerical investigation of interaction of copper phthalocyanine molecules with silicon surface // Mol. Cryst. Liq. Cryst. 2001. — V. 371. — P. 317−320.
  160. И.Ф., Басова T.B., Александрова H.K., Игуменов И. К. Компьютерное моделирование синтеза наноскопических гетероструктур // Физическая мезомеханика 2001. — Т. 4, № 6. — С. 17−26.
  161. И.Ф., Басова Т. В., Кольцов Е. К., Игуменов И. К. Применение метода молекулярной динамики для исследования процессов роста молекулярных пленок //Ж. структ. хим. 2006. — Т. 47, № 3. — С. 546−561.
  162. JI.A., Дементьев В. А. Методы и алгоритмы вычислений в теории колебательных спектров молекул. М.: Наука, 1981. — 356 с.
  163. Gribov L.A., Orville-Thomas W.J. Theory and Methods of calculation of molecular spectra.- Chichester, N.-Y.: J. Wiley, 1988. 322 c.
  164. Stillinger F.H., Weber T.A. Computer simulation of local order in condensed phases of silicon // Phys. Rev. B. 1985. — 31, N 8. — P. 5262−5271.
  165. Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems II Phys. Rev. B. 1989. — 39, N 8. — P. 5566−5568.
  166. Koopman B.O. Hamiltonian Systems and Transformation in Hilbert Space // Proc. Natl. Acad. Sci. U.S. 1931. — 17, N 5. — P. 315−318.
  167. Neumann T.V. Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren II Math. Annalen. 1929. — V. 102. — P. 49−131.
  168. Е.И., Головнев И. Ф., Фомин B.M. Молекулярно-динамический анализ динамического разрушения наноструктур // Физическая мезомеханика. -2003.-6, № 2.-С. 37−46.
  169. Golovneva E.I., Golovnev I.F., Fomin V.M. Research of nanoclusters size effect on the molecular-dynamic modeling results // Физическая мезомеханика. 2004. — 7, № 2. -С. 11−13.
  170. Bolesta A.V., Golovnev I.F., Fomin V.M. Molecular dynamics simulations of InGaAs/GaAs nanotubes synthesis // Физическая мезомеханика. 2004. — 7, № S2. -С. 8−10.
  171. Kobayashi Т., Fujiyoshi Y., Uyeda N. The observation of molecular orientations in crystal defects and the growth mechanism of thin phthalocyanine films // Acta Cryst. A. -1982. -V. 38, N 3. P. 356−362.
  172. Hu W.P., Liu Y.Q., Zhou S.Q., Tao J., Xu D.F., Zhu D.B. Highly ordered vacuum-deposited thin films of copper phthalocyanine induced by electric field 11 Thin Solid Films 1999.-V. 347, N 1−2.-P. 299−301.
  173. Hayashi K., Kawato S., Fujii Y., Horiuchi Т., Matsushige K. Effect of applied electric field on the molecular orientation of epitaxially grown organic films // Appl. Phys. Lett.- 1997.-V. 70, N 11.-P. 1384−1386.
  174. Kolotovska V., Friedrich M., Zahn D.R.T., Salvan G. Magnetic field influence on the molecular alignment of vanadyl phthalocyanine thin films // J. Cryst. Growth. 2006. -V. 291, N 1.-P. 166−174.
  175. Ji Z.G., Wong K.W., Tse P.K., Kwok R.W.M., Lau W.M. Copper phthalocyanine film grown by vacuum deposition under magnetic field // Thin Solid Films 2002. — V. 402, N 1−2.-P. 79−82.
  176. Fukagawa H., Yamane H., Kera S., Okdaira K. K., Ueno N. Experimental estimation of the electric dipole moment and polarizability of titanyl phthalocyanine using ultraviolet photoelectron spectroscopy // Phys. Rev. B 2006, — V. 73, N 4. — P. 41 302®.
  177. Pei L., Zhang J., Kong W. Electronic polarization spectroscopy of metal phthalocyanine chloride compounds in superfluid helium droplets // J. Chem. Phys. -2007.-V. 127, N 17. P. 174 308−1-174 308−8.
  178. Jennings C.A., Aroca R., Kovacs G. J., Hsaio C. FT-Raman Spectroscopy of Thin Films of Titanyl Phthalocyanine and Vanadyl Phthalocyanine // J. Raman Spectrosc. -1996. V. 27, N 12. — P. 867−872.
  179. Watson G. H., Daniels W. B., Wang C. S. Measurements of Raman intensities and pressure dependence of phonon frequencies in sapphire // J. Appl. Phys. 1981. — V. 52, N2.-P. 956−958.
  180. Yonehara H., Etori H., Engei M. K., Tsushima M., Ikeda N., Ohno T., Pac C. Fabrication of Various Ordered Films of Oxotitanium (IV) Phthalocyanine by Vacuum Deposition and Their Spectroscopic Behavior // Chem. Mater. 2001. — V.13, N 3. — P. 1015−1022.
