Атомно-силовая микроскопия: от бактериальных клеток до нуклеиновых кислот и белков
Диссертация
АСМ предлагает уникальную возможность по визуализации одиночных макромолекул, находящихся в атмосферных условиях или физиологических буферных растворах, в режиме реального времени. С помощью данного метода можно исследовать отдельные белки и молекулы ДНК, а также белок-белковые и ДНК-белковые комплексы, особенности их образования и специфического взаимодействия. Огромным преимуществом данного… Читать ещё >
Список литературы
- Stephens D.J., Allan V.J. Light microscopy techniques for live cell imaging. // Science, 2003, -V. 300, -№ 5616 -pp. 82−86.
- Beerden L., Flerackers E.L.M., Janssen H.J. Phase-contrast microscopy // European Journal of Physics, 1985, -V. 6, -№ 3 -pp. 139−142.
- Chim S.S., Kino G.S. Three-dimensional image realization in interference microscopy. // Applied Optics, 1992, -V. 31, -№ 14 -pp. 2550−2553.
- Kner P. et al. Super-resolution video microscopy of live cells by structured illumination. //Nature Methods, 2009, -V. 6, -№ 5 -pp. 339−342.
- Gustafsson M.G.L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination // Biophysical Journal, 2008, -V. 94, -№ 12 -pp. 4957−4970.
- Welford W.T. Polarized Light Microscopy // Journal of Modern Optics, 1979, -V. 26, -№ 9 -pp. 1132−1132.
- Zeskind B.J. et al. Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. // Nature Methods, 2007, -V. 4, -№ 7 -pp. 567−569.
- Lunde C.S. et al. UV microscopy at 280 nm is effective in screening for the growth of protein microcrystals // Journal of Applied Crystallography, 2005, -V. 38, -№ 6 -pp. 1031−1034.
- Wollny G. et al. Nanoscale depth resolution in scanning near-field infrared microscopy. // Optics Express, 2008, -V. 16, -№ 10 -pp. 7453−7459.
- Hastings G. et al. Infrared microscopy for the study of biological cell monolayers. I. Spectral effects of acetone and formalin fixation. // Biopolymers, 2008, -V. 89, -№ 11 -pp. 921−930.
- Egerton R. Physical Principles of Electron Microscopy. Springer, 2005, p. 202.
- Binnig G. et al. Surface studies by scanning tunneling microscopy // Physical Review Letters, 1982, -V. 49, -№ 1 -pp. 57−61.
- Binnig G., Rohrer H. Scanning tunneling microscopy // Surface Science, 1985, -V. 152−153,-№ 1 -pp. 17−26.
- Binnig G., Quate C.F., Gerber C. Atomic force microscope // Physical Review Letters, 1986, -V. 56 -pp. 930−933.
- Jean M. Saint et al. Van der Waals and capacitive forces in atomic force microscopies // Journal of Applied Physics, 1999, -V. 86, -№ 9 -pp. 5245.
- Klinov D., Magonov S. True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes // Applied Physics Letters, 2004, -V. 84, -№ 14 .pp. 2697.
- Meyer G., Amer N.M. Novel optical approach to atomic force microscopy // Applied Physics Letters, 1988, -V. 53, -№ 12 -pp. 1045−1047.
- Hansma P.K. et al. Tapping mode atomic force microscopy in liquids // Applied Physics Letters, 1994, -V. 64, -№ 13 -pp. 1738−1740.
- Cleveland J.P. et al. Energy dissipation in tapping-mode atomic force microscopy // Applied Physics Letters, 1998, -V. 72, -№ 20 -pp. 2613.
- Kleinschmidt A.K. Monolayer techniques in electron microscopy of nucleic acids molecules // Methods in Enzymology / ed. N.S. Colowick, O. Kaplan. New York: Academic Press, 1968. pp. 361−377.
- Yang J., Takeyasu K., Shao Z. Atomic force microscopy of DNA molecules. // FEBS Letters, 1992, -V. 301, -№ 2 -pp. 173−176.
- Dorobantu L.S., Gray M.R. Application of atomic force microscopy in bacterial research. // Scanning, 2010, -V. 32, -№ 2 -pp. 74−96.
- Tamayo J. et al. High-Q dynamic force microscopy in liquid and its application to living cells. // Biophysical Journal, 2001, -V. 81, -№ 1 -pp. 526−537.
- Doktycz M. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces // Ultramicroscopy, 2003, -V. 97, -№ 1−4 -pp. 209−216.
- Schneider S.W. et al. Rapid aldosterone-induced cell volume increase of endothelial cells measured by the atomic force microscope. // Cell Biology International, 1997, -V. 21, -№ 11 -pp. 759−768.
