Помощь в написании студенческих работ
Антистрессовый сервис

Регистрация неравновесных состояний мембраносвязанных ионов водорода в митохондриях и их роль в процессе окислительного фосфорилирования

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Различие между этими процессами связано с тем, что в разобщенных митохондриях (схема 1а) через межфазную границу (и мембрану) в матрикс переносится не гидратированный ион водорода (Н+ пН20), а его связанная формакислота Бренстеда (ТН), в которой протон соединен с гидрофобным анионом разобщителя (Т"). Трансмембранный перенос такой молекулы протекает быстро, поэтому протонный цикл в разобщенных… Читать ещё >

Регистрация неравновесных состояний мембраносвязанных ионов водорода в митохондриях и их роль в процессе окислительного фосфорилирования (реферат, курсовая, диплом, контрольная)

Содержание

  • Часть I. Обзор литературы
    • 1. Основные этапы развития теории сопряжения процессов дыхания и фосфорилирования
  • Химическая схема сопряжения
  • Хемиосмотическая гипотеза Митчелла
  • Теория Вильямса
  • Схема Бойера
    • 2. Суперкомплексы дыхательной цепи
  • Роль липидов в формировании белковых суперкомплексов в мембране митохондрий
  • Функциональная значимость мембранных дыхательных суперкомплексов
    • 3. Высокий кинетический барьер в реакции отрыва протона от поверхности мембраны
    • 4. Идентификация неравновесных состояний мембраносвязанных состояний мембраносвязанных ионов водорода в модельных системах
    • 5. Латеральный перенос протона вдоль поверхности биологических мембран
  • Часть II. Материалы и методы
  • Выделение митохондрий из печени крысы
  • Часть III. Результаты и обсуяедение
    • 1. Разработка нового метода регистрации неравновесных состояний ионов водорода, связанных с внешней поверхностью внутренней мембраны митохондрий в условиях работы дыхательных НГ-помп
      • 1. 1. Препарат ФИТЦ-меченых митохондрий, обладающих фосфорилирующей активностью
      • 1. 2. Методика приготовления препарата фосфорилирующих ФИТЦ-меченых митохондрий и регистрация изменений спектров рН-зонда, возникающих при работе протонных помп

      1.3 Свойства препарата ФИТЦ-меченых митохондрий. а) Компоненты и природа наблюдаемого дифференциального спектра поглощения рН-зонда, возникающего при включении работы дыхательных протонных помп в препаратах ФИТЦ-меченых митохондрий. б) О связывании рН-зонда (ФИТЦ) с внутренней митохондриальной мембраной.

      1.4 Метод регистрации локальных Н-градиентов в фосфорилирующих ФИТЦ-меченых митохондриях с помощью дифференциальной спектроскопии.

      2. Разработка метода обнаружения относительно высокого кинетического барьера в реакции отрыва мембраносвязанных ионов водорода на внешней стороне мембраны разобщенных интактных (в условиях работы дыхательных ЕГ-помп) митохондрий.

      3. Метод идентификации и химическая природа высокого кинетического барьера в реакции отрыва ионов водорода от внешней поверхности митохондриальной мембраны.

      3.1 Обнаружение эффекта катализа реакции отрыва ионов водорода от внешней поверхности внутренней мембраны фосфорилирующих митохондрий.

      4. Экспериментальное исследование неравновесных состояний ионов водорода на мембране митохондрий. а) Регистрация локального ЬГ^-градиента на внутренней мембране митохондрий в состоянии 4 по Чансу и в разобщенных митохондриях. б) Эффект подавления дыхания разобщителем (НТВ). в) Обнаружение кинетического барьера в реакции отрыва Н±ионов от поверхности мембраны митохондрий. (Эффект ускорения разобщенного дыхания митохондрий под влиянием непроникающего катализатора реакции отрыва Н1 от внешней поверхности внутренней митохондриальной мембраны). г) Влияние непроникающих катализаторов с разным химическим строением на скорость отрыва Н± ионов от внешней поверхности внутренней митохондриальной мембраны. д) О возможном участии транслокатора адениновых нуклеотидов в процессе ускорения разобщенного дыхания катализаторами реакции отрыва ионов водорода. е) Регистрация образования неравновесных состояний мембраносвязанных ионов водорода на внешней поверхности внутренней митохондриальной мембраны с помощью ФИТЦ-зонда. В условиях фосфорилирования. ж) Интактные митохондрии (не меченые ФИТЦ). Положительная корреляция между величиной пула мембраносвязанных ионов водорода, величиной параметра АОР/О и скоростью фосфорилирующего дыхания.

Актуальность проблемы.