  181. Basova T., Kol’tsov E., Hassan A., Tsargorodskaya A., Ray A., Igumenov I. Thin films of copper hexadecafluorophthalocyanine CuPcF16 // Phys. Stat. Sol. B. 2005. — V. 242″, N 4. — P. 822−827.
  182. Schuster B.-E., Basova T.V., Plyashkevich V.A., Peisert H., Chasse T. Effects of temperature on structural and morphological features of CoPc and CoPcFi6 thin films // Thin Solid Films 2010.-V. 518, N23. — P. 7161−7166.
  183. P.B., Крючкова PI.А., Мазалов JI.H., Воронин А. И., Басова T.B., Пляшкевич В. А. Рентгеноэлектронное изучение зарядового распределения в комплексах фталоцианинов меди(Н) // Поверхность 2011. — № 1. — С. 52−62.
  184. Amsterdam Density Functional (ADF) program. Release 2005.01. Vrije Universteit: Amsterdam, The Netherlands. 2005.
  185. Becke A.D. Density-functional thermochemistry. 3. The role of exact exchange // J. Chem. Phys.- 1993. V. 98, N 7. — P. 5648−5652.
  186. Schutte W.J., Sluyters-Rehbach M., Sluyters J.H. Aggregation of an octasubstituted phthalocyanine in dodecane solution//J. Phys. Chem. 1993. — V. 97, N 22. — P. 60 696 073.
  187. Czikkely V., Forsterling H.D., Kuhn H. Extended dipole model for aggregates of dye molecules // Chem. Phys. Lett. 1970. — V. 6, N 3. -P. 207−210.
  188. Liu Z., «Zhang X., Zhang Y., Jiang J. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines // Spectrochimica Acta A. 2007. — V.67, N 5. — P. 1232−1246.
  189. McKeown N.B. The Synthesis of Symmetrical Phthalocyanines / In: The Porphyrin Handbook, V. 15. Ed. by Kadish K.M., Smith K.M., Guilard R. San Diego, CA: Academic Press, 2003. P. 61−124
  190. Simon J., Bassoul P. Phthalocyanine Based Liquid Crystals: Towards Submicronic Devices / In: Phthalocyanines: Properties and Applications. V.2. Ed. by Leznoff C.C., Lever A.B.P. Weinheim, Germany: VCH, 1992.-P. 223.
  191. A.C. Введение в физику жидких кристаллов, М.: Наука, 1983.
  192. Piechocki С., Simon J., Skoulios A., Guillon D., Weber P. Annelides. 7. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors // J. Am. Chem. Soc. 1982. V. 104, N 19. — P. 5245−5247.
  193. Engel M. K., Bassoul P., Bosio L., Lehmann H., Hanack M., Simon J. Mesomorphic molecular materials. Influence of chain length on the structural properties of octa-alkyl substituted phthalocyanines // Liq. Cryst. 1993. — V. 15, N 5. — P. 709−722.
  194. Cuellar E.A., Marks T.J. Synthesis and characterization of metallo and metal-free octaalkylphthalocyanines and uranyl decaalkylsuperphthalocyaninates // Inorg. Chem. -1981.-V. 20, N 11.-P. 3766−3770.
  195. Ohta K., Jacquemin L., Sirlin C., Bosio L., Simon J. Influence of nature of the side chain on the mesomorphic properties of octasubstituted phthalocyanine derivatives // New J. Chem. 1988. — V. 12, № 8−9. — P. 751−754.
  196. Haisch P., Knecht S., Schlick U., Subramanian L.R., Hanack M. Soluble Octasubstituted (Phthalocyaninato) Metal Complexes // Mol. Cryst. Liq. Cryst. 1995. -V. 270.-P. 7−16.
  197. Ford W.T., Sumner L., Zhu W., Chang Y. H., Um P.-J., Choi K.H., Heiney P.A., Maliszewskyj N.C. Liquid-crystalline octa-(2-ethylhexyloxy)platinum and lead phthalocyanines // New J. Chem. 1994. — V. 18, N 4. — P. 495−505.
  198. Piechocki C., Simon J. Annelides. 11. Elaboration of molecular materials -Synthesis of octasubstituted phthalocyanine derivatives forming discotic mesophases // New J. Chem. 1985. — V. 9, N 3. — P. 159−166.
  199. Guillon D., Skoulios A., Piechocki C., Simon J., Weber P. Discotic Mesophases of the Metal-Free Derivative of Octa (Dodecyloxymethyl) Phthalocyanine // Mol. Cryst. Liq. Cryst. 1983. — V. 100. — P. 275−284.
  200. Guillon D., Weber P., Skoulios A., Piechocki C., Simon J. Columnar Mesophases From Metal and Metal-Free Derivatives of Phthalocyanine // Mol. Cryst. Liq. Cryst. -1985.-V. 130.-P. 223−229.
