Помощь в написании студенческих работ
Антистрессовый сервис

Эволюция электронной структуры переходных металлов и квазикристаллов при окислении

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Исследование процессов, происходящих на поверхности различных материалов, является важной задачей в физике поверхности, материаловедении и во многих современных технологических процессах. Среди различных поверхностных процессов, особый интерес вызывает процесс взаимодействия чистой поверхности материала с кислородом, т.к. он играет основную роль при взаимодействии материала с окружающей средой… Читать ещё >

Эволюция электронной структуры переходных металлов и квазикристаллов при окислении (реферат, курсовая, диплом, контрольная)

Содержание

  • I. Электронная структура твердых тел
    • 1. 1. Электронная структура гафния и окислов гафния: теоретические данные и экспериментальные исследования
    • 1. 2. Электронная структура титана и окислов титана: теоретические данные и экспериментальные исследования
    • 1. 3. Электронная структура тантала и его окислов: теоретические данные и экспериментальные исследования
  • II. Квазикристаллы: краткое описание, некоторые физические свойства
    • 2. 1. Особенности электронной структуры икосаэдрических квазикристаллов
    • 2. 2. Электронная структура икосаэдрических квазикристаллов системы А1СиРе: теоретические данные и экспериментальные исследования
    • 2. 3. Электронная структура икосаэдрических квазикристаллов системы Тл2г№: теоретические данные и экспериментальные исследования
  • III. Методы исследования электронной структуры твердых тел
    • 3. 1. Методы вторичной электронной эмиссионной спектроскопии
    • 3. 2. Метод фотоэлектронной спектроскопии для изучения электронной структуры твердых тел
    • 3. 3. Некоторые особенности синхротронного излучения
    • 3. 4. Метод спектроскопии характеристических потерь энергии электронов для изучения электронной структуры твердых тел
  • IV. Методика измерений и обработки результатов
    • 4. 1. Образцы переходных металлов и квазикристаллов
    • 4. 2. Станции фотоэлектронной спектроскопии
      • 4. 2. 1. Станция ФЭС КЦСИ
      • 4. 2. 2. Станция ФЭС на российско-германской линии RGB, BESSY, Берлин
      • 4. 2. 3. Станция 4.1 фотоэлектронной спектроскопии, МАХ-ЬаЬДЦвеция
    • 4. 3. Методика измерений и обработки результатов
  • V. Основные результаты исследований. Фотоэлектронные спектры и спектры ХПЭЭ некоторых переходных металлов и их окислов.-«
    • 5. 1. Фотоэлектронные спектры и спектры ХПЭЭ металлического
  • Hf, а также Hf при различных дозах окисления
    • 5. 1. 1. Фотоэлектронные спектры поверхности металлического гафния
    • 5. 1. 2. Фотоэлектронные спектры поверхности гафния при различных дозах окисления
    • 5. 1. 3. Разложение фотоэлектронных спектров 4f уровней
    • 5. 1. 4. Поиск резонанса вблизи порога возбуждения уровня Hf 5р
    • 5. 1. 5. Спектры ХПЭЭ поверхности гафния при различных дозах окисления
    • 5. 2. Фотоэлектронные спектры и спектры ХПЭЭ металлического Ti, а также Ti при различных дозах окисления
    • 5. 2. 1. Фотоэлектронные спектры чистой поверхности металлического титана при различных энергиях фотонов
    • 5. 2. 2. Фотоэлектронные спектры титана при различных дозах окисления
    • 5. 2. 3. Спектры характеристических потерь энергии электронов поверхности титана при различных дозах окисления
    • 5. 3. Фотоэлектронные спектры металлического Та, а также Та при различных дозах окисления
    • 5. 3. 1. Обсуждение результатов исследований электронной структуры гафния, титана и тантала
  • VI. Фотоэлектронные спектры и спектры ХПЭЭ квазикристаллов
    • 6. 1. Квазикристаллы системы AlCuFe
      • 6. 1. 1. Фотоэлектронные спектры
      • 6. 1. 2. Поиск резонансного возбуждения вблизи А12р, Fe2p и Си2р порогов поглощения
      • 6. 1. 3. Спектры ХПЭЭ
    • 6. 2. Квазикристаллы системы i-TiZrN
      • 6. 2. 1. Фотоэлектронные спектры
      • 6. 2. 2. Спектры ХПЭЭ

Исследование процессов, происходящих на поверхности различных материалов, является важной задачей в физике поверхности, материаловедении и во многих современных технологических процессах [1,2]. Среди различных поверхностных процессов, особый интерес вызывает процесс взаимодействия чистой поверхности материала с кислородом, т.к. он играет основную роль при взаимодействии материала с окружающей средой. В последнее время находятся все более широкие применения для таких переходных металлов, как гафний, титан, тантал и различных соединений на их основе, а также ряда квазикристаллов. Все переходные металлы относятся к подгруппе (¿—металлов и имеют в валентной зоне ё-электроны. Было бы интересно изучить, как проявляются свойства ё-металлов при окислении чистых поверхностей переходных металлов, а также сравнить между собой процессы окисления различных переходных металлов.

В последние несколько лет развитие компьютерных технологий потребовало использование новых материалов для дальнейшего научно-технического прогресса. В частности, диоксид кремния в качестве изолирующего материала в микроэлектронике при изготовлении МОП-структур (см. рис. 1.1) уже не способен обеспечить необходимые значения токов утечек при дальнейшем увеличении плотности элементов интегральных микросхем. В качестве нового изолирующего материала рассматривались различные оксиды с высоким значением диэлектрической проницаемости: Та205, ТЮ2, гг02, НЮг и др. Диоксид гафния оказался наиболее приемлемым материалом, т.к. он обладает высокой диэлектрической проницаемостью и наибольшей термодинамической стабильностью на кремниевой подложке при различных температурах [3 -5].

Gate Electrode.

Gate Oxide.

Source Drain.

Silicon.

Рис. 1.1. Схематическое изображение структуры Металл-Оксид-Полупроводник (МОП).

Константа диэлектрической проницаемости диоксида гафния имеет значение к (НЮ2) ~ 15−28 [6], в то время как у диоксида кремния к (8Ю2) ~ 3,9 [7]. Эти обстоятельства, а также то, что ширина запрещенной щели оксида гафния составляет величину порядка 5,7 эВ [8,9], обуславливают применение тонких слоев оксида гафния в качестве нового изолирующего диэлектрического слоя в современной микроэлектронике [ 10 ]. Гафний также широко используется в атомной промышленности и при изготовлении прецизионных сплавов.