Известно, что мультиферментные системы клетки могут работать в двух качественно различных состояниях — в диссоциированном, когда ферменты работают независимо друг от друга, и в состоянии суперкомплекса (метаболона), когда ферменты тесно контактируют друг с другом. В первом случае продукты реакции выбрасываются в объем водной фазы, из которой избирательно захватываются активным центром следующего по цепи фермента. При образовании метаболона промежуточные продукты-субстраты не выбрасываются в водную фазу, а передаются по метаболической цепи от фермента к ферменту «из рук в руки». В случае мембранной системы окислительного фосфорилирования ключевым промежуточным продуктом окислительных реакций является ион водорода, обладающий избытком свободной энергии и выполняющий в митохондриях роль переносчика энергии окислительных реакций на АТФ-синтазный комплекс. Работа этой системы в форме суперкомплекса, когда ион водорода не выходит в водную фазу, предполагает существование относительно высокого кинетического барьера в реакции отрыва ионов водорода от внешней поверхности внутренней митохондриальной мембраны. В настоящее время хорошо изучен и экспериментально обоснован первый механизм (модель Митчелла). В этом случае, ион водорода является основным промежуточным продуктом-субстратом реакции (который выполняет роль переносчика энергии окислительных реакций на АТФ-синтазный комплекс), выходит из мембраны в объем водной фазы (Mitchell, 1961). Второй механизм (модель Вильямса), предполагает возможность работы мультиферментных систем в форме суперкомплекса, при котором ионы водорода переносится от дыхательной помпы на АТФ-синтазный комплекс в составе суперкомплекса дыхательная помпа-мембрана-АТФ-синтетаза без выхода в объем водной фазы (Williams, 1961) (рис.1). Нами обоснован вариант модели Вильямса, согласно которому ион водорода пересекает гидрофобный барьер мембраны, но остается в связанном неравновесном состоянии на межфазной границе. Выход Н±иона в водную фазу в этом случае ограничен (не полностью) высоким кинетическим барьером. межфазная мембрана граница мембрана-АТФ-синтетаза.

Существование такого механизма работы системы окислительного фосфорилирования до последнего времени не было однозначно показано.

Ранее нам удалось обнаружить существование двух структурных состояний мембран митохондрий, переход между которыми контролировался системой осморегуляции (КгаБтякауа ^ а1., 1989). Кинетические параметры системы сопряжения дыхания и фосфорилирования в одном из этих состояний соответствуют модели мультиферментного суперкомплекса. Эти наблюдения рассматривались нами как указание на существование системы окислительного фосфорилирования в двух состояниях, в одном из которых реализуется делокализованное, в другом — локальное сопряжение дыхания и фосфорилирования. Таким образом было показано, что модели Митчелла и Вильямса не являются альтернативными. Необходимым условием работы системы окислительного фосфорилирования в режиме локального сопряжения является способность ионов водорода достаточно долго существовать в мембраносвязанном состоянии после того как дыхательные ГГ-помпы переносят их через гидрофобный изолирующий барьер мембраны. К настоящему времени на различных модельных системах показано, что реакция отрыва протона от поверхности липидных мембранных структур имеет при определенных условиях относительно высокий кинетический барьер, существование которого определяет возможность возникновения неравновесного состояния (пула) ионов водорода, связанных с поверхностью мембраны (АпШпепко е1 а1., 1993; СЬсгерапоу е1 а1., 2004). Обнаружение неравновесно связанных с поверхностью бислоя Н±ионов при трансмембранном потоке этих ионов через БЛМ показало возможность латерального переноса протонов вдоль поверхности мембраны без выхода в водную фазу. Это наблюдение, сделанное в нашей лаборатории на модельной системе, доказало принципиальную возможность реализации механизма локального сопряжения в митохондриях. Кроме того, на модельной мембране (БЛМ) было обнаружено явление катализа отрыва Н±ионов от поверхности мембраны и показана химическая природа пула мембраносвязанных Н±ионов. Важно указать, что работ по изучению переноса протонов через межфазные границы внутренней мембраны митохондрий в условиях протекания процесса окислительного фосфорилирования до начала настоящего исследования не проводилось.

Цель настоящей работы — экспериментальное обоснование возможности переноса протонов от дыхательных Н4″ -помп к АТФ-синтетазе в условиях работы системы окислительного фосфорилирования митохондрий в составе мембранного суперкомплекса (без выхода в водную фазу) и их участия в процессе синтеза АТФ.

Задачи исследования: 1) на фосфорилирующих митохондриях продемонстрировать образование пула мембраносвязанных ионов водорода на внешней поверхности внутренней митохондриальной мембраны в состоянии 3 по Чансу. 2) Показать участие пула мембраносвязанных ионов водорода в работе системы окислительного фосфорилирования. 3) Сравнить влияние катализаторов отрыва Нойонов от поверхности мембраны на скорость дыхания в разобщенных и фосфорилирующих митохондриях. 4) Показать возникновение неравновесных состояний мембраносвязанных Н^-ионов в разобщенных митохондриях. Научная новизна работы: Разработан метод ковалентной пришивки рН-зонда (ФИТЦ) к митохондриям, при использовании которого практически полностью сохраняется фосфорилирующая функция этих органелл. На препаратах ФИТЦ-меченых митохондрий обнаружено явление катализа реакции отрыва ионов водорода от внешней поверхности внутренней мембраны.