- Plomp M. et al. In vitro high-resolution structural dynamics of single germinating bacterial spores. // Proceedings of the National Academy of Sciences of the United States of America, 2007, -V. 104, -№ 23 -pp. 9644−9649.
- Casuso I., Rico F., Scheuring S. Biological AFM: where we come from where we are — where we may go. // Journal of molecular recognition, 2011, -V. 24, -№ 3 -pp. 406−413.
- Bolshakova A. V, Kiselyova O.I., Yaminsky I. V. Microbial surfaces investigated using atomic force microscopy. // Biotechnology Progress, 2004, -V. 20, -№ 6 -pp. 1615−1622.
- Dubrovin E. V et al. Atomic force microscopy investigation of phage infection of bacteria. // Langmuir The Acs Journal Of Surfaces And Colloids, 2008, -V. 24, -№ 22 -pp. 13 068−13 074.
- Casuso I. et al. Experimental evidence for membrane-mediated protein-protein interaction. // Biophysical Journal, 2010, -V. 99, -№ 7 -pp. L47-L49.
- Vadillo-Rodriguez V., Schooling S.R., Dutcher J.R. In Situ Characterization of Differences in the Viscoelastic Response of Individual Gram-Negative and GramPositive Bacterial Cells // Journal Of Bacteriology, 2009, -V. 191, -№ 17 -pp. 5518−5525.
- Dague E. et al. Chemical force microscopy of single live cells // Nano Letters, 2007, -V. 7, -№ 10 -pp. 3026−3030.
- Alsteens D. et al. Organization of the mycobacterial cell wall: a nanoscale view. // Pfliigers Archiv European journal of physiology, 2008, -V. 456, -№ 1 -pp. 117−125.
- Бондаренко B.M., Яминский И. В., Демин В. В. Различия в клеточной поверхности гибридных бактерий, выявляемые с помощью атомно-силовой микроскопии // Журнал микробиологии, эпидемиологии и иммунобиологии, 1997,-Т. 6-с. 15−18.
- Surman S.B. et al. Comparison of microscope techniques for the examination of biofilms // Journal of Microbiological Methods, 1996, -V. 25, -№ 1 -pp. 57−70.
- Steele A., Goddard D.T., Beech I.B. An atomic force microscopy study of the biodeterioration of stainless steel in the presence of bacterial biofilms // International Biodeterioration Biodegradation, 1994, -V. 34, -№ 1 -pp. 35−46.
- Beech I.B. et al. The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces // Colloids and Surfaces, 2002, -V. 23 -pp. 231 247.
- Gunning P.A. et al. Comparative imaging of Pseudomonas putida bacterial biofilms by scanning electron microscopy and both DC contact and AC non-contact atomic force microscopy // Journal Of Applied Bacteriology, 1996, -V. 81, -№ 3 -pp. 276−282.
- Auerbach I.D. et al. Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. // Journal of bacteriology, 2000, -V. 182, -№ 13 -pp. 3809−15.
- Diaz C. et al. Have flagella a preferred orientation during early stages of biofilm formation?: AFM study using patterned substrates. // Colloids and surfaces B Biointerfaces, 2011, -V. 82, -№ 2 -pp. 536−542.
- Bustamante C. et al. Circular DNA molecules imaged in air by scanning force microscopy. //Biochemistry, 1992, -V. 31, -№ 1 -pp. 22−26.
- Hu J. et al. Imaging of Single Extended DNA Molecules on Flat // Langmuir, 1996, -V. 12, -№ 7 -pp. 1697−1700.
- Lyubchenko Y.L., Shlyakhtenko L.S. AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. // Methods San Diego Calif, 2009, -V. 47, -№ 3 -pp. 206−213.
- Lyubchenko Y.L., Jacobs B.L., Lindsay S.M. Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. // Nucleic Acids Research, 1992, -V. 20, -№ 15 -pp. 3983−3986.
- Schaper A., Pietrasanta L.I., Jovin T.M. Scanning force microscopy of circular and linear plasmid DNA spread on mica with a quaternary ammonium salt. // Nucleic Acids Research, 1993, -V. 21, -№ 25 -pp. 6004−6009.
- Hansma H.G., Hoh J.H. Biomolecular imaging with the atomic force microscope. // Annual Review of Biophysics and Biomolecular Structure, 1994, -V. 23,-№ i -pp. 115−139.
- Hansma H.G. et al. Atomic force microscopy of single- and double-stranded DNA. //Nucleic Acids Research, 1992, -V. 20, -№ 14 -pp. 3585−3590.
- Borovok N. et al. Poly (dG)-poly (dC) DNA appears shorter than poly (dA)-poly (dT) and possibly adopts an A-related conformation on a mica surface under ambient conditions. // FEBS Letters, 2007, -V. 581, -№ 30 -pp. 5843−5846.
- Fang Y. et al. Solid-state DNA sizing by atomic force microscopy. // Analytical Chemistry, 1998, -V. 70, -№ 10 -pp. 2123−2129.