Титан широко применяется в различных областях науки и техники. Хорошо известны «геттерные способности» титана, используемые при изготовлении сверхвысоковакуумных насосов. Открытие фотокаталитических свойств диоксида титана [11], а впоследствии его роли в эффекте сильного взаимодействия металл-подложка (8М81) [12,13], стимулировало устойчивый интерес к исследованиям электронных свойств как идеальных, так и содержащих дефекты поверхностей, а также к пониманию взаимодействия таких поверхностей с адсорбированными молекулами. Диоксид титана используется в технологии изготовления электронных чернил, которая является ключевой в производстве электронных книг [14].

Переходные металлы входят в состав многих квазикристаллов — новых перспективных материалов [15]. Квазикристаллы — это материалы, имеющие оси симметрии запрещенного в классической кристаллографии порядка. Они обладают уникальным набором физико-химических свойств, который сулит многочисленные применения в современных технологиях. Предполагается использование квазикристаллов в антифрикционных покрытиях, металлогидридных системах хранения водорода, в качестве армирующего наполнителя для металлических композиционных материалов на основе легких сплавов и в других областях, в том числе в качестве антикоррозионных и антипригарных покрытий [16].

Одним из основных факторов, определяющих физико-химические свойства вещества, является его электронная структура, т. е. распределение электронных состояний по энергетическим уровням вещества [17]. Зная электронную структуру материала можно многое сказать о его различных физических свойствах. Кроме того, поскольку использование материалов в различных технологических процессах предполагает их контакт с окружающей средой, то важно знать, как изменяется их электронная структура при взаимодействии с кислородом, а также каким образом происходит образование окислов на поверхности. Кроме того, представляет интерес сравнить процессы окисления различных переходных металлов и квазикристаллов.

В качестве объектов исследований были выбраны поликристаллические образцы переходных металлов — гафния, титана и тантала, а также образцы икосаэдрических квазикристаллов Тл^^г^^М^, А^Си^ен и образцы ш-фазы такого же состава, что и квазикристаллы системы ьА1СиРе.

Основной целью проведенной работы являлось экспериментальное изучение электронной структуры чистых поверхностей титана, гафния и тантала и ряда квазикристаллов систем ьА1СиРе и ьТ^гМ, а также исследование изменений в электронной структуре этих материалов при окислении при комнатной температуре. Для достижения этой цели были сформулированы следующие задачи исследований:

1. Экспериментальное исследование электронной структуры чистых поверхностей титана, гафния и тантала, а также квазикристаллов в условиях сверхвысокого вакуума при различных энергиях фотонов в широком диапазоне от 20 эВ до 1,3 кэВ и различных углах эмиссии.

2. Экспериментальное исследование электронной структуры титана, гафния и тантала при различных степенях окисления их поверхностей и различных энергиях фотонов.

3. Выявление общих закономерностей процессов окисления титана, гафния и тантала.

4. Экспериментальное исследование электронной структуры поверхностей образцов квазикристалла и кристаллической со-фазы одинакового состава АЦзСизгРеи.

5. Экспериментальное исследование электронной структуры поверхности образца квазикристалла состава Ti41.5Zr41.5Ni17 при различных степенях окисления поверхности при различных энергиях фотонов и углах эмиссии.

Для выполнения поставленных в данной работе задач в качестве основного метода экспериментальных исследований были выбраны методы фотоэлектроннойчспектроскопии (ФЭС) и спектроскопии характеристических потерь энергии электронов (СХПЭЭ). Получить данные об электронной структуре можно различными методами, но в случае исследования процессов окисления поверхностей необходимо использовать поверхностно-чувствительные методы анализа. Одним из наиболее информативных — поверхностно-чувствительных методов является метод ФЭС [18]. Этот метод позволяет получить информацию о заполненных электронных состояниях вещества. Применение метода ФЭС в комбинации с методом спектроскопии характеристических потерь энергии электронов СХПЭЭ [19] может дать информацию, как о заполненных электронных состояниях образца, так и о свободных электронных состояниях, лежащих выше уровня Ферми.

Научная новизна проведенных исследований.

1. Впервые в фотоэлектронных спектрах валентной зоны образца металлического гафния зарегистрированы два пика, позволяющие сделать вывод о положении основных особенностей ё-зоны в валентной зоне.

2. Впервые в фотоэлектронных спектрах поверхности титана различных стадий окисления наблюдались пики при энергии связи 30,6 эВ, 31,6 эВ, и 3,6 эВ, объясненные образованием на поверхности субоксида титана, у которого уровень Ферми находится вблизи дна запрещенной зоны.

3. Впервые методами фотоэлектронной спектроскопии и спектроскопии характеристических потерь энергии электронов исследована валентная зона квазикристалла Т^^г^^К^у и определено положение с1-электронных состояний титана, циркония и никеля в валентной зоне этого квазикристалла.

4. Проведены сравнительные исследования фотоэлектронных спектров А1б5Си22ре13 квазикристаллической фазы и кристаллической со-фазы. Для квазикристаллической фазы обнаружено увеличение нормированной плотности БеЗс! состояний и резонансное увеличение интенсивности фотоэмиссии вблизи Бе2р порога поглощения.

Достоверность представленных результатов обеспечивается тем, что при проведении экспериментов использовалось современное исследовательское оборудование (спектрометры, энергоанализаторы, датчики давления и др. оборудование), предварительно откалиброванное. Калибровка фотоэлектронных спектров проводилась по уровню Ферми. Результаты проведенных экспериментов, в основном, согласуются с экспериментальными результатами ряда других авторов при их наличии.

Научная и практическая ценность.

Результаты, представленные в настоящей диссертации, важны для дальнейшего развития и систематизации представлений об электронной структуре переходных металлов, квазикристаллов и ее изменения в процессе окисления. Полученные в работе формы спектров и значения энергий связи различных энергетических уровней образцов переходных металлов и квазикристаллов могут быть использованы в качестве референтных в технологических процессах. Проведенные исследования будут способствовать решению задачи создания на основе переходных металлов и квазикристаллов новых функциональных материалов с различными свойствами.

Основные положения, выносимые на защиту.

1. Определены плотность электронных состояний в валентной зоне и энергии связи остовных энергетических уровней для металлических образцов гафния, титана и тантала при комнатной температуре, а также для этих же образцов при различных степенях окисления поверхности.

2. Установлены корреляции между дозой окисления и наличием субоксидов для образцов гафния, титана и тантала. На начальном этапе процесс окисления всех исследованных образцов переходных металлов происходит с образованием промежуточных субоксидов. При больших дозах окисления изменения в электронной структуре образцов титана, гафния и тантала свидетельствуют о различных механизмах процесса окисления.

3. Обнаружены различия в электронной структуре образцов квазикристалла и со-фазы одинаковых составов А^Си^е^: плотность БеЗс! электронных состояний в валентной зоне для квазикристалла выше, чем для со-фазы. Наблюдался эффект резонансного увеличения интенсивности фотоэмиссии вблизи Бе2р порога поглощения для квазикристалла.