На препаратах ФИТЦ-меченых митохондрий, в условиях фосфорилирования зарегистрировано образование пула мембраносвязанных ионов водорода с внешней стороны внутренней митохондриальной мембраны. Тем самым было показано существование относительно высокого кинетического барьера в реакции отрыва ионов водорода от внешней поверхности внутренней мембраны митохондрий. Этот результат был подтвержден на препаратах интактных разобщенных митохондрий. Установлено, что мембраносвязанные ионы водорода принимают участие в процессе окислительного фосфорилирования. Найдена прямая корреляция между величиной неравновесного пула мембраносвязанных Н±ионов и, с другой стороны, скоростью фосфорилирующего дыхания и эффективностью фосфорилирования (параметром АБР/О).

Практическое значение работы: Полученные результаты показали возможность работы системы окислительного фосфорилирования в режиме мультиферментного суперкомплекса, что является принципиально новой фундаментальной информацией о свойствах одной из важнейших систем энергообеспечения клетки. В работе показана возможность направленного регулирования скорости и эффективности работы системы окислительного фосфорилирования путем воздействия на внешнюю поверхность внутренней митохондриальной мембраны. Результаты этих экспериментов открывают новые подходы для лекарственной терапии заболеваний, связанных с нарушениями митохондриальной энергетики, а также для разработки методов, позволяющих управлять митохондриальной энергетической системой.

Обзор литературы.

Основные результаты диссертационной работы Юркова В. И. изложены в следующих публикациях:

1. В. И. Юрков, М. С. Фадеева, JI.C. Ягужинский. Перенос протона через межфазные границы мембрана-вода в разобщенных митохондриях, (2005), Биохимия, 241−245.

2. Solodovnikova IM, Iurkov VI, Ton’shin АА, laguzhinskii LS. Local coupling of respiration processes and phosphorylation in rat liver mitochondria Biofizika. 2004 Jan-Feb-49(l):47−56.

3. L.S. Yaguzhinsky, Y.I. Yurkov, I.P.Krasinskaya. On the local coupling of respiration and phosphorylation in mitochondria, BBA. 2006, May-Jun- 1757(5−6):408−14.

4. V.I. Yurkov, M.S. Fadeeva. About proton transfer through interfaces of inner membrane of the uncoupled mitochondria, сборник тезисов докладов международной конференции «Российская биоэнергетика: от молекул к клетке «, Москва, МГУ, 2005 г. С. 68.

5. Юрков В. И., Ягужинский JI.C., Регистрация локального Н-градиента в условиях фосфорилирования на препаратах митохондрий с ковалентно присоединенным рН-зондом (ФИТЦ). Сборник тезисов докладов III съезд биофизиков России, Воронеж, 2004, с. 481.

Благодарности.

В заключение хочу выразить огромную благодарность Тепловой Вере Викторовне за обучение методам выделения митохондрий и исследования их функциональной активностиСмирновой Елене Георгиевне, Солодовниковой Ирине Михайловне и Тонынину Антону Александровичу за помощь при работе с моделью моему научному руководителю Ягужинскому Льву Сергеевичу за предоставленную свободу в планировании и проведении экспериментов, за оказанную помощь в процессе написания данной работы, а также за обучение искусству анализа полученных экспериментальных результатов и литературных данных.

Заключение

.

Как отмечалось во введении, система осморегуляции может переключать процесс окислительного фосфорилирования из режима делокализованного в режим локального сопряжения. В последнем случае выполняется основной принцип работы мультиферментных систем, существующих в форме суперкомплексов (метаболонов) — согласно которому в цепи последовательных реакций передача промежуточных продуктов/субстратов от фермента к ферменту осуществляется «из рук в руки», без выхода в объем водной фазы. В соответствии с данными нашего эксперимента, на схеме 16 показано, что в условиях локального сопряжения ион водорода пересекает гидрофобный барьер мембраны, что приводит к образованию электрохимического мембранного потенциала. Однако, в отличие от случая делокализованного сопряжения, основной поток энергии к АТФ-синтазе реализуется в форме переноса ионов водорода, связанных с внешней поверхностью мембраны в составе суперкомплекса — протонные помпы — мембрана — АТФ-синтетаза (16). На схемах транспорта энергии (ионов водорода) в митохондриях (1 а, б) даны направления основных потоков этих ионов в условиях локального сопряжения (схема 1 б, жирные стрелки), и трансмембранные потоки, которые характерны для делокализованного сопряжения (схема 16, тонкие стрелки). Проведенные в работе эксперименты показали (рис. 13, таб.1), что в условиях синтеза АТФ добавление катализатора реакции отрыва Н±ионов от внешней межфазной границы замедляет скорость фосфорилирующего дыхания и, соответственно, процесс фосфорилирования. В разобщенных митохондриях катализатор напротив, ускоряет дыхание (рис.10).