  201. Andre J J., Bernard M., Piechocki C., Simon J. Octakis ((dodecyloxy)methyl)-metallophthalocyanines forming discotic mesophases studied by electron paramagnetic resonance. Annelides. Part 17 // J. Phys. Chem. 1986. — V. 90, N 7. — P. 1327−1330.
  202. Weber P., Guillon D., Skoulios A. Antiferroelectric stacking in lead phthalocyanine columnar mesophases // J. Phys. Chem. 1987. — V. 91, N9.-P. 2242−2243.
  203. Piechocki C., Boulou J.C., Simon J. Discotic Mesogens Possessing an Electrical Dipole Moment Perpendicular to the Molecular Plane: Synthesis and Mesomorphic Properties // Mol. Cryst. Liq. Cryst. 1987. — V. 149. — P. 115−120.
  204. Nishi H., Azuma N., Kitahara K. Preparation and properties of octaalkylphthalo-cyanines having long alkyl side-chains of add numbers of carbons // J. Hetero. Chem. -1992. V. 29, N 2. — P. 475−477.
  205. Sleven J., Gorller-Walrand C., Binnemans K. Synthesis, spectral and mesomorphic properties of octa-alkoxy substituted phthalocyanine ligands and lanthanide complexes // Mater. Sci. Eng. C-2001.- V. 18, N 1−2.-P. 229−238.
  206. Gttrek A.G., Ahsen V., Heinemann F., Zugenmaier P. Synthesis and liquid-crystalline behaviour of Tetrakis- and Octakis (13, 17-dioxa nonacosane-15-sulfanyl) phthalocyanines // Mol. Cryst. Liq. Cryst. 2000. — V. 338. — P.75−97.
  207. Durmu§ M., Lebrun C., Ahsen V. Synthesis and characterization of novel liquid and liquid crystalline phthalocyanines // J. Porph. Phthalocyanines. 2004. — V. 8, N 10. — P. 1175−1186.
  208. Barbera J. Low Molecular Weight Discotic Metallomesogens / In: Metallomesogens: Synthesis, Properties and Applications. Ed. by Serrano J.L. Weinheim, N.Y., Basel, Cambrige, Tokio: VCH, 1996. P. 160−192.
  209. Weber P., Guillon D., Skoulios A. Hexagonal columnar mesophases from phthalocyanine Upright and tilted intracolumnar molecular stacking, herringbone and rotationally disordered columnar packing // Liq. Cryst. 1991. — V. 9, N 3. — P. 369−382.
  210. Cherodian A. S., Davies A.N., Richardson R. M., Cook M.J., McKeown N. B.} Thomson A. J., Feijoo J., Ungar G., Harrison J. Mesogenic Behaviour of some 1,4,8,11,15,18,22,25-Octa-alkylphthalocyanines // Mol. Cryst. Liq. Cryst. 1991. — V. 196.-P. 103−114.
  211. Hanack M., Beck A., Lehmann H. Synthesis of liquid crystalline phthalocyanines // Synthesis 1987. — V. 8. — P. 703−705.
  212. McKeown N.B., Phthalocyanine Materials: Synthesis, Structure, Function. Cambridge: Cambridge University Press, 1998.
  213. Hanack M., Gul A., Hirsch A., Mandal B. K., Subramanian L. R., Witke E. Synthesis and Characterization of Soluble Phthalocyanines: Structure-Property Relationship //Molec. Cryst. Liq. Cryst. 1990. -V. 187. — P. 365−382.
  214. McKeown N. B., Painter J. Lyotropic and thermotropic mesophase formation of novel tetraoligo (ethyleneoxy).-substituted phthalocyanines // J. Mater. Chem. 1994. -V. 4, N 7. — P. 1153−1156.
  215. Belarbi Z., Maitrot M., Ohta K., J. Simon, J.J. Andre, J., Petit P. Electrical properties of condensed phases of the mesogen bis (octa-octadecyloxymethylphthalocyaninato)-lutetium // Chem. Phys. Lett. 1988. — V. 143, N 4. — P. 400−403.
  216. Giirek A.G., Ahsen V., Luneau D., Pecaut J. Synthesis, Structure, Spectroscopic Properties, and Magnetic Properties of an Octakis (Alkylthio)-Substituted Lutetium (III) Bisphthalocyanine // Inorg. Chem. 2001. — V. 40, N 18. — P. 4793−4797.
  217. Bashir M. Hassan, Hong Li, Neil В. McKeown. The control molecular self-association in spin-coated films of substituted phthalocyanines // J. Mater. Chem. 2000. -V. 10, N 1.-P.39−45.
  218. Cook M.J., Mayes D.A., Poynter R.H. Spectroscopic monitoring of thermally induced molecular reorganizations within Spin-coated and langmuir-blodgett films of mesogenic phthalocyanines // J. Mater. Chem. 1995. — V. 5- N 12. — Р!2233−2238.
  219. Critchley S.M., Willis M.R., Cook M.J., McMurdo J., Maruyama Y. Deposition of Ordered Phthalocyanine films by spin. coating // J. Mater. Chem. 1992. —V. 2, N 2. -P: 157−159.