4. Определены положения d-электронных состояний титана, циркония и никеля в валентной зоне квазикристалла Ti^^Zr^ sNiiy.

Личный вклад соискателя.

Автор лично принимал участие в экспериментах и обработке результатов экспериментов по изучению электронной структуры образцов переходных металлов и квазикристаллов на фотоэлектронной станции КЦСИ (Москва), российско-германской станции RGBL (Берлин) и фотоэлектронной станции 4.1 в Швеции. Постановка задач исследования проведена совместно с научным руководителем и соавторами опубликованных работ.

Диссертационная работа состоит из введения, шести глав, заключения и списка использованной литературы из 168 наименований литературных источников. Общий объем работы составляет 189 страниц и включает в себя 56 рисунков и 1 таблицу.

Заключение

.

В заключении перечислены основные результаты проведенных исследований.

1. Проведено экспериментальное исследование электронной структуры поверхностей образцов металлического гафния, титана и тантала при комнатной температуре методом ФЭС и СХПЭЭ. Впервые в фотоэлектронных спектрах валентной зоны свежеочищенного образца гафния были замечены два пика, позволяющие сделать вывод о положении основных особенностей (1-зоны металла в валентной зоне.

2. Проведено экспериментальное исследование изменений электронной I структуры поверхности образцов металлических гафния, титана и тантала при окислении различными дозами кислорода методами ФЭС и СХПЭЭ. Определены энергии связей различных энергетических уровней как металлических поверхностей образцов, так и окисленных различными дозами кислорода. Впервые в фотоэлектронных спектрах' поверхности титана с различными степенями окисления наблюдались пики при энергии связи 30,6 эВ, 31,6 эВ и 3,6 эВ которые обусловлены наличием в образце областей субоксида титана, у которого уровень Ферми находится вблизи дна запрещенной зоны.

3. Установлено, что окисление поверхностей металлов 11, Ш и Та на начальных этапах происходит с образованием субоксидов. По данным разложения 4f уровней гафния рост субоксидов наблюдался до дозы 10 Л кислорода, при дальнейшем увеличении дозы до 15 Л 02 происходил резкий спад содержания субоксидов в зондируемом слое. При больших дозах окисления изменения в электронной структуре образцов свидетельствуют о различиях в механизмах окисления.

4. Измерены спектры ФЭС и ХПЭЭ поверхностей образцов квазикристалла и со-фазы одинакового состава А^С^Ре^ и проанализированы их различия. Обнаружена большая нормированная плотность БеЗё-состояний у квазикристалла. Также в ходе проведенных исследований наблюдалось резонансное увеличение эмиссии валентной зоны квазикристалла вблизи Ре2р порога поглощения.

5. Впервые измерены фотоэлектронные спектры и спектры ХПЭЭ поверхности образца квазикристалла состава Т1415Zr4li5Nil7 при различных энергиях фотонов и углах эмиссии. Было определено положение с1-электронных состояний титана, циркония и никеля в валентной зоне этого квазикристалла. Также были измерены спектры ФЭС поверхности образца квазикристалла состава Ti41.5Zr41.5Ni17 при окислении чистым кислородом и определены изменения в электронной структуре данного квазикристалла при окислении.

По материалам диссертации в журналах, включенных ВАК РФ в перечень ведущих рецензируемых научных журналов и изданий, опубликованы следующие работы: ' .' ^.

1. В. Г. Назин, М. Н. Михеева, Л. Л. Лев, В. А. Рогалёв, А. М. Брязкало, Д. С. Шайтура, Е. А. Чикина, С. Л. Молодцов, М. В. Пойгин. Исследования электронной структуры квазикристаллической системы А1-Си-Ре // Кристаллография. — 2007. — Т. 52. — № 6. — С. 1051 — 1057.

2. В. Г. Назин, М. Н. Михеева, Л. Л. Лев, В. А. Рогалёв, С. Л. Молодцов, М. М. Бржезинская. Исследования электронной структуры квазикристаллической системы Т^г-№ // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. — 2010. — № 11. — С. 70 — 75.

3. В. Г. Назин, М. Н. Михеева, Л. Л. Лев, В. А. Рогалёв. Исследования начальной стадии процесса окисления титана // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. — 2011. — № 1. -С. 21 -24.

Автор работы выражает огромную благодарность своему научному руководителю к.ф.-м.н. Назину Валерию Георгиевичу за руководство и неоценимую помощь в работе, Михеевой М. Н., Льву Л. Л. и Цетлину М. Б. за всестороннюю помощь, консультации и полезные обсуждения, а также всему коллективу ЛИКФС ИСФТТ за разностороннюю помощь и длительное продуктивное сотрудничество.

