Фармакогеномные исследования эффективности лечения рассеянного склероза иммуномодулирующими препаратами
Диссертация
Появление науки, изучающей влияние наследственных факторов на эффективность лекарственных средств, связано с именами Archibald Garrod, William Bateson и Lucien Cuinot, впервые высказавших предположение о роли наследственности в процессах химических превращений в организме. Еще в 1902 году при изучении алькаптонурии Garrod доказал роль менделевского наследования в формировании индивидуальных… Читать ещё >
Список литературы
- Compston A, Coles A: Multiple sclerosis. Lancet 359(9313), 1221 -1231 (2002).
- Stadelmann С, Wegner С, Bruck W: Inflammation, demyelination, and degeneration -recent insights from MS pathology. Biochim Biophys Acta 1812(2), 275−282 (2011).
- Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R, Zamvil SS, Weber MS: Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 25(5), 401−414 (2011).
- Гусев ЕИ, Бойко АН: Современные подходы к использованию бета-интерферонов в лечении рассеянного склероза. Ж. Неврологии и психиатрии 11(54−59), (2000).
- Pelletier D, Hafler DA: Fingolimod for multiple sclerosis. N Engl J Med 366(4), 339−347 (2012).
- Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, Krapf H, Zwingers T: Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360(9350), 2018−2025 (2002).
- Cohen BA, Rivera VM: PRISMS: the story of a pivotal clinical trial series in multiple sclerosis. Curr Med Res Opin 26(4), 827−838 (2010).
- Sanford M, Lyseng-Williamson KA: Subcutaneous recombinant interferon-beta-la (Rebif®): a review of its use in the treatment of relapsing multiple sclerosis. Drugs 71(14), 1865−1891 (2011).
- Kappos L, Radue EW, O’connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P: A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5), 387−401 (2010).
- Castro-Borrero W, Graves D, Frohman TC, Flores AB, Hardeman P, Logan D, Orchard M, Greenberg B, Frohman EM: Current and emerging therapies in multiple sclerosis: a systematic review. Ther Adv Neurol Disord 5(4), 205−220 (2012).
- Laing RE, Hess P, Shen Y, Wang J, Hu SX: The role and impact of SNPs in pharmacogenomics and personalized medicine. Curr Drug Metab 12(5), 460−486 (2011).
- Vandenbroeck K, Urcelay E, Comabella M: IFN-beta pharmacogenomics in multiple sclerosis. Pharmacogenomics 11(8), 1137−1148 (2010).
- Vandenbroeck K, Comabella M: Single-nucleotide polymorphisms in response to interferon-beta therapy in multiple sclerosis. J Interferon Cytokine Res 30(10), 727−732 (2010).
- Gross R, Healy ВС, Cepok S, Chitnis T, Khoury SJ, Hemmer B, Weiner HL, Hafler DA, De Jager PL: Population structure and HLA DRB1 1501 in the response of subjects with multiple sclerosis to first-line treatments. J Neuroimmunol 233(1−2), 168−174 (2011).
- Kalow W: Pharmacogenetics and personalised medicine. Fundam Clin Pharmacol 16(5), 337−342 (2002).
- Alving AS, Kellermeyer RW, Tarlov A, Schrier S, Carson PE: Biochemical and genetic aspects of primaquine-sensitive hemolytic anemia. Ann Intern Med 49(2), 240−248 (1958).
- King CR, Porche-Sorbet RM, Gage BF, Ridker PM, Renaud Y, Phillips MS, Eby C: Performance of commercial platforms for rapid genotyping of polymorphisms affecting warfarin dose. Am J Clin Pathol 129(6), 876−883 (2008).
- Marin-Leblanc M, Perreault S, Bahroun I, Lapointe M, Mongrain I, Provost S, Turgeon J, Talajic M, Brugada R, Phillips M, Tardif JC, Dube MP: Validation of warfarin pharmacogenetic algorithms in clinical practice. Pharmacogenomics 13(1), 21−29 (2012).
- Carlquist JF, Anderson JL: Using pharmacogenetics in real time to guide warfarin initiation: a clinician update. Circulation 124(23), 2554−2559 (2011).
- Beaulieu M, De Denus S, Lachaine J: Systematic review of pharmacoeconomic studies of pharmacogenomic tests. Pharmacogenomics 11(11), 1573−1590 (2010).
- Завалишин ИА, Захарова MH: Рассеянный склероз: основные аспекты патогенеза. В кн. «Рассеянный склероз и другие демиелинизирующие заболевания» под ред. Гусева ЕИ, Завалишина ИА, Бойко АН., Миклош, 60−75 (2004).