  220. Critchley S.M., Willis M.R. Deposition of thin phthalocyanine films by spin coating //Int. J. Electronics. 1994. — V. 76, N5. -P: 809−814.
  221. Gorbunova Yu.G., Rodgiguez-Mendez M.L., Kalashnikova LP., Tomilova L.G., de Saja J.A. Langmuir-Blodgett films of bis-octakispropyloxy- samarium bisphthalocyanine.
  222. Spectroscopic and gas sensing properties // Langmuir 2001. — V.17, N 16. — P. 50 045 010.
  223. В .В., Горбунова Ю. Г., Селектор C.JI., Шейнина Л. С., Целвх О. Г., Енакиева Ю. Ю., Цивадзе А. Ю. Монослои и пленки Ленгмюра-Блоджктт краунзамещенных фталоцианинов // Изв. Академии наук. Сер. Химич. 2004. — N 11.-С. 2426−2436.
  224. Boden N., Bushby R. J., Clements J., Movaghar B. Donovan K. J., Kreouzis T. Mechanism of charge transport in discotic liquid crystals // Phys. Rev. В 1995. — V. 52, N 18.-P. 13 274−13 280.
  225. Hughes R. E., Hart S. P., Smith D. A., Movaghar В., Bushby R.J., Boden N. Exciton Dynamics in a One-Dimensional Self-Assembling Lyotropic Discotic Liquid Crystal // J. Phys. Chem. B. 2002. — V. 106, N 26. — P. 6638−6645.
  226. Adam D., Schuhmacher P., Simmerer J., Haussling L., Siemensmeyer K., Etzbach K.H., Ringsdorf H, Haarer D. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal // Nature 1994. — V. 371, N 6493. — P. 141−143.
  227. Markovitsi D., Lecuyer I., Simon J. J. One-dimensional triplet energy migration in columnar liquid crystals of octasubstituted phthalocyanines // J. Phys. Chem. 1991. -V. 95, N9.-P. 3620−3626.
  228. An Z., Yu J., Jones S.C., Barlow S., Yoo S.5 Domercq B., Prins P., Siebbeles L.D.A., Kippelen B., Marder S.R. High Electron Mobility in Room-Temperature Discotic Liquid-Crystalline Perylene Diimides // Adv. Mater. 2005. — V. 17, N 21. — P. 25 802 583.
  229. Schmidt-Mende L., FechtenkotterA., Mullen К., Moons Е., Friend R.H., MacKenzie J.D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics // Science 2001. -V. 293, N 5532. — P. l 119−1122.
  230. Lussem G., Wendorff J. H. Liquid crystalline materials for light-emitting diodes // Polym. Adv. Technol. 1998. — V. 9, N 7. — P. 443−460.
  231. . Ориентация нематических жидких кристаллов и их смесей. Минск: БГУ, 1986.- 104 с.
  232. В.Н., Кирсанов Е. А. Поверхностные явления в жидких кристаллах. М.: МГУ, 1991.-272 с.
  233. М.Г. Взаимодействие жидких кристаллов с поверхностью. Санкт-Петербург: Политехника, 2001. 325 с.
  234. С.А. Основы термодинамики жидких кристаллов. Иваново: Ивановский государственный университет, 2009. ¦
  235. Е.С., Козунов В. А., Григос В. И. Ориентация нематических жидких кристаллов // Успехи химии. 1985. — Т. 54, Вып. 2. — С. 214−238.
  236. Goossens W.J.A. Bulk, interfacial and anchoring energies of LCs // Mol. Cryst. Liq. Cryst.- 1985.-V. 124.-P. 305−331.
  237. JI.M., Кац Е.И., Сонин A.A. Физика поверхности жидких кристаллов // Успехи физ. Наук. 1987. — Т. 152, № 3. — С.449−477.
  238. Blinov L.M., Kobayenkov A.Yu., Sonin A.A. Experimental studies of anchoring energy of nematic liquid crystals // Liq. Cryst. 1989. — V. 5, N 2. — P. 645−651.
  239. Komitov L. Nano-engineering of the anchoring of liquid crystals on solid surfaces // Thin Solid Films 2008. — V. 516, N 9. — P. 2639−2644.
  240. Pakiari A.H., Aazami S.M., Ghanadzadeh A. Electronic interactions of typical liquid crystal molecules with typical contacted species generated from the surface of different materials // J. Mol. Liq. 2008. — V. l39, N 1−3. — P. 8−13
  241. Funahashi M., Hanna J.-i. High ambipolar carrier mobility in self-organizing terthiophene derivative // Appl. Phys. Lett. 2000. — V. 76, N 18. — P. 2574−2576.
  242. O’Neill M., Kelly S.M. Liquid Crystals for Charge Transport, Luminescence, and Photonics //Adv. Mater. 2003. — V. 15, N 14. — P. 1135−1146.