Показать весь текст

Список литературы

  1. Введение в физику поверхности / К. Оура, В. Г. Лифшиц, А. А. Саранин, А. В. Зотов, М. Катаяма М.: Наука, 2006. — 490 С. 2.3енгуил, Э. Физика поверхности / Э. Зенгуил. М.: Мир, 1990. — 536 С.
  2. Lin, Y.-S. Dielectric property and thermal stability of НЮ2 on silicon / Y.-S. Lin, R. Puthenkovilakam, J.P. Chang // Appl. Phys. Lett. 2002. — V. 81. -No. 11. — Pp. 2041−2043.
  3. Wilk, G. D. High-к gate dielectrics: Current status and materials properties considerations / G. D. Wilk, R. M. Wallace, and J. M. Anthony// J. Appl. Phys. -2001.-V. 89.-P. 5243.
  4. Govindaraj, R. Atomic scale study of oxidation of hafnium: Formation of hafnium core and oxide shell / R. Govindaraj, C. S. Sundar, R. Kesavamoorthy // J. Appl. Phys. 2006.- V. 100.-P. 84 318.
  5. Fiorentini, V. Theoretical Evaluation of Zirconia and Hafnia as Gate Oxides for Si Microelectronics / V. Fiorentini and G. Gulleri // Phys. Rev. Lett. 2002. — V. 89. -P. 266 101.
  6. Robertson, J. Band offsets of wide-band-gap oxides and implications for future electronic devices / J. Robertson // J. Vac. Sci. Technol. B. 2000. — V. 18. — P. 1785.
  7. Balog, M. Chemical vapor deposition and characterization of НЮ2 films from organo-hafnium compounds / Balog M., Schieber M., Michman M. and Patai S. // Thin Solid Films. 1977. — V. 41. — Issue 3. — Pp. 247−259.
  8. Cho, D. Y. Influence of oxygen vacancies on the electronic structure of НЮ2 films / D.-Y. Cho, J. — M. Lee, S. — J. Oh, H. Jang, J. — Y. Kim, J. — H. Park and A. Tanaka // Phys. Rev. B. — 2007. — V.76. — P. 165 411.
  9. Tauster, S. J. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide / Tauster S. J., Fung S. C., Garten R. L.// J. Am. Chem. Soc. -1978.-V. 100.-No. l.-Pp. 170−175.
  10. Sadeghi, H. R. Rh on Ti02: Model catalyst studies of the strong metal-support interaction / Sadeghi H. R., Henrich V. E. // Appl. Surf. Sci. 1984. — V. 19. — P. 330. ,
  11. Lee, J. Y. Electrophoretic response of poly (methyl methacrylate) coated Ti02 nanoparticles / J. Y. Lee, J. H. Sung, I. B. Jang, B. J. Park, H. J. Choi // Synthetic Metals. 2005. — V. 153. — Pp. 221−224.
  12. , J. — B. Quasicrystals. An Introduction to Structure, Physical Properties and Applications Series / J-B. Suck, M. Schreiber, P. Haussler. Springer Series in Materials Science, 2002. — V. 55. — 561 p.
  13. Dubois, J.-M. New prospects from potential applications of quasicrystalline materials / J.-M. Dubois // Materials Science and Engineering A. — 2000. — V. 294 296. — Pp. 4 — 9.
  14. , H. В. Физика твердого тела / H. В. Ашкрофт, Н. Д. Мермин. М.: Мир, 1979.-399 С.
  15. Hufner, S. Photoelectron spectroscopy. Principles and applications / S. Hufner. -Springer, 2003. 669 P.
  16. , A.P. Вторично-эмиссионные методы исследования твердого тела / А. Р. Шульман, С. А. Фридрихов. М.: Наука, 1977. — 551 С.
  17. , J. С. New Method for Calculating Wave Functions in Crystals and Molecules / Phillips J. C. and Kleinman L. // Phys. Rev.-1959.-V.116.-Pp.287−294.
  18. Herring, C. A. New Method for Calculating Wave Functions in Crystals / C. A. Herring // Phys. Rev.-1940.-V.57.-No.l2.-Pp.l 169−1177.
  19. , С.Ю. Расчеты динамики решетки кристаллов из первых принципов / С. Ю. Саврасов, Е. Г. Максимов //УФН.-1995.-Т.165.-№ 7.-С.773−797.
  20. Hohenberg, P. Inhomogeneous Electron Gas / P. Hohenberg, W. Kohn // Phys. Rev-1964.-V. 136.-Pp.B864-B871.
  21. Kohn, W. Self-Consistent Equations Including Exchange and Correlation Effects / W. Kohn and L. J. Sham // Phys. Rev.-1965.-V.140.-Pp.Al 133-A1138.
  22. Yeh, J.J. Atomic subshell photoionization cross sections and asymmetry parameters: 1 < z < 103 / J.J. Yeh and I. Lindau // Atomic Data and Nuclear Data Tables-1985.-V.32.-Pp.l—155.
  23. Ahuja, R. Crystal structures of Ti, Zr, and Hf under compression: Theory / R. Ahuja, J. M. Wills, B. Johansson, O. Eriksson // Phys. Rev. B.-l993.-V.48.-P. 16 269.
  24. Russell, R. B. On the Zr-Hf System / R. B. Russell // J. Appl. Phys.-1953.-V.24.-P.232.
  25. Jiang, H. Electronic band structure of zirconia and hafnia polymorphs from the GW perspective / H. Jiang, R. I. Gomez-Abal, P. Rinke and M. Scheffler // Phys. Rev. B. 2010. — V.81. — P.85 119.
  26. M. Griming, R. Shaltaf and G.-M. Rignanese// Quasiparticle calculations of the electronic properties of Zr02 and Hf02 polymorphs and their interface with Si, Phys. Rev. B. 2010. — V.81. — P.35 330.
  27. Mukhopadhay, A. B. First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces / Mukhopadhay A. B., Sanz J. F., Musgrave C. B. // Phys. Rev. B. 2006. — V.73. — Pp.115 330.1−7.
  28. Chourasia, A. R. X-Ray Photoemission Study of the Oxidation of Hafnium / Chourasia A. R., Hickman J. L., Miller R. L., Nixon G. A. and Seabolt M. A. // International Journal of Spectroscopy-V.2009.-Article ID 439 065.-6 pages.
  29. Afanas’ev, V.V. Internal photoemission of electrons and holes from (100)Si into Hf02 / V.V. Afanas’ev, A. Stesmans, F. Chen, X. Shi, and S. A. Campbell // Appl. Phys. Lett.-2002.-V. 8l.-No.6.-Pp. 1053−1055.
  30. Foster, A. S. Vacancy and interstitial defects in hafnia / A. S. Foster, F. Lopez Gejo, A. L. Shluger and R. M. Nieminen // Phys. Rev. B.-2002.-V. 65-Pp.174 117.1−13.