- Гусев ЕИ, Бойко АН, Завалишин ИА, Быкова ОВ: Современная эпидемиология рассеянного склероза. В кн. «Рассеянный склероз и другие демиелинизирующие заболевания» под ред. Гусева ЕИ, Завалишина ИА, Бойко АН., Миклош, 8−29 (2004).
- Bjartmar С, Wujek JR, Trapp BD: Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206(2), 165−171 (2003).
- Howe CL: Immunological aspects of axon injury in multiple sclerosis. Curr Top Microbiol Immunol 318, 93−131 (2008).
- Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG: Multiple sclerosis. N Engl J Med 343(13), 938−952 (2000).
- Tauber SC, Nau R, Gerber J: Systemic infections in multiple sclerosis and experimental autoimmune encephalomyelitis. Arch Physiol Biochem 113(3), 124−130 (2007).
- Ascherio A, Munger KL: Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 61(4), 288−299 (2007).
- Ascherio A, Munger KL: Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann Neurol 61(6), 504−513 (2007).
- Dobson R, Meier UC, Giovannoni G: More to come: humoral immune responses in MS. J Neuroimmunol 240−241, 13−21 (2011).
- Sosa RA, Forsthuber TG: The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 31(10), 753−768 (2011).
- Кулакова ОГ, Бойко АН, Фаворова ОО: Роль цитокинов в патогенезе рассеянного склероза. В кн. «Рассеянный склероз и другие демиелинизирующие заболевания» под ред. Гусева ЕИ, Завалишина ИА, Бойко АН., Миклош, 75−92 (2004).
- Заргарова ТАФ, О.О.: Исследование роли цитокинов при экспериментальном аутоиммунном энцефаломиелите и рассеянном склерозе. Иммунология 5, 9−13 (1999).
- Lovett-Racke АЕ, Yang Y, Racke МК: Thl versus Thl 7: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta 1812(2), 246−251 (2011).
- Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’farrelly C, Tubridy N, Mills KH: CD39+Foxp3+ regulatory T Cells suppress pathogenic Thl 7 cells and are impaired in multiple sclerosis. J Immunol 183(11), 7602−7610 (2009).
- Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH: T helper cell type 1 (Thl), Th2 and Thl7 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125(2), 161−169 (2008).
- Debruyne J, Philippe J, Dereuck J, Willems A, Leroux-Roels G: Relapse markers in multiple sclerosis: are in vitro cytokine production changes reflected by circulatory T-cell phenotype alterations? Mult Scler4(3), 193−197 (1998).
- Soderstrom M, Hillert J, Link J, Navikas V, Fredrikson S, Link H: Expression of IFN-gamma, IL-4, and TGF-beta in multiple sclerosis in relation to HLA-Dw2 phenotype and stage of disease. Mult Scler 1(3), 173−180 (1995).
- Dore-Duffy P, Washington R, Dragovic L: Expression of endothelial cell activation antigens in microvessels from patients with multiple sclerosis. Adv Exp Med Biol 331, 243−248 (1993).
- Holman DW, Klein RS, Ransohoff RM: The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta 1812(2), 220−230 (2011).
- Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, Woodroofe MN: Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J Neuroimmunol 108(1−2), 192−200 (2000).
- Balashov KE, Rottman JB, Weiner HL, Hancock WW: CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1 alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sei U S A 96(12), 6873−6878 (1999).
- Teleshova N, Pashenkov M, Huang YM, Soderstrom M, Kivisakk P, Kostulas V, Haglund M, Link H: Multiple sclerosis and optic neuritis: CCR5 and CXCR3 expressing T cells are augmented in blood and cerebrospinal fluid. J Neurol 249(6), 723−729 (2002).
- Seamons A, Perchellet A, Goverman J: Immune tolerance to myelin proteins. Immunol Res 28(3), 201−221 (2003).
- Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P, Perry VH, Newman ТА: Systemic inflammation induces axon injury during brain inflammation. Ann Neurol 70(6), 932−942(2011).
- Von Budingen HC, Bar-Or A, Zamvil SS: В cells in multiple sclerosis: connecting the dots. Curr Opin Immunol 23(6), 713−720 (2011).
- Dhib-Jalbut S: Pathogenesis of myelin/oligodendrocyte damage in multiple sclerosis. Neurology 68(22 Suppl 3), SI3−21- discussion S43−54 (2007).
- Lassmann H, Bruck W, Lucchinetti CF: The immunopathology of multiple sclerosis: an overview. Brain Pathol 17(2), 210−218 (2007).
- Teitelbaum D, Meshorer A, Hirshfeld Т, Arnon R, Sela M: Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1(4), 242−248 (1971).