  243. Terasawa N., Monobe H., Kiyohara K., Shimizu Y. Strong tendency towards homeotropic alignment in a hexagonal columnar mesophase of fluoroalkylated triphenylenes // Chem. Commun. 2003. -N 14. — P. 1678−1679.
  244. Geminard J. C.- Oswald P. 3-dinemsional visualization and physical propertied of dendrited in thin samples of a hexagonal columnar liquid-crystal // J. Phys. II. 1994. -V. 4, N 6. — P. 959−974.
  245. Prasad S.K., Shankar Rao D.S., Chandrasekhar S., Kumar S. X-ray studies on the columnar structures of discotic liquid crystals // Mol. Cryst. Liq. Cryst. 2003. — V. 396. -P. 121−139.
  246. Tomovic Z., Watson M. D., Mullen К. Superphenalene-Based Columnar Liquid Crystals // Angew. Chem. Int. Ed. 2004. — V. 43, N 6. — P. 755−758.
  247. Watson M.D., Debije M.G., Warman J.M., Mullen К. Peralkylated Coronenes via Regiospecific Hydrogenation of Hexa-peri-hexabenzocoronenes // J. Am. Chem. Soc. -2004. V. 126, N 3. — P. 766−771.
  248. Iyer V.S., Yoshimura K., Enkelmann V., Epsch R., Rabe J.P., Mullen К. A Soluble C60 Graphite Segment // Angew. Chem. Int. Ed. 1998. — V. 37, N 19. — P. 2696−2699.
  249. Ohta K., Watanabe Т., Tanaka S., Fujimoto Т., Yamamoto I., Bassoul P., Kucharczyk N., Simon J. Discotic liquid crystals of transition metal complexes X.
  250. Phthalocyanine derivatives substituted with n-alkyloxyphenyl side chains // Liq. Cryst. -1991.-V. 10, N3.-P. 357−368.
  251. Jian K., Xianyu H., Eakin J., Gao Y., Crawford G., Robert H., Hurtet R. Orientationally ordered and patterned diseotic films and carbon films from liquid crystal precursors // Carbon 2005. — V. 43, N 2. — P. 407−415.
  252. Noble A. R., Kwon H. J., Nuzzo R. G. Effects of Surface Morphology on the Anchoring and Electrooptical Dynamics of Confined Nanoscale Liquid Crystalline Films // J. Am. Chem. Soc. 2002. — V. 124, N 50. — P. 15 020−15 029.
  253. Smela E., Martinez-Miranda L.J. Effect of substrate preparation on smectic liquid crystal alignment. III. The significance of thermal history // J. Appl. Phys. 1995. — V. 77, N 5. — P. 1930−1933.
  254. Yu t., Peng Z., Ruan S., Xuan L. Effect of the fluorinated groups on nematic liquid crystal alignment on monomer crosslinked film // Thin Solid Films 2004. — V. 466, N 1−2.-P. 326−330.
  255. Gurek A.G., Bekaroglu O. Octakis (alkyIthio)-substituted phthalocyanines and their interactions with silver (I) and palladium (II) ions // J. Chem. Soc. Dalton Trans. 1994, N 9.-P. 1419−1423.
  256. Basova T., Gurek A.G., Atilla D., Hassan A., Ahsen V. Synthesis and characterization of new mesomorphic octakis (alkylthio)-substituted lead phthalocyanines and their films // Polyhedron 2007. — V. 26, N 17. — P. 5045−5052.
  257. Atilla D., Ahsen V. Synthesis, characterization and aggregation behavior of Ni (II) and Zn (II) phthalocyanines with peripheral monoazacrown ethers // J. Porphyr. Phthalocyanines 2002. — V. 6, N 9−10. — P. 593−601.
  258. Macdonald W. A. Engineered films for display technologies // J. Mater. Chem. -2004.-V. 14, N 1.-P. 4−10.
  259. Basova T., Gurek A.G., Ahsen V. Investigation of liquid-crystalline behavior of nickel octakisalkylthiophthalocyanines and orientation of their films // Mater. Sei. Eng. C -2002. V. 22, N l.-P. 99−104.
  260. Dabak S., Ahsen V., Heinemann F., Zugenmair P. Synthesis and characterization of Novel tetra- and Octa-Triethyleneoxysulfanyl substituted phthalocyanines forming lyotropic mesophases//Mol. Cryst. Liq. Cryst. -2000. V. 348.-P. 111−127.
  261. Basova T., Kol’tsov E., Gurek A.G., Atilla D., Ahsen V., Hassan A.K. Investigation of liquid-crystalline behaviour of copper octakisalkylthiophthalocyanine and its film properties // Mater. Sei Eng. C 2008. — V. 28, N2. — P. 303−308.
  262. Lux A., Rosenberg G.G., Petritsch K., Moratti S.C., Holmes A.B., Friend R.H. A series of novel liquid crystalline octakis (alkylthio)-substituted phthalocyanines // Synth. Met.-1999.-V. 102, N1−3.-P. 1527−1529.