Схема 1а. Модель транспорта ионов водорода в условиях разобщения- 1) медленная стадия отрыва протона от внешней поверхности внутренней мембраны, 2) быстрая стадия переноса протона через межфазную границу и мембрану на разобщителе (Т", ТН — диссоциированная и недиссоциированная формы разобщителя).

Схема 16. Модель транспорта ионов водорода в условиях фосфорилирования- 1) быстрая стадия переноса протона 2) медленная стадия переноса протона из объема водной фазы к АТФ-синтетазе (через межфазную границу).

Различие между этими процессами связано с тем, что в разобщенных митохондриях (схема 1а) через межфазную границу (и мембрану) в матрикс переносится не гидратированный ион водорода (Н+ пН20), а его связанная формакислота Бренстеда (ТН), в которой протон соединен с гидрофобным анионом разобщителя (Т"). Трансмембранный перенос такой молекулы протекает быстро, поэтому протонный цикл в разобщенных митохондриях лимитирован только реакцией отрыва ионов водорода, неравновесно связанных на поверхности мембраны ЬГ-ионов. В процессе фосфорилирования добавление катализатора переключает локальное сопряжение на трансмембранный перенос ионов водорода (схема 16, тонкие линии), свойственный для делокализованного сопряжения. В этих условиях процесс переноса протона через межфазную границу и его встраивание в протонный канал АТФ-синтазы затруднен вследствие гидратации этого иона, поэтому скорость фосфорилирующего дыхания лимитирована стадией присоединения протона к мембране. Экспериментальной базой для этой модели явилось, таким образом, наблюдаемое изменение знака эффекта катализатора на скорость дыхания при переходе от разобщенного к фосфорилирующему состоянию митохондрий (см. рис. 10, рис. 13, таб.1), а также эффект замедления скорости фосфорилирующего дыхания при повышении концентрации непроникающего катализатора реакции отрыва Н±ионов от поверхности внутренней мембраны (таб.1). Схемы 1 а, б основаны на двух положениях: 1) анион разобщителя (в разобщающих концентрациях) практически не взаимодействует с мембраносвязанными ионами водорода, при этом он эффективно связывается со свободными Н±ионами в водной фазе. Это было показано ранее на модельной бислойной мембране и в настоящей работе на митохондриях (см. приложение). 2) Полярные молекулы непроникающего катализатора (НЕРЕ8) ускоряют только отрыв неравновесно связанных ионов водорода (рис. 7, реакция 1) и не могут поэтому эффективно ускорять обратную реакцию, поскольку при этом должен происходить сдвиг влево равновесия реакции 1 на рис. 7. Наличие потенциала на мембране подтверждено экспериментально (рис. 15).

Рис. 15 Типичный результат измерений электрического потенциала митохондрий при различных концентрациях катализатора реакции отрыва Н±иопов от поверхности мембраны а) 20 тМ НЕРЕБ, б) 3 тМ НЕРЕ8. Среда инкубации содержит: ТРР (0,5 мкМ), сукцинат (2мМ), ротенон (1мкМ), рН 7,5. Шкала ТРР — линейная.

Можно видеть, что значения потенциала при разных концентрациях катализатора (НЕРЕБ) различаются незначительно.

Рисунок 7 предполагает, что мембраносвязанные ионы водорода взаимодействуют с изотропной, равномерно заряженной поверхностью мембраны. В рамках такой модели уравнение свободной энергии мембраносвязанных ионов водорода (ЛЕ0Х) может быть записано в следующем виде:

ДЕ0Х =Л|Ш+ + Л|1Н+8о1у (1).

Существование сольватационной компоненты подчеркивает то обстоятельство, что в выбранных нами условиях, при локальном сопряжении, энергия окислительных реакций может запасаться не только в форме электрохимического потенциала ионов водорода, но также в качественно иной форме, в форме энергии сольватации Н± ионов. В заключение представляется важным еще раз подчеркнуть то обстоятельство, что модели делокализованного и локального сопряжения не являются взаимоисключающими. Напротив, это два взаимодополняющих механизма работы системы окислительного фосфорилирования (как впрочем и других мультиферментных систем), которые реализуются в различных строго специфичных условиях. Переход между двумя режимами работы фосфорилирующего комплекса митохондрий контролируется системой осморегуляции и соответствует переходу между диссоциированным и кластеризованным состояниями мультиферментного мембранного комплекса митохондрий.