- Ficarra E. et al. Automated DNA fragments recognition and sizing through AFM image processing. // IEEE Trans Inf Technol Biomed., 2005, -V. 9, -№ 4 -pp. 508−517.
- Rivetti C., Guthold M., Bustamante C. Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. // Journal of Molecular Biology, 1996, -V. 264, -№ 5 -pp. 919−932.
- Moukhtar J. et al. Probing persistence in DNA curvature properties with atomic force microscopy. // Physical Review Letters, 2007, -V. 98, -№ 17 -pp. 178 101.
- Pope L.H. et al. Intercalation-induced changes in DNA supercoiling observed in real-time by atomic force microscopy // Analytica Chimica Acta, 1999, -V. 400, -№ 1−3 -pp. 27−32.
- Pastre D. et al. Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: influence of the surface friction. // Biopolymers, 2005, -V. 77, -№ 1 -pp. 53−62.
- Lyubchenko Y.L., Shlyakhtenko L.S. Visualization of supercoiled DNA with atomic force microscopy in situ. II Proceedings of the National Academy of Sciences of the United States of America, 1997, -V. 94, -№ 2 -pp. 496−501.
- Murakami M., Hirokawa H., Hayata I. Analysis of radiation damage of DNA by atomic force microscopy in comparison with agarose gel electrophoresis studies. // Journal of Biochemical and Biophysical Methods, 2000, -V. 44, -№ 1−2 -pp. 31−40.
- Lysetska M. et al. UV light-damaged DNA and its interaction with human replication protein A: an atomic force microscopy study. // Nucleic Acids Research, 2002, -V. 30, -№ 12 -pp. 2686−2691.
- Yan L., Iwasaki H. Thermal Denaturation of Plasmid DNA Observed by Atomic Force Microscopy // Japanese Journal of Applied Physics, 2002, -V. 41, -№ 12 -pp. 7556−7559.
- Zhu Y. et al. Atomic force microscopy studies on DNA structural changes induced by vincristine sulfate and aspirin. // Microsc Microanal., 2004, -V. 10, -№ 2 -pp. 286−290.
- Mukhopadhyay R., Dubey P., Sarkar S. Structural changes of DNA induced by mono- and binuclear cancer drugs. // Journal of Structural Biology, 2005, -V. 150, -№ 3 -pp. 277−283.
- Banerjee T., Mukhopadhyay R. Structural effects of nogalamycin, an antibiotic antitumour agent, on DNA. // Biochemical and Biophysical Research Communications, 2008, -V. 374, -№ 2 -pp. 264−268.
- Fang Y., Hoh J.H. Surface-directed DNA condensation in the absence of soluble multivalent cations. // Nucleic Acids Research, 1998, -V. 26, -№ 2 -pp. 588−593.
- Hou S. et al. DNA condensation induced by a cationic polymer studied by atomic force microscopy and electrophoresis assay. // Colloids and surfaces В Biointerfaces, 2008, -V. 62, -№ 1 -pp. 151−156.
- Chen A. et al. Direct visualization of telomeric DNA loops in cells by AFM // Surface and Interface Analysis, 2001, -V. 32, -№ 1 -pp. 32−37.
- Lyubchenko Y.L. et al. Visualization of hemiknot DNA structure with an atomic force microscope // Nucleic Acids Research, 2002, -V. 30, -№ 22 -pp. 4902−4909.
- Shlyakhtenko L.S. et al. Structure and dynamics of three-way DNA junctions: atomic force microscopy studies // Nucleic Acids Research, 2000, -V. 28, -№ 18 -pp. 3472−3477.
- Bae A.-H. et al. Rod-like architecture and helicity of the poly (C)/schizophyllan complex observed by AFM and SEM. // Carbohydrate Research, 2004, -V. 339, -№ 2-pp. 251−258.
- Sletmoen M., Stokke B.T. Structural properties of poly C-scleroglucan complexes. // Biopolymers, 2005, -V. 79, -№ 3 -pp. 115−127.
- Schneider S.W. et al. Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. // Pflugers Archiv European journal of physiology, 1998, -V. 435, -№ 3 -pp. 362−367.
- Kiselyova O.I., Yaminsky I.V. Atomic force microscopy of protein complexes // Atomic Force Microscopy: Biomedical Methods and Applications / под ред. P.C. Braga, D. Ricci.: Humana Press, 2003. C. 217−230.
- Caruso F., Furlong D., Kingshott P. Characterization of ferritin adsorption onto gold // Journal of Colloid and Interface Science, 1997, -V. 186, -№ 1 -pp. 129−40.
- Mori O., Imae T. AFM investigation of the adsorption process of bovine serum albumin on mica // Colloids and Surfaces B: Biointerfaces, 1997, -V. 9, -№ 1−2 -pp. 31−36.