  31. Kukli, K. Atomic layer deposition of hafnium dioxide thin films from hafnium tetrakis (dimethylamide) and water / K. Kukli, T. Pilvi, M. Ritala, T. Sajavaara, J. Lu, M. Leskela // Thin Solid Films.-2005.-V. 491 .-Pp.328−338.
  32. Rastorguev, A. A. Luminescence of intrinsic and extrinsic defects in hafnium oxide films / A. A. Rastorguev, V. I. Belyi, T. P. Smirnova, L. V. Yakovkina, M. V. Zamoryanskaya, V. A. Gritsenko and H. Wong // Phys. Rev. B.-2007-V. 76.-Pp. 235 315.1−6.
  33. Nyholm, R. Core level binding energies for the elements Hf to Bi (Z= 72−83) / R. Nyholm, A. Berndtsson and N. Martensson // J. Phys. C: Solid State Phys-1980-V. 13.-Pp. L1091-L1096.
  34. Nyholm, R. Surface core level shift in polyciystalline hafnium / R. Nyholm and J. Schmidt-May // Journal of Physics C: Solid State Phys.-1984.-V. 17.-Pp. LI 13-L116.
  35. Sarma, D.D. XPES studies of oxides of second- and third-row transition metals including rare earths / D.D. Sarma and C.N.R. Rao // J. Electron Spec. Relat. Phenom.-l980—V. 20.-Pp. 2515.
  36. Morant, C. An XPS Study of the Initial Stages of Oxidation of Hafnium / C. Morant, L. Galan, and J.M. Sanz // Surface and Interface Analysis.-1990.-V. 16.-Pp. 304 308.
  37. Suzer, S. SoftX-Ray Photoemission Studies of Hf Oxidation / S. Suzer, S. Sayan, M.M. Banaszak Holl, E. Garfunkel, Z. Hussain and N.M.Hamdan // J. of Vac. Sc. Tech. A.-2003.-V. 21.-No l.-Pp. 106−109.
  38. Hygh, E.H. Electronic structure of titanium / Hygh E.H. and Welch R.M. // Phys. Rev. B.-1970.-V.l.-No.6.-Pp.2424−2430.
  39. Welch, R.M. Self-Consistened electronic structure of titanium. II / Welch R.M. and Hygh E.H. //Phys. Rev. B.-1971.-V.4.-No.l2.-Pp.4261−4273.
  40. Welch, R.M. Electronic structure of titanium. III / Welch R.M. and Hygh E.H. //
  41. Phys. Rev. B.-1974.-V.9.-No.4.-Pp. 1993−1996.
  42. Aguayo, A. Elastic stability and electronic structure of fee Ti, Zr, and Hf: A first-principles study /A. Aguayo, G. Murrieta, and R. de Coss // Phys. Rev. B 2002— V. 65.-No 9-Pp.92 106.l-4.
  43. Bakonyi, I. Electronic structure and magnetic susceptibility of the different structural modifications of Ti, Zr, and Hf metals /1. Bakonyi, H. Ebert, A. I. Liechtenstein//Phys. Rev. B.-l 993.-V.48.-No. 11.-Pp.7841−7849.
  44. Jafari, M. Role of s and d-electrons in Density of State of Titanium in high pressure / M. Jafari- K. Bayati- A. Jahandoost- N. Zarifi- M. Nobakhti and H. Jamnezhad // J. of Phys.: Conf. Series—2010—V.215.-Pp.12 108.1—3.
  45. Akahama, Y. New d (Distorted-bcc) Titanium to 220 GPa / Y. Akahama, H.
  46. Kawamura and T. Le Bihan // Phys. Rev. Lett.-2001.-V.87.-Pp.275 503.1−4.
  47. Mo, S.-D. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase and brookite / Mo S.-D. and Ching W.Y. // Phys. Rev. B.-l995.-V.51 .-No. 19-Pp. 13 023−13 032.
  48. Tait, R.H. Ultraviolet photoemission and low-energy-electron diffraction studies of Ti02 (rutile) (001) and (110) surfaces / Tait R.H. and Kasowski R.W. // Phys. Rev. B .-1979.-V.20. No. 12 .-Pp .5178−5191.
  49. Gopel, W. Surface defects of Ti02(l 10): A combined XPS, XAES and ELS study/ Gopel W., Anderson J.A., Frankel D., Jaehnig M., Phillips K., Schafer J.A. and Rocker G. // Surf. Sci.-1984.-V.139.-Pp.333−346.
  50. Tsutsumi, K. X-ray Ti K spectra and band structures of oxides of titanium / Tsutsumi K., Aita O. and Ichikawa K. // Phys. Rev. B.-1977-V.15.-Pp.4638−4643.
  51. Veal, B.W. Final-state screening and chemical shifts in photoelectron spectroscopy / Veal B.W. andPaulikas A.P. //Phys. Rev. B.-1985.-V.31.-Pp.5399−5416.
  52. Daude, N. Electronic band structure of titanium dioxide / Daude N., Gout C. and Jouanin C. //Phys. Rev. B.-1977.-V.15.-Pp.3229−3235.
  53. Poumellect, B. Electronic structure and x-ray absorption spectrum of rutile Ti02 / Poumellect B., Durham P.J. and Guot G.Y. // J. Phys. Condens. Matter-1991.-V.3.-Pp.8195−8204.
  54. Vos, K. Reflectance and electroreflectance of Ti02 single crystals. II. Assignment to electronic energy levels / K. Vos // J. Phys. C: Solid State Phys. 1977. V. 10. Pp. 3917−3939.
  55. Vogtenhuber, D. Electronic structure and relaxed geometry of the Ti02 rutile (110)surface / Vogtenhuber D., Podloucky R., Neckel A., Steinemann S. G. and Freeman A. J. // Phys. Rev. B.-1994.-V, 49.-No.3.-Pp.2099- 2103.
  56. Kiejna, A. The energetics and structure of rutile Ti02(l 10) / Kiejna A., Pabisiak T. and Gao S.W. //J. Phys. Condens. Matter.-2006.-V.18.-Pp.4207-^217.
  57. Brydsoni, R. Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity / Brydsoni R., Sauer H., Engel W., Thomas J.M., Zeitler E. and Kosugil N. // J. Phys. Condens. Matter.-1989.-V. 1 .-Pp.797 812.
  58. Knotek, M. L. Ion Desorption by Core-Hole Auger Decay / Knotek M. L., Feibelman and Peter J. // Phys. Rev. Lett.-1978.-V.40.-Pp.964−967.
  59. Tauster, S. J. Strong Metal-Support Interactions / Tauster S. J. // Accounts of Chemical Research.-1987.- V.20. Pp.389−394.
  60. Diebold, U. Ultrathin metal film growth on Ti02(l 10): an overview / Diebold U., Pan J.-M., Madey T.E. // Surface Science.-1995.-V.331−333.-Part 2.-Pp.845−854.
  61. See, A.K. Electronic properties of ultrathin Cu and Fe films on Ti02(l 10) studied by photoemission and inverse photoemission / See A.K., Bartynski R.A. // Phys. Rev. B.-l 994.-V.50.-No. 16.-Pp. 12 064−12 072.