Показать весь текст

Список литературы

  1. Alexiev U, Mollaaghababa R, Scherrer P, Khorana HG, Heyn MP. (1995) Rapid longrange proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc Natl Acad Sei USA- 92(2):372−6.
  2. Antonenko YN, Kovbasnjuk ON, Yaguzhinsky LS. (1993) Evidence in favor of the existence of a kinetic barrier for proton transfer from a surface of bilayer phospholipid membrane to bulk water. Biochim Biophys Acta-l 150(l):45−50.
  3. Antonenko YN, Pohl P. (1998) Coupling of proton source and sink via H±migration along the membrane surface as revealed by double patch-clamp experiments. FEBS Lett.-429(2): 197−200.
  4. Arnesano F, Banci L, Bertini I, Faraone-Mennella J, Rosato A, Barker PD, Fersht AR. (1999) The solution structure of oxidized Escherichia coli cytochrome b562. Biochemistry- 38(27):8657−70.
  5. Auslander W, Junge W. (1974) The electric generator in the photosynthesis of green plants. II. Kinetic correlation between protolytic reactions and redox reactions. Biochim Biophys Acta- 357(2):285−98.
  6. Berry EA, Trumpower BL (1985) Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bcl and cytochrome c-ааЗ complexes. J Biol Chem.- 260(4):2458−67.
  7. Branden M, Sanden T, Brzezinski P, Widengren J. (2006) Localized proton microcircuits at the biological membrane-water interface. Proc Natl Acad Sei USA.103(52): 19 766−70. Epub 2006 Dec 15.
  8. CHANCE B, WILLIAMS GR, HOLMES WF, HIGGINS J. (1955) Respiratory enzymes in oxidative phosphorylation. J Biol Chem.- 217(1): 383−451.
  9. Chappell J.B., Crofts (1966) Regulation of metabolic processes in mitochondria. Elsevier. 293−314
  10. JB. (1968) Systems used for the transport of substrates into mitochondria. Br Med Bull.- 24(2): 150−7.
  11. Cherepanov, D. A., B. A. Feniouk, W. Junge, and A. Y. Mulkidjanian. (2003) Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes. Biophys. J. 2:1307−1316.
  12. CRANE FL, HATEFI Y, LESTER RL, WIDMER C. (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta- 25(1):220−1.
  13. CRANE RK, LIPMANN F.(1953) The relationship of mitochondrial phosphate to aerobic phosphate bond generation. J Biol Chem.- 201(l):245−6.
  14. Cruciat CM, Brunner S, Baumann F, Neupert W, Stuart RA. (2000) The cytochrome bcl and cytochrome c oxidase complexes associate to form a single supracomplex in yeast mitochondria. J Biol Chem 275: 18 093- 18 098.
  15. Drachev, A. L., A. D. Kaulen, and V. I. Skulachev. (1984) Correlation of photochemical cycle, H 1 release and uptake, and electric events in bacteriorhodopsin. FEBS1.tt. 178:331−336.
  16. Drachev, A. L., A. D. Kaulen, and V. I. Skulachev. (1984) Correlation of photochemical cycle, H 1 release and uptake, and electric events in bacteriorhodopsin. FEBS Lett. 178:331 336.
  17. Drachev, Jasaitis A. A, Kaulen A.D. et al., (1976) The reconstitution of biological molecular generators of electric current cytochrome oxidase. J. Biochem., 251, 7066.
  18. Dragunova SF, Krasinskaia IP, Iaguzhinskii LS. (1981) Control of proton transport across the double electrical layers of mitochondrial membranes Biokhimiia. 46(6): 1087−95.
  19. Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP. (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sei USA 102: 3225−3229.
  20. Fahien LA, MacDonald MJ, Teller JK, Fibich B, Fahien CM. (1989) Kinetic advantages of hetero-enzyme complexes with glutamate dehydrogenase and the ketoglutarate complex. J Biol Chem 264: 12 303−12 312.
  21. Feniouk BA, Cherepanov DA, Junge W, Mulkidjanian AY. (1999) ATP-synthase of Rhodobacter capsulatus: coupling of proton flow through F0 to reactions in Fl under the ATP synthesis and slip conditions. FEBS Lett.-445(2−3):409−14.
  22. Feniouk BA, Mulkidjanian AY, Junge W. (2005) Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. Biochim Biophys Acta- 1706(1−2): 184−94.
  23. FLEISCHER S, BRIERLEY G, KLOUWEN H, SLAUTTERBACK DB. (1962) Studies of the electron transfer system. The role of phospholipids in electron transfer. J Biol Chem.-237:3264−72.
  24. Fleischer S, Fleischer B, Stoeckenius W. (1967) Fine structure of lipid-depletedmitochondria. J Cell Biol 32: 193−208.
  25. FOWLER LR, RICHARDSON SH. (1963) Studies on the electron transfer system. L. On the mechanism of reconstitution of the mitochondrial electron transfer system. J Biol Chem.-238:456−63.
  26. Friedman R, Nachliel E, Gutman M. (2005) Molecular dynamics of a protein surface: ion-residues interactions. Biophys J.-89(2):768−81. Epub May 13.
  27. Fry M, Green DE. (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256: 1874−1880.