  263. Basova’T., Kol’tsov E., Hassan A.K., Nabok A., Ray A.K., Gurek A.G., Ahsen V. Optical investigation of thin films of liquid-crystalline lutetium bisphthalocyanine // J. Mater. Sei.: Mater. Electron. 2004. — V.15, N 9. — P. 623−628.
  264. Arvvin H., Aspnes D.E. Determination of optical properties of thin organic films by spectroellipsometry // Thin Solid Films 1986. — V. 13 8, N 2. — P. 195−207.
  265. Basova T., Kol’tsov E., Hassan A.K., Ray A.K., Gurek A.G., Ahsen V. Effects of structural reorganization in phthalocyanine films on their electrical properties // Mater. Chem. Phys.-2006.- V. 96, N l.-P. 129−135.
  266. Pope M., Swenberg C.E., Electronic processes in organic crystals, Oxford: Clarendon, 1982.-P. 45.
  267. Basova T.V., Durmus M., Gurek A.G., Ahsen V., Hassan A. Effect of Interface on the Orientation of the Liquid Crystalline Nickel Phthalocyanine Films // J. Phys. Chem. C.-2009.-V. 113, N44.-P. 19 251−19 257.
  268. Dierking I. Texture of Liquid Crystal. Weinheim, Germany: Wiley-VCH, 2003.
  269. Basova Т., Ta§ altin C., Gurek A.G., Ebeoglu M.A., Oztttrk Z.Z., Ahsen V. Mesomorphic Phthalocyanine as Chemically Sensitive Coatings for Chemical-Sensors. Sensor Actuators. В 2003. — V. 96, № 1−2. — P. 70−75.
  270. Wu S. Polymer Interface and Adhesion. New York: Dekker, 1982.
  271. Paul S., Paul D., Basova^ Т., Ray A. Characterisation of protein adsorption on different liquid crystal phthalocyanine thin films // IET Nanobiotechnology 2010. — V. 4, № l.-P. 1−9.
  272. Schollmeyer H., Struth В., Riegler H. Long Chain n-Alkanes at Si02/Air Interfaces: Molecular Ordering, Annealing, and Surface Freezing of Triacontane in the Case of Excess and Submonolayer Coverage//Langmuir-2003.-V. 19, N 12.-P. 5042−5051.
  273. Merkl C., Pfohl Т., Riegler H. Influence of the Molecular Ordering on the Wetting of Si02-Air Interfaces by Alkanes // Phys. Rev. Lett. 1997. — V.79, N 23. — P. 46 254 628.
  274. Smela E., Martinez-Miranda L.J. Effect of substrate preparation on smectic liquid crystal alignment: A structural study // J. Appl. Phys. 1993. — V. 73, N 7. — P. 32 993 304.
  275. М.Г., Пестов C.M. Свойства жидкокристаллических материалов. СПб: Политехника, 2005 296 с.
  276. Oswald P., Kleman М. Columnar discotic mesophases: elasticity, dislocations, instabilities // J. Phys. France 1982. V. 43, N 4. — P. 655−662.
  277. Oswald P. Dendritic growth of a discotic liquid crystal // J. Phys. France 1988. -V.49, N 7. — P. 1083−1089.
  278. Grelet E., Bock H. Control of the orientation of thin open supported columnar liquid crystal films by kinetics of growth // Europhys. Lett. 2006. — V. 73, N 5. — P. 712−718.
  279. Martynov A.G. Gorbunova Yu.G.Heteroleptic phthaIocyaninato-tetra (15-crown-5)phthalocyaninato. Ianthanides (III) double-deckers: Synthesis and cation-induced supramolecular dimerisation // Inorg. Chim. Acta. 2007. — V. 360, N 1. — P. 122−130.
  280. Sergeyev S., Levin J., J.-Y. Balandier, E. Pouzet, Y.H. Geerts, Homeotropic alignment in films of a mesogenic phthalocyanine depends on the nature of interactions with the surface // Mendeleev Commun. 2009. — V. 19, N 4. — P. 185−186.
  281. Eichhorn H. Mesomorphic phthalocyanines, tetraazaporphyrins, porphyrins and triphenylenes as charge-transporting materials // J. Porphyrins Phthalocyanines 2000. -V. 4, N 1. — P. 88−102.
  282. Foster E.J., Jones R.B., Lavigueur C., Vance E.W. Structural Factors Controlling the Self-Assembly of Columnar Liquid Crystals // J. Am. Chem. Soc. 2006. — V. 128, N 26.-P. 8569−8574.
  283. Iyechika Y., Yakushi K., Ikemoto I., Kuroda H. Structure of lead phthalocyanine (triclinic form) // Acta Cryst. B 1982. — V. 38. — P. 766−770.