  62. Gopel, W. Intrinsic defects of Ti02(l 10): Interaction with chemisorbed 02, H2, CO and C02 / Gopel W., Rocker G. and Feierabend R. // Phys. Rev. B.-1983.-V.28-No.6.-Pp.3427—3438.
  63. Shih, FI.D. Low-Energy Electron Diffraction and Auger Electron Spectroscopy Study of the Oxidation of Ti {0001} at Room Temperature / Shih H. D. and Jona F. //Appl. Phys—1977.-V.12.-Pp.311−315.
  64. Fukuda, Y. XPS and UPS study of the valence band structure and chemisorption of Ti (0001) / Fukuda Y., Honda F. and Rabalais J.W. // Surface Science.-1980.~ V.91.-Issue 1.-Pp. 165−174.
  65. Jonker, B.T. Surface states and oxygen chemisorbtion on Ti (0001) / Jonker B.T., Morar J.F. and Park R.L. // Phys. Rev. B.-l98l.-V.24.-No.6.-Pp.2951−2957.
  66. Hanson, D.M. Photon-stimulated desorbtion and other spectroscopic studies of the interaction of oxygen with a titanium (001) surface / Hanson D.M., Stockbauer R. and Madey T.E. //Phys. Rev. B.-l981.-V.24.-No.l0.-Pp.5513−5521.
  67. Strong, R. L. Investigation of underlay er formation by oxygen on Al (l 11) and
  68. Ti (0001) / Strong R. L. and Erskine J. L. // J. Vac. Sci. Technol. A.-1985.-V.3.-Issue3.-Pp. 1428−1431.
  69. Dawson, P.H. Sims studies of the adsorption of 02, CO and C02 on titanium using low primary energies / Dawson P.H. // Surface Science.-1977.-V.65.-Issue 1 .-Pp.41−62.
  70. Roman, E. AES and ELS study of titanium oxidation in high vacuum / Roman E., Sanchez-Avedillo M. and J. L. de Segovia//Applied Physics A.-1985.-V.35-Pp.3510.
  71. Aduru, S. Initial stage of titanium oxidation studied by direct recoil spectrometry / Aduru S. and Rabalais J. W. // Langmuir.-1987.-V.3.-No.4.-Pp.543−547.
  72. Biwer, B.M. A photoelectron and energy-loss spectroscopy study of Ti and its interaction with H2, 02, N2 and NH3 / Biwer B.M. and Bernasek S.L. // Surface Science—1986—V. 167—Issue l.-Pp.207−230.
  73. Azoulay, A. The initial interactions of oxygen with polycrystalline titanium surfaces / Azoulay A., Shamir N., Fromm E. and Mintz M.H. // Surface Science.—1997.-V.370—Pp.1−16.
  74. Pellin, M.J. Oxygen underlayer formation on titanium by «static mode» laser fluorescence and auger spectroscopy / Pellin M.J., Young C.E., Gruen D.M., Aratono Y. and Dewald A.B. // Surface Science.-l985.-V. 151.-Issues 2−3-Pp.477—502.
  75. Kurahashi, M. Metastable deexcitation spectroscopy study of oxygen adsorption on a polycrystalline titanium surface / Kurahashi M. and Yamauchi Y. // J. Vac. Sci. Technol. A.-l999.-V. 17-No.3.-Pp. 1047—1052.
  76. Lu, G. Oxidation of a polycrystalline titanium surface by oxygen and water / Lu G., Bernasek S.L. and Schwartz J. // Surface Science.-2000.-V.458.-Pp.80−90.
  77. Brearley, W. Changes in the work function of titanium films owing to the chemisorption of N2, 02, CO and C02 / Brearley W. and Surplice N.A. // Surface Science.-l 977.-V.64.-Issue 1 .-Pp.372−374.
  78. Konishi, R. Observation of Sorption of O sub 2 and N sub 2 on Titanium Thin Film by DAPS, AEAPS, AES and Electrical Resistance Methods / Konishi R., Miyada Y. and SasakuraH. // Jpn. J. Appl. Phys.l.-1985.-V.24.-No.8.-Pp.923−927.
  79. Kasemo, B. Quartz crystal microbalance measurements of O/Ti and CO/Ti atom ratios on very thin Ti films / Kasemo B. and Tornqvist E. // Surface Science-1978.-V.77-Issue 2.-Pp.209−218.
  80. Vaquila, I. Oxide stoichiometry in the early stages of titanium oxidation at low pressure / Vaquila I., Passeggi M. andFerron J. // J. Phys.: Condens. Matter-1993 .-V.5 .-Pp. A157—A158.
  81. Raaen, S. Overlayer Core-level Shifts Induced by Limited Charge Transfer / Raaen S., Berg C. and Braaten N. A. // Physica Scripta.-1992.-V.T41.-Pp.l94−196.
  82. Gu, C. Ce-catalyzed oxidation of Ta (l 10) / C. Gu, D. W. Lynch, A. B. Yang, and
  83. C. G. Olson//Phys. Rev. B.-1990.-V.42.-No.3.-Pp. 1526−1532.
  84. Lu, J. Hafnium-doped tantalum oxide high-k dielectrics with sub-2 nm equivalent oxide thickness / Lu J. and Kuo Y. // Appl. Phys. Lett.-2005.-V.8.-Pp.232 906.1−3.
  85. Ramprasad, R. First principles study of oxygen vacancy defects in tantalum pentoxide / R. Ramprasad // J. Appl. Phys.-2003.-V.94.-No.9.-Pp.5609−5612.
  86. Penchina, C.M. Photoemission spectra from conduction bands and core levels of sputter-deposited tantalum films /C.M. Penchina//Phys. Rev. B.-1976.-V.14-No. 10 -Pp .4407−4412.
  87. Riffe, D.M. Ta (l 10) surface and subsurface core-level shifts and 4f7/2 line shapes / Riffe D.M. and Wertheim G.K. // Phys. Rev. B.-1993.-V.47.-No.l 1.-Pp.6672−6679.
  88. Veen, J. F. Chemisorption-induced 4f-core-electron binding shifts for surface atoms of W (111), W (110), and Ta (l 11)/ Veen J. F., Himpsel F. J. and Eastman D.
  89. E. //Phys. Rev. B.-1982.-V.25.-No.l2.-Pp.7388−7397.
  90. Guillot, C. Core-level spectroscopy of clean and adsorbate-covered Ta (100) / C. Guillot, P. Roubin, J. Lecante, M. C. Desjonqueres, G. Treglia, D. Spanjaard and Y. Jugnet//Phys. Rev. B.-1984.-V.30.-No.l0.-Pp.5487−5493.
  91. Himpsel, F. J. Hollinger Core-level shifts and oxidation states of Ta and W: Electron spectroscopy for chemical analysis applied to surfaces / F. J. Himpsel, J.
  92. F. Morar, F. R. McFeely, R. A. Pollak and G. // Phys. Rev. B.-1984.-V.30.-No. 12—Pp.7236−7241.
  93. Shechtman, D. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry / D. Shechtman, I. Blech, D. Gratias and J. W. Cahn // Phys. Rev. Lett. 1984.-V. 53.-No. 20.-Pp. 1951 — 1953.