  28. Gabriel B, Prats M, Teissie J. (1994) Proton lateral conduction along a lipid monolayer spread on a physiological subphase. Biochim Biophys Acta- 1186(3): 172−6.
  29. Giess F, Friedrich MG, Heberle J, Naumann RL, Knoll W. (2004) The protein-tethered lipid bilayer: a novel mimic of the biological membrane. Biophys J.-87(5):3213−20.
  30. Gil T, Ipsen JH, Mouritsen OG, Sabra MC, Sperotto MM, Zucker-mann MJ. (1998) Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta 1376: 245−266.
  31. Green DE, Tzagoloff A. (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys.-l 16(l):293−304.
  32. Green DE, Tzagoloff A. (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys.26-l 16(l):293−304.
  33. Gwak SH, Yu L, Yu CA. (1986) Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases. Biochemistry 25: 7675−7682.
  34. Hackenbrock CR, Hammon KM. (1975) Cytochrome c oxidase in liver mitochondria. J Biol Chem 250:9185−9187.
  35. Hansford RG, Chappell JB. (1967) The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly flight-muscle mitochondria. Biochem Biophys Res Commun.- 27(6):686−92.
  36. Harrison DE, Chance B. (1970) Fluorimetric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures of microorganisms. Appl Microbiol.-19(3):446−50.
  37. Hatefi Y, Haavik AG, Fowler LR, Griffiths DE. (1962) Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem 237: 2661−2669.
  38. Y. (1978) Introduction-preparation and properties of the enzymes and enzymes complexes of the mitochondrial oxidative phosphorylation system. Methods Enzym.-53:3−4.
  39. Heberle J, Dencher NA. (1990) Bacteriorhodopsin in ice. Accelerated proton transfer from the purple membrane surface. FEBS Lett.-277(l-2):277−80.
  40. Heberle J, Dencher NA.(1990) Bacteriorhodopsin in ice. Accelerated proton transfer from the purple membrane surface. FEBS Lett.- 277(1−2):277−80.
  41. A.T., Uribe E. (1970) ATP-formation caused by acid-base transition of spinack chloroplasts. Proc. Nat.Acad.Sci. USA, 55,170.
  42. Jagendorf, Uribe (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA- 55(1): 170−7.
  43. A.A., Severina I.I., Skulachev V.P., Smirnova S.M. (1972) A study of the mechanism of energy coupling in the redox chain.. J. Bioencrg., 243, 54.
  44. Jones, M. R., and J. B. Jackson. (1990). Proton efflux from right-side-out membrane vesicles of Rhodobacter sphaeroides after short flashes. Biochim. Biophys. Acta. 1019:5158.
  45. Junge, W., and A. Polle. (1986) Theory of proton flow along appressed thylakoid membranes under both non-stationary and stationary conditions. Biochim. Biophys. Acta. 848:265−273.
  46. Junge, W., and A. Polle. (1986) Theory of proton flow along appressed thylakoid membranes under both non-stationary and stationary conditions. Biochim. Biophys. Acta. 848:265−273.
  47. Junge, W., and S. McLaughlin. (1987). The role of fixed and mobile buffers in thekinetics of proton movement. Biochim. Biophys. Acta. 890:1−5.
  48. KagavaY., Kandrash A., Racker E. (1973) Partial resolution of the enzymes catalysing oxidative phosphorylstion. J. Biochem. 248,676
  49. Kang SY, Gutowsky HS, Hsung JC, Jacobs R, King TE, Rice D, Oldfield E. (1979) Nuclear magnetic resonance investigation of the cytochrome oxidase-phospholipid interaction: a new model for boundary lipid. Biochemistry 18: 3257−3267.
  50. Kayalar C, Rosing J, Boyer PD. (1977) An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J Biol Chem.-252(8):2486−91.
  51. DB. (1979) On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim Biophys Acta-549(l):55−99.
  52. Kinnally KW, Antonenko YN, Zorov DB. (1992) Modulation of inner mitochondrial membrane channel activity. J Bioenerg Biomembr.-24(l):99-l 10.
  53. Kotlyar AB, Maklashina E, Cecchini G. (2004) Absence of NADH channelling in coupled reaction of mitochondrial malate dehydrogenase and Complex I in alamethicin-permeabilized rat liver mitochondria. Biochem Biophys Res Commun 318: 987−991.
  54. Kotlyar AB, Sled VD, Burbaev DS, Moroz IA, Vinogradov AD. (1990) Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett.- 264(1): 17−20.
  55. Krasinskaya IP, Lapin MV, Yaguzhinsky LS. (1998) Detection of the local H+ gradients on the internal mitochondrial membrane. FEBS Lett.-440(l-2):223−5.
  56. Marantz Y, Nachliel E, Aagaard A, Brzezinski P, Gutman M. (1998) The proton collecting function of the inner surface of cytochrome c oxidase from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A-95(15):8590−5.
  57. S., Azzone G.F. (1970) The mechanism of ion tranzlocation in mitochondria. Active transport and proton pump. Eur.J. Biochem. 12,310.
  58. P. (1965) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Bodmin. Glynn Research.