  284. Bian Y., Li L., Dou J., Cheng D.Y.Y., Li R., Ma C., Ng D.K.P., Kobayashi N., Jiang J. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22
  285. Tetrasubstituted phthalocyaninato) lead Complexes // Inorg. Chem. 2004. — V. 43, N 23. -P. 7539−7544.
  286. Burnham P.M., Cook M.J., Gerrard L.A., Heeney M.J., Hughes D.L. Structural characterisation of a red phthalocyanine // Chem. Commun-2003. -N 16.-P. 2064−2065.
  287. Qiu W., Hu W., Liu Y., Zhou S., Xu Y., Zhu D. The gas sensitivity of a substituted metallophthalocyanine, tetra-iso-propoxyphthalocyaninato copper (II) // Sensors Actuators B.-200l.-V. 75, N 1−2.-P. 62−66.
  288. De Haan A., Debliquy M., Decroly A. Influence of atmospheric pollutants on the conductance of phthalocyanine films // Sensor Actuators B. 1999. — V. 57, N 1−3. — P. 69−74.
  289. Padma N., Joshi A., Singh A., Deshpande S.K., Aswal D.K., Gupta S.K., Yakhmi J.V. N02 sensors with room temperature operation and long term stability using copper phthalocyanine thin films // Sensors Actuators B. 2009. — V. 143, N 1. — P. 246−252.
  290. Paoletti A.M., Pennesi G., Rossi G., Generosi A., Paci B., Albertini V.R. Titanium and Ruthenium Phthalocyanines for N02 Sensors: A Mini-Review // Sensors. 2009. -V. 9, N 7. — P.5277−5297.
  291. Bott B., Thorpe S.C. Metal phthalocyanine gas sensor. In: Techniques and Mechanisms in Gas Sensing. Ed. by Moseley P.T., Norris J., Williams D.E. Bristol: Adam Highler, 1991.
  292. Rodriguez-Mendez M.L., Souto J., de Saja R., Martinez J., de Saja J.A. Lutetiumbisphthalocyanine thin films as sensors for volatile organic components (VOCs) oftaromas // Sensors Actuators B. 1999. — V.58, N 1−3. — P. 544−551.
  293. Schierbaum K.-D., Zhou R., Knecht S., Dieing R., Hanack M., Gopel W. The interaction of transition metal phthalocyanines with organic molecules: a quartz-microbalance study // Sensors Actuators B. 1995. — V. 24, N 1−3. — P. 69−71.
  294. Spadavecchia J., Ciccarella G., Rella R., Capone S., Siciliano P. Metallophthalocyanines thin films in array configuration for electronic optical nose applications // Sensors Actuators B. 2003. — V. 96, N 3. — P. 489−497.
  295. Granito C., Wilde J.N., Houghton S., Iredale P.J. Toluene vapour sensing using copper and nickel phthalocyanine Langmuir-Blodgett films // Thin Solid Films 1996. V. 284−285.-P. 98−101.
  296. Ozturk Z.Z., Kilinc N., Atilla D., Gurek A.G., Ahsen V. Recent studies chemical sensors based on phthalocyanines // J. Porphyrins Phthalocyanines. 2009. — V. 13, N 11.-P. 1179−1187.
  297. Basova T., Kol’tsov E., Hassan A.K., Ray A. K., Gurek A.G., Ahsen V. Liquid crystalline phthalocyanine spun for organic vapour sensing // Sens. Actuators B 2006. — V. 113, № l.-P. 127−134.
  298. Basova T., Tsargorodskaya A., Nabok A., Hassan A.K., Gurek A.G., Gumu§ G., Ahsen V. Investigation of gas-sensing properties of copper phthalocyanine films // Mater. Sci. Eng. C. 2009. — V.29, N 3. — P. 814−818.
  299. Basova T., Plyashkevich V., Hassan A., Gurek A.G., Glimlis G., Ahsen V. Phthalocyanine films as active layers of optical sensors for pentachlorophenol detection // Sens. Actuators B 2009. — V. 139, № 2. — P. 557−562.
  300. Vukusic P. S., Sambles J.R., Wright J.D. Surface plasmon resonance characterization of spin-deposited phthalocyanine films // J. Mater. Chem. 1992. — V. 2, N 10. — P: 1105−1106.
  301. Pockrand I. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings // Surf. Sci. 1978. — V. 72, N 3. — P. 577−588.
  302. Azzam M., Bashara N. Ellipsometry and Polarized Light, North-Holland- Amsterdam, 1987.
  303. Giotta L., Giancane G., Mastrogiacomo D., Basova T., Metrangolo P., Valli L. Phenol chemisorption onto phthalocyanine thin layers probed by ATR-FTIR difference spectroscopy //Phys. Chem. Chem. Phys.-2009.-V. 11, № 13.-P. 2161−2165.
  304. Basova T., Jushina I., Gurek A.G. Use of the electrochromic behaviour of lanthanide phthalocyanine films for nicotinamide adenine dinucleotide detection // J. Royal Soc. Interface-2008.-V. 5, № 24.-P. 801−806.