- Nakata S. et al. Chemisorption of proteins and their thiol derivatives onto gold surfaces: characterization based on electrochemical nonlinearity. // Biophysical Chemistry, 1996, -V. 62, -№ 1−3 -pp. 63−72.
- Mou J. et al. Chaperonins GroEL and GroES CfroiiaeTatomic force microscopy //Biophysical Journal, 1996, -V. 71 -pp. 2213−2221.
- Mou J. et al. High resolution surface structure of E. coli GroES oligomer by atomic force microscopy //FEBS Letters, 1996, -V. 381 -pp. 161−164.
- Millier D.J. et al. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. // Biophysical Journal, 1995, -V. 68, -№ 5 -pp. 1681−1686.
- Schabert F.A., Henn C., Engel A. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. // Science, 1995, -V. 268, -№ 5207 -pp. 9294.
- Scheuring S., Sturgis J.N. Chromatic adaptation of photosynthetic membranes. // Science, 2005, -V. 309, -№ 5733 -pp. 484−487.
- Scheuring S., Sturgis J.N. Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. // Photosynthesis Research, 2009, -V. 102, -№ 2−3 -pp. 197−211.
- Ando T. et al. A high-speed atomic force microscope for studying biological macromolecules in action. // Proceedings of the National Academy of Sciences of the United States of America, 2001, -V. 98, -№ 22 -pp. 12 468−12 472.
- Kodera N. et al. Video imaging of walking myosin V by high-speed atomic force microscopy //Nature, 2010, -V. 468, -№ 7320 -pp. 72−76.
- Gosal W.S. et al. Amyloid under the atomic force microscope. // Protein and Peptide Letters, 2006, -V. 13, -№ 3 -pp. 261−270.
- Goldsbury C. et al. Multiple assembly pathways underlie amyloid-beta fibril polymorphisms. // Journal of Molecular Biology, 2005, -V. 352, -№ 2 -pp. 282 298.
- Jansen R., Dzwolak W., Winter R. Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. // Biophysical Journal, 2005, -V. 88, -№ 2 -pp. 1344−1353.
- Benseny-Cases N., Cocera M., Cladera J. Conversion of non-fibrillar betasheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. // Biochemical and Biophysical Research Communications, 2007, -V. 361,-№ 4-pp. 916−921.
- Hoyer W. et al. Rapid self-assembly of alpha-synuclein observed by in situ atomic force microscopy. // Journal of Molecular Biology, 2004, -V. 340, -№ 1 -pp. 127−139.
- Marek P. et al. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology. // Biochemistry, 2007, -V. 46, -№ 11 -pp. 3255−3261.
- Khurana R. et al. A model for amyloid fibril formation in immunoglobulin light chains based on comparison of amyloidogenic and benign proteins and specific antibody binding. // Amyloid, 2003, -V. 10, -№ 2 -pp. 97−109.
- Hamada D. et al. Effect of an amyloidogenic sequence attached to yellow fluorescent protein. //Proteins, 2008, -V. 72, -№ 3 -pp. 811−821.
- Hansma H.G. et al. Applications for atomic force microscopy of DNA. // Biophysical Journal, 1995, -V. 68, -№ 5 -pp. 1672−1677.
- Hansma H.G. et al. Bending and straightening of DNA induced by the same ligand: characterization with the atomic force microscope. // Biochemistry, 1994, -V. 33,-№ 28-pp. 8436−8441.
- Hamon L. et al. High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein—DNA complexes // Nucleic Acids Research, 2007, -V. 35, -№ 8 -pp. e58.
- Shi W.-X., Larson R.G. RecA-ssDNA filaments supercoil in the presence of single-stranded DNA-binding protein. // Biochemical and Biophysical Research Communications, 2007, -V. 357, -№ 3 -pp. 755−760.
- Guo C. et al. Atomic force microscopic study of low temperature induced disassembly of RecA-dsDNA filaments. // The Journal of Physical Chemistry B, 2008, -V. 112, -№ 3 -pp. 1022−1027.
- Yang Y. et al. Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions //Nucleic Acids Research, 2005, -V. 33, -№ 13 -pp. 4322^1334.
- Jia Y. et al. Alpha-shaped DNA loops induced by MutS. // Biochemical and Biophysical Research Communications, 2008, -V. 372, -№ 4 -pp. 618−622.
- Erie D.A. et al. DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. // Science, 1994, -V. 266, -№ 5190 -pp. 1562−1566.
- Valle M. et al. The interaction of DNA with bacteriophage phi 29 connector: a study by AFM and TEM. // Journal of Structural Biology, 1996, -V. 116, -№ 3 -pp. 390−398.