- Arnon R: The development of Cop 1 (Copaxone), an innovative drug for the treatment of multiple sclerosis: personal reflections. Immunol Lett 50(1−2), 1−15 (1996).
- Miller A, Spada V, Beerkircher D, Kreitman RR: Long-term (up to 22 years), open-label, compassionate-use study of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 14(4), 494−499 (2008).
- Debouverie M, Moreau T, Lebrun C, Heinzlef O, Brudon F, Msihid J: A longitudinal observational study of a cohort of patients with relapsing-remitting multiple sclerosis treated with glatiramer acetate. Eur J Neurol 14(11), 1266−1274 (2007).
- Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA: Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 105(7), 967−976 (2000).
- Vieira PL, Heystek HC, Wormmeester J, Wierenga EA, Kapsenberg ML: Glatiramer acetate (copolymer-1, Copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 170(9), 4483−4488 (2003).
- Chen M, Gran B, Costello K, Johnson K, Martin R, Dhib-Jalbut S: Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler 7(4), 209−219 (2001).
- Weder C, Baltariu GM, Wyler KA, Gober HJ, Lienert C, Schluep M, Radu EW, De Libera G, Kappos L, Duda PW: Clinical and immune responses correlate in glatiramer acetate therapy of multiple sclerosis. Eur J Neurol 12(11), 869−878 (2005).
- Teitelbaum D, Milo R, Arnon R, Sela M: Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. ProcNatl Acad Sci U S A 89(1), 137−141 (1992).
- Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R: Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 100(24), 14 157−14 162 (2003).
- Dhib-Jalbut S, Chen M, Said A, Zhan M, Johnson KP, Martin R: Glatiramer acetate-reactive peripheral blood mononuclear cells respond to multiple myelin antigens with a Th2-biased phenotype. J Neuroimmunol 140(1−2), 163−171 (2003).
- Valenzuela RM, Costello K, Chen M, Said A, Johnson KP, Dhib-Jalbut S: Clinical response to glatiramer acetate correlates with modulation of IFN-gamma and IL-4 expression in multiple sclerosis. Mult Scler 13(6), 754−762 (2007).
- Aharoni R, Teitelbaum D, Sela M, Arnon R: Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sei U S A 94(20), 10 821−10 826 (1997).
- Jee Y, Liu R, Bai XF, Campagnolo DI, Shi FD, Vollmer TL: Do Th2 cells mediate the effects of glatiramer acetate in experimental autoimmune encephalomyelitis? Int Immunol 18(4), 537−544 (2006).
- Hong J, Li N, Zhang X, Zheng B, Zhang JZ: Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sei U S A 102(18), 6449−6454 (2005).
- Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ: Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 176(11), 71 197 129 (2006).
- Kala M, Rhodes SN, Piao WH, Shi FD, Campagnolo DI, Vollmer TL: B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp Neurol 221(1), 136−145 (2010).
- Schwartz RH: T cell anergy. Annu Rev Immunol 21, 305−334 (2003).
- Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stuve O, Sobel RA, Steinman L, Zamvil SS: Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13(8), 935−943 (2007).
- Kim HJ, Ifergan I, Antel JP, Seguin R, Duddy M, Lapierre Y, Jalili F, Bar-Or A: Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 172(11), 7144−7153 (2004).
- Ziemssen T, Kumpfel T, Klinkert WE, Neuhaus O, Hohlfeld R: Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 125(Pt 11), 2381−2391 (2002).
- Chen M, Valenzuela RM, Dhib-Jalbut S: Glatiramer acetate-reactive T cells produce brain-derived neurotrophic factor. J Neurol Sci 215(1−2), 37−44 (2003).
- Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R: Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53(3), 292−304 (2003).
- Racke MK, Lovett-Racke AE, Karandikar NJ: The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 74 Suppl 1, S25−30 (2010).
- Teitelbaum D, Brenner T, Abramsky O, Aharoni R, Sela M, Anion R: Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler 9(6), 592−599 (2003).
- Brenner T, Arnon R, Sela M, Abramsky O, Meiner Z, Riven-Kreitman R, Tarcik N, Teitelbaum D: Humoral and cellular immune responses to Copolymer 1 in multiple sclerosis patients treated with Copaxone. J Neuroimmunol 115(1−2), 152−160 (2001).
- Ure DR, Rodriguez M: Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 16(10), 1260−1262 (2002).
- Paty DW, Li DK: Interferon beta-lb is effective in relapsing-remitting multiple sclerosis II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. 1993 classical article. Neurology 57(12 Suppl 5), S10−15 (2001).
- Uze G, Schreiber G, Piehler J, Pellegrini S: The receptor of the type I interferon family. Curr Top Microbiol Immunol 316, 71−95 (2007).