  59. P. (1961) Coupling of phosphorylation to electron transfer by a chemiosmotic type of mechanism. Nature, 191,144.
  60. P., Moyle J. (1967) Acid-base titration across the membrane system of rat-liver mitochondria catalisys by uncouplers. Biochem.J., 104,588.
  61. Mitchell P, Moyle J. (1967) Respiration-driven proton translocation in rat liver mitochondria. Biochem J.- 105(3): 1147−1162.
  62. Mitchell P, Moyle J. (1969) Translocation of some anions cations and acids in rat livermitochondria. Eur J Biochem.-9(2): 149−55.
  63. P. (1974) A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett.-43(2): 189−94.
  64. Mitchell, Moyle (1975) Active/inactive state transitions of mitochondrial ATPase molecules influenced by Mg2+, anions and aurovertin. FEBS Lett.-56(l):55−61.
  65. Mitchell, Moyle, 1968 (1968) Proton translocation coupled to ATP hydrolysis in rat liver mitochondria. Eur J Biochem.-4(4):530−9.
  66. Mitchell, Moyle. (1958) Group-translocation: a consequence of enzyme-catalysed group-transfer. Nature- 182(4632):372−3.
  67. Mitchell, Moyle. (1965) Evidence discriminating between the chemical and the chemiosmotic mechanisms of electron transport phosphorylation. Nature-208(5016): 1205−6.
  68. Mitchell, Moyle. (1965) Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria. Nature-208(5006):147−51.
  69. Mitchell, Moyle. (1969) Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem.-7(4):471−84.
  70. Mochizuki M, Aoyama H, Shinzawa-Itoh K, Usui T, Tsukihara T, Yoshikawa S.(1999) Quantitative reevaluation of the redox active sites of crystalline bovine heart cytochrome c oxidase. J Biol Chem.-274(47):33 403−11.
  71. Morgan H, Taylor DM, Oliveira ON Jr. (1991) Proton transport at the monolayer-water interface. Biochim Biophys Acta- 1062(2): 149−56.
  72. Morgunov I, and Srere PA. (1998) Interaction between citrate synthase and malate dehydrogenase. Substrate channelling of oxaloacetate. J Biol Chem 273: 29 540−29 544.
  73. Moroney JV, McCarty RE. (1979) Reversible uncoupling of photophosphorylation byanew bifunctional maleimide. J Biol Chem.-254(18):8951−5.
  74. Mulkidjanian AY, Heberle J, Cherepanov DA. (2006) Protons and interfaces: implications for biological energy conversion. Biochim Biophys Acta. 1757(8):913−30. Epub. Review.
  75. Nachliel, E., and M. Gutman. (1996) Quantitative evaluation of the dynamics of proton transfer from photoactivated bacteriorhodopsin to the bulk. FEBS Lett. 393:221−225.
  76. Neumann, Jagendorf. (1964) Light-induced pH changes related phosphorylation by chloroplasts. Arch Biochem Biophys.-107:109−19.
  77. Nicholls (1974) The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem.-50(1):305−15.
  78. Ozawa T, Nishikimi M, Suzuki H, Tanaka M, Shimomura Y. (1987) Structure and assembly of mitochondrial electron-transfer complexes. Japan Sci. Soc., p. 101−119.
  79. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM,.(2002) Reactive oxygen species affect mitochondrial electron transport complex I. activity through oxidative cardiolipin damage. Gene 286: 135−141.
  80. Petty KM, Dutton PL. (1976) Properties of the flash-induced proton binding encountered in membranes of Rhodopseudomonas sphaeroides: a functional pK on theubisemiquinone? Arch Biochem Biophys.-172(2):335−45.
  81. Pfeiffer, K., GohilsV., Stuart, R.A., Hunte, C., Brandt, U., Greenberg, M.L. and Schagger, H.(2003) Cardiolipin stabilizes respiratory chain supercomplexes. J.Biol.Chem.278,52 873 -52 880
  82. , D. (2002) Reaction coupling, acceptor pK, and diffusion control in light induced proton release of bacteriorhodopsin. J. Phys. Chem. B. 106:10 233−10 241.
  83. Prats M, Tocanne JF, Teissie J. (1987) Lateral proton conduction at a lipid/water interface. Effect of lipid nature and ionic content of the aqueous phase. Eur J Biochem.- 162(2):379−85.
  84. Qiu ZH, Yu L, Yu CA. (1992) Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mi-tochondrial cytochrome c oxidase and adenosine triphosphate synthase complex. Biochemistry 31: 32 973 302.
  85. E., Kandrash A. (1971) Reconstotution of the third site of oxidative phosphorilation. J. Biochem., 246, 7069.
  86. PR. (1984) Electron and proton transfers through quinones and be complexes. Biochim Biophys Acta 768: 53−79.
  87. Riesle J, Oesterhelt D, Dencher NA, Heberle J.(1996) D38 is an essential part of the proton translocation pathway in bacteriorhodopsin. Biochemistry-35(21):6635−43.
  88. Robinson JB Jr, Srere PA. (1985) Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. J Biol Chem.-260(19): 10 800−5.
  89. Rochel S, Nachliel E, Huppert D, Gutman M. (1990) Proton dissociation dynamics in the aqueous layer of multilamellar phospholipid vesicles. J Membr Biol.-l 18(3):225−32.