- Hoischen C. et al. Escherichia coli low-copy-number plasmid R1 centromere parC forms a U-shaped complex with its binding protein ParR // Nucleic Acids Research, 2008, -V. 36, -№ 2 -pp. 607−615.
- Wyman C. et al. Determination of heat-shock transcription factor 2 stoichiometry at looped DNA complexes using scanning force microscopy. // The European Molecular Biology Organization Journal, 1995, -V. 14, -№ 1 -pp. 117 123.
- Shin M. et al. DNA looping-mediated repression by histone-like protein TINS: specific requirement of Eg70 as a cofactor for looping // Genes & Development, 2005, -V. 19, -№ 19 -pp. 2388−2398.
- Lushnikov A.Y. et al. DNA strand arrangement within the Sfil-DNA complex: atomic force microscopy analysis. // Biochemistry, 2006, -V. 45, -№ 1 -pp. 152−158.
- Argaman M. et al. Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. // Nucleic Acids Research, 1997, -V. 25, -№ 21 -pp. 4379−4384.
- Ohta T. et al. Atomic force microscopy proposes a novel model for stem-loop structure that binds a heat shock protein in the Staphylococcus aureus HSP70 operon. // Biochemical and Biophysical Research Communications, 1996, -V. 226, -№ 3 -pp. 730−734.
- Murakami M. et al. Analysis of interaction between DNA and Deinococcus radiodurans PprA protein by atomic force microscopy. // Biochimica et Biophysica Acta, 2006, -V. 1764, -№ 1 -pp. 20−23.
- Madigan M.T., Gest H. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. // Journal Of Bacteriology, 1979, -V. 137, -№ 1 -pp. 524−530.
- Кондратьева E.H. Фототрофные микроорганизмы. M.: Изд-во МГУ, 1989 с. 376.
- Гусев М.В., Минеева JI.A. Микробиология. М.: Академия, 2003. с. 464.
- Miller С.О. et al. Kinetin, a cell division factor from deoxyribonucleic acid // J. Am. Chem. Soc., 1955, -V. 77, -№ 5 -pp. 1392−1392.
- Letham D.S. Zeatin, a factor inducing cell division isolated from Zea mays // Life Sci., 1963, -V. 2 -pp. 569−573.
- Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. // Plant cell physiology, 2001, -V. 42, -№ 7 -pp. 677−685.
- Takei K., Yamaya T., Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. // The Journal of Biological Chemistry, 2004, -V. 279, -№ 40 -pp. 41 866−41 872.
- Cedzich A. et al. Characterization of Cytokinin and Adenine Transport in Arabidopsis Cell Cultures 1 OA. // Plant Physiology, 2008, -V. 148, -№ 4 -pp. 1857−1867.
- Кузнецов B.B., Дмитриева Г. А. Физиология растений. M.: Высшая школа, 2006. с. 742.
- Романов Г. А. Как цитокинины действуют на клетку // Физиология растений, 2009, -Т. 56 -с. 295−319.
- Алексеева В.В. и др. Физиолого-биохимические особенности растений табака с агробактериальным геном изопентенилтрансферазы // Физиология растений, 2000, -Т. 47, -№ 3 -с. 408−415.
- Simon R., Priefer U., Piihler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria // Group, 1983, -V. 1, -№ 9 -pp. 784−791.
- Cogdell R.J. et al. The structural basis of light-harvesting in purple bacteria // FEBS Letters, 2003, -V. 555, -№ 1 -pp. 35−39.
- Shreve A.P. et al. Femtosecond energy-transfer processes in the B800−850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. // Biochimica et Biophysica Acta, 1991, -V. 1058, -№ 2 -pp. 280−288.
- Sunde M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction // Journal of Molecular Biology, 1997, -V. 273, -№ 3 -pp. 729−739.
- Nilsson M.R. Techniques to study amyloid fibril formation in vitro. // Methods San Diego Calif, 2004, -V. 34, -№ 1 -pp. 151−160.
- Pedersen J.S., Andersen C.B., Otzen D.E. Amyloid structure—one but not the same: the many levels of fibrillar polymorphism. // The FEBS journal, 2010, -V. 277, -№ 22 -pp. 4591−4601.
- Fandrich M., Meinhardt J., Grigorieff N. Structural polymorphism of Alzheimer Abeta and other amyloid fibrils. // Prion, 2009, -V. 3, -№ 2 -pp. 89−93.142
- Paravastu A.K. et al. Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. // Proceedings of the National Academy of Sciences ofthe United States of America, 2008, -V. 105, -№ 47 -pp. 18 349−18 354.
- Petkova A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. // Science, 2005, -V. 307, -№ 5707 -pp. 262 265.
- Venturoni M. et al. Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy. // Biochemical and Biophysical Research Communications, 2003, -V. 303, -№ 2 -pp. 508−513.