  94. Penrose, R. Relativistic symmetry groups. Group Theory in Non-Linear Problems ed. A. O. Barut: Riedel Publishing Company: Dordrecht. 1974. — Pp. 1−58.
  95. Bendersky, L. Quasicrystal with One-Dimensional Translational Symmetry and a Tenfold Rotation Axis / L. Bendersky // Phys. Rev. Lett-1985.-V.55.-No. 14-Pp.1461−1463.
  96. Ishimasa, T. New ordered state between crystalline and amorphous in Ni-Cr particles /T. Ishimasa, H.-U. Nissen and Y. Fukano //Phys. Rev. Lett.-l 985-V.55.-No.5.-Pp.511—513.
  97. Wang, N. Two-dimensional quasiciystal with eightfold rotational symmetry /N. Wang, H. Chen, and К. H. Kuo // Phys. Rev. Lett.-l 987.-V.59.-No.9.-Pp.l 101 013.
  98. Bindi, L. Natural Quasicrystals / L. Bindi, P. J. Steinhardt, N. Yao, P. J. Lu // Science—2009.-V.324.-P. 1306.
  99. Physical Properties of Quasicrystals, edited by Z. Stadnik, Springer. 1999. -Science.
  100. Martin, S. Transport properties of AI65CU15C020 and Al7oNii5Coi5 decagonal quasicrystals / S. Martin, A. F. Hebard, A. R. Kortan and F. A. Thiel // Phys. -Rev. Lett.-l 991 .-V.67 .-N0.6.-Pp.719−722.
  101. Mayou, D. Evidence for unconventional electronic transport in quasicrystals / D. Mayou, C. Berger, F. Cyrot-Lackmann, T. Klein, and P. Lanco // Phys. Rev. Lett.-1993 .-V.70.-No.25.-Pp.3915−3918.
  102. , B.A. Спектры отражения и оптические постоянные тонких квазикристаллических пленок Al-Cu-Fe в инфракрасной области / Яковлев
  103. B.А., Новикова Н. Н., Дж. Матеи, Теплов А. А., Шайтура Д. С., Назин В. Г., Ласкова Г. В., Ольшанский Е. Д. и Долгий Д. И. // ФТТ.-2006.-Т.48.-Вып.51. C.775.
  104. Морозов, АЛО. Зарядовое состояние и диффузия водорода в икосаэдрическом сплаве TiZrNi / Морозов А. Ю., Исаев Э. И. и Векилов Ю. Х. // ФТТ. 2006. -Т.48. — Вып.9. — С. 1537.
  105. , Д.В. Критическое поведение волновых функций икосаэдрических квазикристаллов / Д. В. Оленев, Ю. X. Велихов // Письма в ЖЭТФ. Т. 64. — Вып. 8.-С. 559−563.
  106. Elser, V. Indexing problems in quasicrystal diffraction // Phys. Rev. B. 1985. -V. 32. — No. 8.- Pp. 4892 — 4898.
  107. Burkov, S.E. Optical Conductivity of Icosahedral Quasi—crystals / S.E. Burkov, T. Timusk, andN.W. Ashcroft // J. Phys: Condens. Matt-1992. V.4. -P.9447.
  108. B. Юм—Розери. Введение в физическое металловедение.// Металлургия, — М. -1965.-203 С.
  109. Fujiwara, Т. Electronic structure in the Al-Mn alloy crystalline analog of quasicrystals / T. Fujiwara // Phys. Rev. B.-l 989.-V. 40, — No.2.- P. 942.
  110. Fujiwara, T. Universal pseudogap at Fermi energy in quasicrystals / Fujiwara, T.-and T. Yokokawa // Phys. Rev. Lett.-1991 .-V.66.-No.3.-Pp.333−336.
  111. Hafner, J. Electronic structure and stability of quasicrystals: Quasiperiodic dispersion relations and pseudogaps / J. Hafner and M. Krajci. // Phys. Rev. Lett.-1992.- V.68.-N0.15.-Pp.2321−2324.
  112. Trambly de Laissardiere, G. Electronic structure and conductivity in a model approximant of the icosahedral quasicrystal Al-Cu-Fe / G. Trambly de Laissardiere and Fujiwara T. // Phys. Rev. B.-1994.-V.50.-No.9.-Pp.5999−6005.
  113. Windisch, M. Electronic structure in icosahedral AlCuLi quasicrystals and approximant crystals / M. Windisch, M Krajci and J Hafner // J. Phys.: Condens. Matt.- 1994.-V.6.-No.35.-P.6977.
  114. DeHAcqua, G. Face-centred icosahedral AI—Mg—Li alloys: a free-electron quasicrystal / G. Dell’Acqua, M. Krajci and J. Hafner // J. Phys.: Condens. Matt— 1997.-V.9-No.48—P. 10 725.
  115. Roche, S. Fermi surfaces and anomalous transport in quasicrystals / S. Roche and T. Fujiwara // Phys. Rev. B.-1998.-V.58.-No.l7.-Pp.l 1338−11 344.
  116. Krajci, M. Metal-insulator transition in approximants to icosahedral Al-Pd-Re / M. Krajci and J. Hafner // Phys. Rev. B. 1999. — V. 59. — No. 13. — Pp. 347 -8350.
  117. Krajci, M. Fermi surfaces and electronic transport properties of quasicrystalline approximants / M. Krajci and J. Hafner // J. Phys.: Condens. Matt-2001 .-V. 13.-No.17.-P.3817.
  118. Stadnik, Z. M. Absence of fine structure in the photoemission spectrum of the icosahedral Al-Pd-Mn quasicrystal / Z. M. Stadnik, D. Purdie, Y. Baer and T. A. Lograsso//Phys. Rev. B.-2001.-V.64.-No.21.-Pp.214 202.1−214 202.6.
  119. Klein, T. Observation of a Narrow Pseudogap near the Fermi Level of AlCuFe Quasicrystalline Thin Films / T. Klein, O. G. Symko, D. N. Davydov and A. G. M. Jansen // Phys. Rev. Lett-1995.- V.74.-No.l8.-Pp.3656−3659.
  120. Escudero, R. Tunnelling and point contact spectroscopy of the density of states in quasicrystalline alloys / R. Escudero, J.C. Lasjaunias, Y. Calvayrac and M. Boudard // J. Phys.: Condens. Matt.-1999.-V.l 1 .-No.2.-P.383.
  121. Haerle, R. Copper tubules and local origin of a pseudogap in d-AlCuCo from ab-initio calculations / R. Haerle and P. Kramer // Phys. Rev. B.-1998.-V.58.-No.2 -' Pp.716−720.
  122. Zijlstra, E.S. Non-spiky density of states of an icosahedral quasicrystal / E. S. Zijlstra and T. Janssen // Europhys. Lett.-200.-V.52.-No.5.-P.578.
  123. Cockayne, E. Use of periodic approximants in the structure refinement of icosahedral AlCuFe / E. Cockayne, R. Phillips, X.B. Kan, S.C. Moss, J.L. Robertson, T. Ishimasa and M. Mori // J. Non-Cryst. Solids.-l993.-V. 153−154.-Pp. 140−144.