  90. H. (1975) The measurement of transmembrane electrochemical proton gradients. J Bioenerg.- 7(2):61−74.
  91. Ryrie IJ, Jagendorf AT. (1972) Correlation between a conformational change in the coupling factor protein and the high energy state in chloroplasts. J Biol Chem.- 247(14):4453−9.
  92. Scha’gger H and Pfeiffer K. (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19: 1777−1783.
  93. Scha’gger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U. (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279: 36 349−36 353.
  94. H. (2001) Respiratory chain supercomplexes. IUBMB Life 52: 119- 128.
  95. Schafer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J. (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281: 15 370−15 375.
  96. Schoepp B, Brugna M, Riedel A, Nitschke W, Kramer DM. (1999) The Qo-site inhibitor DBMIB favours the proximal position of the chloroplast Rieske protein and induces a pK-shift of the redox-linked proton. FEBS Lett.-450(3):245−50.
  97. Serowy S, Saparov SM, Antonenko YN, Kozlovsky W, Hagen V, Pohl P. (2003) Structural proton diffusion along lipid bilayers. Biophys J.-84(2 Pt 1): 1031−7.
  98. Severina II, Skulachev VP, Zorov DB. (1988) Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes. J Cell Biol.- 107(2):497−501.
  99. Sharyshev AA, Kostava VT, Ismailov AD, Evtodienko IuV, IaguzhinskiT LS. (1979) Ion currents in mitochondrial and liposome membranes induced by acid action. Biofizika.-24(3):484−8.
  100. EC. (1953) Mechanism of phosphorylation in the respiratory chain. Nature.- 172(4387):975−8.
  101. Sokolov VS and Kuz’min VG., (1980). Measurement of differences in the surface potentials of bilayer membranes according to the second harmonic of a capacitance current. Biofizika.-25(l): 170−2.
  102. Solodovnikova IM, Iurkov VI, Ton’shin AA, Iaguzhinskii LS. (2004) Local coupling of respiration processes and phosphorylation in rat liver mitochondria. Biofizika.-49(l):47−56.
  103. Sone N, Sekimachi M, Kutoh E. (1987) Identification and properties of a quinol oxidase supercomplex composed of a be 1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J Biol Chem 262: 15 386−15 391.
  104. Sowers E, Hackenbrock CR. (1981) Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci USA 78:6246−6250.
  105. Spivey HO, Merz JM. (1989) Metabolic compartmentation. Bioassays 10: 127−130.
  106. PA. (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56: 89−124.
  107. Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig, Schagger (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 279: 5000−5007.
  108. Sumegi B, Porpaczy Z, Alkonyi I. (1991) Kinetic advantage of the interaction between the fatty acid beta-oxidation enzymes and the complexes of the respiratory chain. Biochim Biophys Acta 1081: 121−128.
  109. Teissie J, Prats M, Soucaille P, Tocanne JF. (1985) Evidence for conduction of protons along the interface between water and a polar lipid monolayer. Proc Natl Acad Sci U S A.- 82(10):3217−21.
  110. Wagner R, Junge W. (1982) Coupling factor for photophosphorylation labeled with eosin isothiocyanate: activity, size, and shape in solution. Biochemistry.- 21(8):1890−9.
  111. R.J. (2001) The structures of organelles and reticula: localised bioenergetics and metabolism. Chem. Biochem. 2:637−641.
  112. Williams R.J.P. (1967) Possible functions of chain of catalysists. J.Theoret. Biol., 3,209.
  113. Yaguzhinsky LS, Boguslavsky LI, Volkov AG, Rakhmaninova AB.(1976) Synthesis of ATP coupled with action of membrane protonic pumps at the octane-water interface. Nature. 259(5543):494−6.
  114. Yaguzhinsky LS, Yurkov VI, Krasinskaya IP. (2006) On the localized coupling of respiration and phosphorylation in mitochondria. Biochim Biophys Acta. 1757(5−6):408−14.
  115. Yu A, Yu L, King TE. (1974) Soluble cytochrome b-cl complex and the reconstitutionof succinate-cytochrome с reductase. J Biol Chem 249: 4905−4910.
  116. Yurkov VI, Fadeeva MS, Yaguzhinsky LS. (2005) Proton transfer through the membrane-water interfaces in uncoupled mitochondria. Biochemistry (Mosc).-70(2): 195−9.
  117. Zhang, M., Mileykovskaya, E., and Dowhan, W.(2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol.Chem.277, 43 553 -43 556
  118. Zhang, M., Mileykovskaya, E., and Dowhan, W.(2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J.Biol.Chem.280, 29 403 -29 408
  119. П.Д. (1964) Новые гипотезы о механизмах фосфорилирования и передачи энергии в мышцах и митохондриях. Сб. Молекулярная биология.М., Наука, стр. 227.
Заполнить форму текущей работой