- Chamberlain A.K. et al. Ultrastructural organization of amyloid fibrils by atomic force microscopy. // Biophysical Journal, 2000, -V. 79, -№ 6 -pp. 32 823 293.
- Morris A.M., Watzky M.A., Finke R.G. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. // Biochimica et Biophysica Acta, 2009, -V. 1794, -№ 3 -pp. 375−397.
- Gosal W.S. et al. Competing pathways determine fibril morphology in the self-assembly of P 2 -microglobulin into amyloid // Journal of Molecular Biology, 2005, -V. 351, -№ 4 -pp. 850−864.
- Bhak G., Choe Y.-J., Paik S.R. Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation. // BMB reports, 2009, -V. 42, -№ 9 -pp. 541−551.
- Kodali R., Wetzel R. Polymorphism in the intermediates and products of amyloid assembly. // Current Opinion in Structural Biology, 2007, -V. 17, -№ 1 -pp. 48−57.
- Wetzel R., Shivaprasad S., Williams A.D. Plasticity of amyloid fibrils. // Biochemistry, 2007, -V. 46, -№ 1 -pp. 1−10.
- Елисеева И.А. и др. Y-бокс-связывающий белок 1 (YB-1) и его функции // Успехи биологической химии, 2011, -Т. 51 -с. 65−132.
- Evdokimova V.M. et al. The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor143family. // The Journal of biological chemistry, 1995, -V. 270, -№ 7 -pp. 3186— 3192.
- Ruzanov P. V et al. Interaction of the universal mRNA-binding protein, p50, with actin: a possible link between mRNA and microfilaments. // Journal of Cell Science, 1999, -V. 112, -№ 2 -pp. 3487−3496.
- Raffetseder U. et al. Splicing factor SRp30c interaction with Y-box protein-1 confers nuclear YB-1 shuttling and alternative splice site selection. // The Journal of Biological Chemistry, 2003, -V. 278, -№ 20 -pp. 18 241−18 248.
- Okamoto T. et al. Direct interaction of p53 with the Y-box binding protein, YB-1: a mechanism for regulation of human gene expression. // Oncogene, 2000, -V. 19, -№ 8 -pp. 6194−6202.
- Kloks C.P.A.M. et al. The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. // Journal of Molecular Biology, 2002, -V. 316, -№ 2 -pp. 317−326.
- Ladomery M., Sommerville J. Binding of Y-box proteins to RNA: involvement of different protein domains. // Nucleic Acids Research, 1994, -V. 22, -№ 5 -pp. 5582−5589.
- Kohno K. et al. The pleiotropic functions of the Y-box-binding protein, YB-1. // BioEssays news and reviews in molecular cellular and developmental biology, 2003, -V. 25, -№ 7 -pp. 691−698.
- Ashizuka M. et al. Novel translational control through an iron-responsive element by interaction of multifunctional protein YB-1 and IRP2. // Molecular and cellular biology, 2002, -V. 22, -№ 18 -pp. 6375−83.
- Safak M., Gallia G.L., Khalili K. Reciprocal interaction between two cellular proteins, Pura and YB-1, modulates transcriptional activity of JCVCY in glial cells // Molecular and Cellular Biology, 1999, -V. 19, -№ 4 -pp. 2712−2723.144
- Safak M. et al. Physical and functional interaction between the Y-Box binding protein YB-1 and human polyomavirus JC virus large T antigen // Journal of Virology, 1999, -V. 73, -№ 12 -pp. 10 146−10 157.
- Tompa P. Intrinsically unstructured proteins. // Trends in Biochemical Sciences, 2002, -V. 27, -№ ю -pp. 527−533.
- Lobanov M.Y., Galzitskaya О. V. The Ising model for prediction of disordered residues from protein sequence alone. // Physical Biology, 2011, -V. 8, -№ 3 -pp. 35 004.
- Evdokimova V.M., Ovchinnikov L.P. Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. // The international journal of biochemistry cell biology, 1999, -V. 31, -№ 1 -pp. 139−149.
- Ozer J. et al. Isolation and characterization of a cDNA clone for the CCAAT transcription factor EFIA reveals a novel structural motif. // The Journal of Biological Chemistry, 1990, -V. 265, -№ 36 -pp. 22 143−22 152.
- Skabkin M.A. et al. Structural organization of mRNA complexes with major core mRNP protein YB-1 // Nucleic Acids Research, 2004, -V. 32, -№ 18 -pp. 5621−5635.
- Селиванова O.M. и др. Белок YB-1 обладает способностью образовывать протяженные нанофибриллы // Биохимия, 2010, -Т. 75, -№ 5 -с. 629−636.
- Guryanov S.G. et al. Formation of Amyloid-Like Fibrils by Y-Box Binding Protein 1 (YB-1) Is Mediated by Its Cold Shock Domain and Modulated by Disordered Terminal Domains // PLoS ONE, 2012, -V. 7, -№ 5 -pp. e36969.