  124. Mori, M. Photoemission study of an Al-Cu-Fe icosahedral phase / M. Mori, S. Matsuo, T. Ishimasa, T. Matsuura, K. Kamiya, H. Inokuchi and T. Matsukawa // J. Phys.: Condens. Matt.-1991.-V.3.-No.6.-P.767.
  125. Belin, E. Electronic distributions of states in crystalline and quasicrystalline Al-Cu-Fe and Al-Cu-Fe-Cr alloys / E. Belin, Z. Dankhazi, A. Sadoc, Y. Calvayrac, T. Klein and J.-M. Dubois // J. Phys.: Condens. Matt.-1992.-V.4-No.18.-P.4459.
  126. Belin, E. Electronic Properties of Quasicrystals / E. Belin and Mayou D. // Physica Scripta—1993 .-V.T49-Pp.3 56−359.
  127. Mori, M. Resonant photoemission study of the Al-Cu-Fe icosahedral phase / M. Mori, K. Kamiya, S. Matsuo, T. Ishimasa, H. Nakano, H. Fujimoto and H. Inokuchi //J. Phys.: Condens. Matt.-1992.-V.4.-No.l0.-Pp.L157-L162.
  128. D. Rouxel, M. Gavazt, P. Pigeat, B. Weber, P. Plaindoux, in: A. Goldman, P.A. Thiel, D. Sordelet, J.M. Dubois (Eds.), New Horizons in Quasicrystals Research and Applications, World Scientific. Singapore. — 1997. — P. 173.
  129. Rouxel, D. Review. Surface oxidation and thin film preparation of AlCuFe quasicrystals / D. Rouxel and P. Pigeat // Progress in Surface Science. 2006. -V.81. — Pp.488−514.
  130. Neuhold, G. Enhanced surface metallic density of states in icosahedral quasicrystals / G. Neuhold, S. Roy Barman, K. Horn, W. Theis, P. Ebert and K. Urban//Phys. Rev. B.-1998.-V.58.-No.2.-Pp.734−738.
  131. Kelton, K. F. A stable Ti-based quasicrystal / Kelton K. F., Kim W. J., Stroud R. M. //Appl. Phys. Lett—1997—V.70.—No.24.-P.3230.
  132. Takasaki, A. Hydrogenation of Ti-Zr-Ni quasicrystals synthesized by mechanical alloying / A. Takasaki, V.T. Huett and K.F. Kelton // J. of Non-Cryst. Sol.-2004-V.334−335.-Pp.457—460.
  133. Takasaki, A. Hydrogen storage in Ti-based quasicrystal powders produced by mechanical alloying / A. Takasaki and K.F. Kelton // Intern. J. of Hydrogen Energy .-2006.-V.31 .-Pp.183−190.
  134. Hennig, R. G. Structure of the icosahedral Ti-Zr-Ni quasiciystal / R. G. Hennig, K. F. Kelton, A. E. Carlsson and C. L. Henley // Phys. Rev. B.-2003.-V.67.-No. 13.-Pp. 134 202.1−13.
  135. Hennig, R.G. Ab initio Ti-Zr-Ni phase diagram predicts stability of icosahedral TiZrNi quasicrystals / R.G. Hennig, K.F. Kelton, A.E. Carlsson and C.L. Henley // Phys. Rev. B.-2005.-V.71.-No.l4—Pp.144 103.1−10.
  136. Willis, R. F. Surface Resonance Bands on (001)W: Experimental Dispersion Relations / R. F. Willis, B. Feuerbacher, N. Egede Christensen // Phys. Rev. Lett.— 1977.-V.38.-No. 19.-Pp. 1087−1091.
  137. Кесслер И., Поляризованные электроны, перевод с англ.-М.:Мир, 1988.-368 С.
  138. Lindau, I. The probing depth in photoemission and auger-electron spectroscopy / I. Lindau, W.E.Spicer// J. of Electron Spectroscopy and Related Phenomena — 1974—V.3.—Pp.409—413.
  139. , И. M. Синхротронное излучение. Теория и эксперимент / И. М. Тернов, В. В. Михайлин. М.: Энергоатомиздат, 1986. — 296 С.
  140. , В.Г. Исследования чистой поверхности многокомпонентных квазикристаллов / Назин В. Г., Михеева М. Н., Лев Л. Л., Брязкало A.M., Шайтура Д. С., Теплов А. А. // Поверхность.-2006.-№ 6.-С.89
  141. Сверхвысоковакуумный монохроматор для синхротронного излучения / С. Н. Иванов, В. В. Михайлин, М. Н. Михеева, В. П. Моряков, В. Г. Назин, И. В. Наумов, А. Ю. Стогов, Ю. Ф. Тарасов, И. Н. Шпиньков // ПТЭ-1988.-Т.4.-С.231.
  142. S. Knapp, S.A. Leapcyre G.J., SmithN.V., Traume M.M. //Rev. Sci. Instrum.-1982.-V.53.-P.781.
  143. Wagner C.D. Handbook of X-ray Photoelectron Spectroscopy / C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E.Mullenberg. — published by Perkin-Elmer Corp. USA, 1979. — 126 P. 1
  144. Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold/D. A. Shirley//Phys. Rev. B.-1972.-V.5.-No.l2.-Pp. 4709−4714.
  145. Egelhoff, W.F. Core-Level Binding Energy Shifts at Surfaces and in Solids / W.F. Egelhoff // Surface Science Reports.-1987.-V.6.-Pp.253−415.
  146. Doniach, S. Many-electron singularity in x—ray photoemission and x-ray line spectra from metals / Doniach S. and Sunjic M. // J. Phys. C: Sol. St. Phys-1970-V.3.-P.285.
  147. Цетлин, М. Б. Исследование угловых и поляризационных зависимостей фотоэлектронных спектров лантана с малой степенью окисления поверхности
  148. М.Б. Цетлин, В. Г. Назин, Е. А. Шагаров, М. Н. Михеева, Д.С.-Л. Ло, Н. Хайес, С. Доунс//Поверхность.- 1998.-№ 7.-Стр.65−75.
  149. Shivaraman, R. Structure of Low Loss EELS in Hf and Zr Metal, Dioxides and Silicates / R. Shivaraman, A. V. G. Chizmeshya, S. K. Dey, R. W. Carpenter // Microscopy and Microanalysis-2008-V. 14-Pp. 14−15.
  150. Fisher, G.B. Identification of an Adsorbed Hydroxyl Species on the Pt (l 11) Surface /G.B. Fisher and B.A. Sexton // Phys. Rev. Lett.-1980.-V.44 .-No. 10,-Pp.683−686.
  151. , Ю.А. Структура рентгеноэлектронных спектров соединений лантанидов / Ю. А. Тетерин, А. Ю. Тетерин // Успехи химии. — 2002. — Т.71. — № 5. С. 403.
  152. , М.Б. Исследование защитных свойств субнанометровой алмазоподобной углеродной пленки / М. Б. Цетлин, В. Г. Назин, М. И. Руднева, В. А. Рогалев // Поверхность.-2008.- № 12.- С.94−98.
  153. Grenet, Т. Plasmons in icosahedral quasicrystals: An EELS investigation / T. Grenet and M.C. Cheynet // Eur. Phys. J. B.-2000.-V.13.-Pp.701−705.
Заполнить форму текущей работой