  305. Basova T., Paul S., Paul D., Vadgama P., Gurek A. G., Ahsen V., Ray A. Liquid Crystalline Phthalocyanine Thin Films as Nanoscale Substrates for Protein Adsorption // J. Bionanoscience 2008. — V. 2, № 2. — P. 114−118.
  306. Eley D.D., Parfitt G.D. The semiconductivity of organic substances. Part 2 // Trans. Faraday Soc. 1955. — V. 51. — P. 1529−1539.
  307. Eley D.D. Phthalocyanines as Semiconductors // Nature 1948. — V. 162, N 4125. -P. 819.
  308. Eley D.D., Parfitt G.D., Perry M.J., Taysum D.H. The semieonductivity of organic substances. Part 1 // Trans. Faraday Soc. 1953. — Y.49. — P. 79−86.
  309. A.T. Полупроводниковые свойства органических красителей // Ж. Физ.Хим. 1948. — Т. 22, № 7. с. 769−782.
  310. Gould R.D. Structure and electrical conduction properties of phthalocyanine thin films // Coord! Chem. Rev. 1996. — V. 156. — P. 237−274.
  311. Ray A.K., Nabok A., Hassan A.K., Cook M.J. Photoconduction in Langmuir-Blodgett films of octasubstituted metal-free phthalocyanine molecules // IEE Proc. Circ. Device Syst. 1999. — V. 146, N 1. — P. 44−48.
  312. Jones R., Krier A., Davidson K. Structure, electrical conductivity and electrochromism in thin films of substituted and unsubstituted lanthanide bisphthalocyanines // Thin Solid Films 1997. — V. 298, N 1−2. — P. 228−236.
  313. Petritsch K., Friend R.H., Lux A., Rozenberg G., Moratti S.C., Holmes A.B. Liquid? crystalline phthalocyanines in organic solar cells // Synth. Met. 1999. — V.102, N 1−3. -P. 1776−1777.
  314. Basova Т., Gurek A.G., Ahsen V., Ray A.K. Electrical properties of dysprosium phthalocyanine films // Organic Electronics 2007. — V. 8, № 6. — P. 784−790.
  315. Chaure N.B., Basova Т., Ray A.K., Gurek A.G., Ahsen V. Memory effects in thin film organic transistor // J. Phys. D. Appl. Phys. 2009. — V. 42, № 12. — P. 125 103−1 125 103−5.
  316. Chaure N.B., Basova Т., Zahedi M., Ray A.K., Sharma A.K., Durmu§ M., Ahsen V. Solution processed tetrasubstituted zinc phthalocyanine as an active layer in organic field effect transistors//J. Appl. Phys.-2010.-V. 107, N 11.-P. 114 503−1-114 503−5.
  317. Зи С. M., Физика полупроводниковых приборов. М.: Энергия, 1973.
  318. Deibel С., Janssen D., Heremans P., De Cupere V., Geerts Y., Benkhedir M.L., Adriaenssens G.J. Charge transport properties of a metal-free phthalocyanine discotic liquid crystal // Org. Electron. 2006. — V. 7, N 6. — P. 495−499.
  319. Fujikake H., Murashide T., Sugibayashi M., Ohta K. Time-of-flight analysis of charge mobility in a Cu-phthalocyanine-based discotic liquid crystal semiconductor // Appl. Phys. Lett. 2004. — V. 85, N 16. — P. 3474−3476.
  320. Chen S., Liu Y. Langmuir-Blodgett film of new phthalocyanine containing oxadiazol groups and its application in field-effect transistor // Synthetic Metals. — 2006. -V. 156, N 18−20.-P. 1236−1240.
  321. Yu X.J., Xu J.B., Cheung W.Y., Ke N. Optimizing the growth of vanadyl-phthalocyanine thin films for high-mobility organic thin-film transistors // J. Appl. Phys. 2007. -V. 102, N10.-P. 103 711.
  322. Hamann C., Hohne H.-J., Kersten F. Miiller M., Przyborowski F., Starke M. Switching effects on polycrystalline films of lead phthalocyanine (PbPc) // Phys. Stat. Sol. (a). 1978. — V. 50, N 2. — P. K189-K192.
  323. Frauenheim T., Hamann C., Miiller M. Electric field-induced disorder-order transition in organic polycrystalline films of quasi-one-dimensional lead-phthalocyanine // Phys. Stat. Sol. (a) 1984. — V. 86, N 2. — P. 735−747.
  324. Machida Y., Saito Y., Taomoto A., Nichogi K., Waragai K., Asakawa S. Electrical» Switching in Evaporated Lead Phthalocyanine Films // Jpn. J. Appl. Phys. 1989. — V. 28, N2.-P. 297.
  325. Nabok A.V., Ray A.K., Cook M.J., Burnham P.M., Iwantono, Yanuar H., Simmonds M., Basova T.V. Lead sulphide/phthalocyanine nanocomposite spun films // IEEE. Trans. Nanotechnol. 2004. — V. 3, № 3. p. 388−394.
Заполнить форму текущей работой