- Железная JI.А. и др. Никующие эндонуклеазы // Успехи биологической химии, 2009, -Т. 49 -с. 107−128.
- Ness J. Van, Ness L.K. Van, Galas D.J. Isothermal reactions for the amplification of oligonucleotides. // Proceedings of the National Academy of Sciences of the United States of America, 2003, -V. 100, -№ 8 -pp. 4504−4509.
- Zheleznaya L.A. et al. Some properties of site-specific nickase BspD6I and the possibility of its use in hybridization analysis of DNA. // Biochemistry Biokhimiia, 2002, -V. 67, -№ 4 -pp. 498−502.
- Bath J., Green S.J., Turberfield A.J. A free-running DNA motor powered by a nicking enzyme. // Angewandte Chemie International Edition, 2005, -V. 44, -№ 28 -pp. 4358−4361.
- Roberts R.J. et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. // Nucleic Acids Research, 2003, -V. 31, -№ 7 -pp. 1805−1812.
- Железная Л.А. и др. Сайт-специфическая никаза из штамма Bacillus species D6II Биохимия, 2001, -T. 66, -№ 9 с. 1215−1220.
- Wah D.A. et al. Structure of the multimodular endonuclease Fokl bound to DNA. //Nature, 1997, -V. 388, -№ 6637 -pp. 97−100.
- Kachalova G.S. et al. Crystallization and preliminary crystallographic analysis of the site-specific DNA nickase Nb. BspD6I // Acta Crystallographica Section F Structural Biology And Crystallization Communications, 2005, -V. 61, -№ Pt 3 -pp. 332−334.
- Yunusova A.K. et al. Nickase and a protein encoded by an open reading frame downstream from the nickase BspD6I gene form a restriction endonuclease complex. // Biochemistry Biokhimiia, 2006, -V. 71, -№ 7 -pp. 815−820.
- Vanamee E.S., Santagata S., Aggarwal A.K. Fokl requires two specific DNA sites for cleavage. // Journal of Molecular Biology, 2001, -V. 309, -№ 1 -pp. 6978.
- Winkler F.K. et al. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. // the The European Molecular Biology Organization Journal, 1993, -V. 12, -№ 5 -pp. 1781−1795.
- Woerd M.J. Van Der et al. Restriction enzyme BsoBI-DNA complex: a tunnel for recognition of degenerate DNA sequences and potential histidine catalysis. // Structure London England 1993, 2001, -V. 9, -№ 2 -pp. 133−144.
- Necas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis // Central European Journal of Physics, 2011, -V. 10, -№ 1 -pp. 181−188.
- Villarrubia J.S. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation // Journal Of Research Of The National Institute Of Standards And Technology, 1997, -V. 102, -№ 4 -pp. 425154.
- Williams P.M. Blind reconstruction of scanning probe image data // Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 1996, -V. 14, -№ 2 -pp. 1557.
- Арутюнов П.А., Толстихина A.JI., Демидов B.H. Система параметров для анализа шероховатости и микрорельефа поверхности материалов в сканирующей зондовой микроскопии // Диагностика материалов, 1998, -Т. 9, -№ 65 -с. 27−37.
- Mummery L. Surface texture analysis // The handbook.: Hommelwerke GmbH, 1990.
- Ratcliff G.C., Erie D.A. A novel single-molecule study to determine proteinprotein association constants. // Journal of the American Chemical Society, 2001, -V. 123, -№ 24 -pp. 5632−5635.
- Edstrom R.D. et al. Direct visualization of phosphorylase-phosphorylase kinase complexes by scanning tunneling and atomic force microscopy. // Biophysical Journal, 1990, -V. 58, -№ 6 -pp. 1437−1448.
- Hutner S.H. Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria // J. Bact., 1946, -V. 52 -pp. 213.
- Lindberg A.A., Hellerqvist C.G. Rough mutants of Salmonella typhimurium: immunochemical and structural analysis of lipopolysaccharides from rfaH mutants. //Journal of General Microbiology, 1980, -V. 116, -№ 1 -pp. 25−32.
- Galanos C., Luderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. // The Federation of European Biochemical Societies Journal, 1969, -V. 9, -№ 2 -pp. 245−249.
- Кулылин В.А. и др. Улучшенный метод выделения липополисахаридов из грамотрицательных бактерий // Мол. генетика, 1987, -Т. 5 -С. 44−46.
- Moran А.Р. et al. Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose. //Journal Of Bacteriology, 1991, -V. 173, -№ 2 -pp. 618−626.
- Janda J., Work E. A colorimetric estimation of lipopolysaccharides // Febs Letter, 1971, -V. 16 -pp. 343−345.
- Kondo S. A Chemical Study of the Sugar Composition of the Polysaccharide Portion of Lipopolysaccharides isolated from Vibrio cholerae Non-01 from 02 to 0155 // System. Appl. Microbiol, 1997, -V. 20 -pp. 1−11.
- Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. // Biophysical Journal, 2000, -V. 78, -№ 3 -pp. 1606−1619.
- Маниатис T, Фрич Э, Сэмбрук Д. Молекулярное клонирование., 1984.
- Inoue Н, Nojima Н, Okayama Н. High efficiency transformation of Escherichia coli with plasmids. // Gene, 1990, -V. 96, -№ 1 -pp. 23−28.
- Lang F. S, Oesterhelt D. Gene Transfer System for Rhodopseudomonas viridis II Journal of bacteriology, 1989, -V. 171 -pp. 4425^1435.
- Stukalov O. et al. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules. // Applied and environmental microbiology, 2008, -V. 74, -№ 17 -pp. 5457−65.
- Сердюк И.Н., Евсеева O.H. Новые возможности аналитического ультрацентрифугирования для анализа гидродинамических свойств белков // Успехи биологической химии, 2006, -Т. 46 -с. 349−372.
- Selivanova О.М. et al. YB-1 is capable of forming extended nanofibrils. // Biochemistry Biokhimiia, 2010, -V. 75, -№ 1 -pp. 115−120.
- Goldsbury C.S. et al. Polymorphic fibrillar assembly of human amylin. // Journal of Structural Biology, 1997, -V. 119, -№ 1 -pp. 17−27.
- Bauer H.H. et al. Architecture and polymorphism of fibrillar supramolecular assemblies produced by in vitro aggregation of human calcitonin. // Journal of Structural Biology, 1995, -V. 115, -№ 1 -pp. 1−15.
- Jimenez J.L. et al. The protofilament structure of insulin amyloid fibrils // Proceedings of the National Academy of Sciences of the United States of America, 2002, -V. 99, -№ 14 -pp. 9196−9201.
- Uversky V.N., Fernandez A., Fink A.L. Structural and Conformational Prerequisites of Amyloidogenesis // Protein Misfolding, Aggregation, and Conformational Diseases Protein Reviews. NY: Springer US, 2006. pp. 1−20.
- Fandrich M., Schmidt M., Grigorieff N. Recent progress in understanding Alzheimer’s (3-amyloid structures. // Trends in Biochemical Sciences, 2011, -V. 36, -№ 6 -pp. 338−345.
- Uversky V.N. Mysterious oligomerization of the amyloidogenic proteins. // The FEBS journal, 2010, -V. 277, -№ 14 -pp. 2940−2953.
- Сердюк И.Н. Структурированные белки и белки с внутренней неупорядоченностью // Молекулярная биология, 2007, -Т. 42 -с. 287−313.
- Knaus K.J. et al. Crystal structure of the human prion protein reveals a mechanism for oligomerization. // Nature Structural Biology, 2001, -V. 8, -№ 9 -pp. 770−774.
- Janowski R. et al. 3D domain-swapped human cystatin С with amyloidlike intermolecular beta-sheets. // Proteins, 2005, -V. 61, -№ 3 -pp. 570−578.149
- Liu C., Sawaya M.R., Eisenberg D. microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. // Nature Structural & Molecular Biology, 2011, -V. 18, -№ 1 -pp. 49−55.
- Sawaya M.R. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. //Nature, 2007, -V. 447, -№ 7143 -pp. 453−457.
- Hansma H.G., Laney D.E. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. // Biophysical Journal, 1996, -V. 70, -№ 4-pp. 1933−1939.
- Lyubchenko Y.L., Shlyakhtenko L.S., Ando T. Imaging of nucleic acids with atomic force microscopy. // Methods San Diego Calif, 2011, -V. 54, -№ 2 -pp. 274−283.
- Pastre D. et al. Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study. // Biophysical Journal, 2003, -V. 85, -№ 4 -pp. 2507−2518.
- Bezanilla M. et al. Motion and enzymatic degradation of DNA in the atomic force microscope. // Biophysical Journal, 1994, -V. 67, -№ 6 -pp. 2454−2459.
- Klinov D.V., Dubrovin E.V., Yaminsky I.V. Substrate for Scanning Probe Microscopy of DNA: HOPG versus mica // Physics of Low-Dimensional Structures, 2003, -V. 3, -№ 4 -pp. 119−124.
- Bustamante C Keller D Yang D. Scanning force microscopy of nucleic nucleoprotein assemblies // Current Opinion in Structural Biology, 1993, -V. 3, -№ 3 -pp. 363−372.
- Sorel I. et al. The EcoRI-DNA complex as a model for investigating proteinDNA interactions by atomic force microscopy. // Biochemistry, 2006, -V. 45, -№ 49 -pp. 14 675−14 682.