- Jiang H, Milo R, Swoveland P, Johnson KP, Panitch H, Dhib-Jalbut S: Interferon beta-lb reduces interferon gamma-induced antigen-presenting capacity of human glial and B cells. J Neuroimmunol 61(1), 17−25 (1995).
- Racke MK, Ratts RB, Arredondo L, Perrin PJ, Lovett-Racke A: The role of costimulation in autoimmune demyelination. J Neuroimmunol 107(2), 205−215 (2000).
- Kieseier BC: The mechanism of action of interferon-beta in relapsing multiple sclerosis. CNS Drugs 25(6), 491−502 (2011).
- Mirandola SR, Hallal DE, Farias AS, Oliveira EC, Brandao CO, Ruocco HH, Damasceno BP, Santos LM: Interferon-beta modifies the peripheral blood cell cytokine secretion in patients with multiple sclerosis. Int Immunopharmacol 9(7−8), 824−830 (2009).
- Revel M, Chebath J, Mangelus M, Harroch S, Moviglia GA: Antagonism of interferon beta on interferon gamma: inhibition of signal transduction in vitro and reduction of serum levels in multiple sclerosis patients. Mult Scler 1 Suppl 1, S5−11 (1995).
- Chen M, Chen G, Nie H, Zhang X, Niu X, Zang YC, Skinner SM, Zhang JZ, Killian JM, Hong J: Regulatory effects of IFN-beta on production of osteopontin and IL-17 by CD4+ T Cells in MS. Eur J Immunol 39(9), 2525−2536 (2009).
- Kozovska ME, Hong J, Zang YC, Li S, Rivera VM, Killian JM, Zhang JZ: Interferon beta induces T-helper 2 immune deviation in MS. Neurology 53(8), 1692−1697 (1999).
- Saraste M, Irjala H, Airas L: Expansion of CD56Bright natural killer cells in the peripheral blood of multiple sclerosis patients treated with interferon-beta. Neurol Sci 28(3), 121−126 (2007).
- Vandenbark AA, Huan J, Agotsch M, La Tocha D, Goelz S, Offner H, Lanker S, Bourdette D: Interferon-beta-la treatment increases CD56bright natural killer cells and
- CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J Neuroimmunol 215(1−2), 125−128(2009).
- Martinez-Rodriguez JE, Lopez-Botet M, Munteis E, Rio J, Roquer J, Montalban X, Comabella M: Natural killer cell phenotype and clinical response to interferon-beta therapy in multiple sclerosis. Clin Immunol 141(3), 348−356 (2011).
- Losy J, Michalowska-Wender G: In vivo effect of interferon-beta la on interleukin-12 and TGF-beta (l) cytokines in patients with relapsing-remitting multiple sclerosis. Acta «Neurol Scand 106(1), 44−46 (2002).
- Lunemann JD, Aktas O, Gniadek P, Zschenderlein R, Zipp F: Downregulation of transforming growth factor-betal in interferon-beta la-treated MS patients. Neurology 57(6), 1132−1134(2001).
- Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA: Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7), 971−979 (2004).
- Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, Mcgrady G, Wahl SM: Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12), 1875−1886 (2003).
- Xystrakis E, Dejean AS, Bernard I, Druet P, Liblau R, Gonzalez-Dunia D, Saoudi A: Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 104(10), 3294−3301 (2004).
- Frisullo G, Nociti V, lorio R, Plantone D, Patanella AK, Tonali PA, Batocchi AP: CD8(+)Foxp3(+) T cells in peripheral blood of relapsing-remitting multiple sclerosis patients. Hum Immunol 71(5), 437−441 (2010).
- Sharief MK, Semra YK: Upregulation of the inhibitor of apoptosis proteins in activated T lymphocytes from patients with multiple sclerosis. J Neuroimmunol 119(2), 350−357 (2001).
- Sharief MK, Semra YK, Seidi OA, Zoukos Y: Interferon-beta therapy downregulates the anti-apoptosis protein FLIP in T cells from patients with multiple sclerosis. J Neuroimmunol 120(1−2), 199−207 (2001).
- Waubant E, Goodkin D, Bostrom A, Bacchetti P, Hietpas J, Lindberg R, Leppert D: IFNbeta lowers MMP-9/TIMP-1 ratio, which predicts new enhancing lesions in patients with SPMS. Neurology 60(1), 52−57 (2003).
- Stuve O, Chabot S, Jung SS, Williams G, Yong VW: Chemokine-enhanced migration of human peripheral blood mononuclear cells is antagonized by interferon beta-lb through an effect on matrix metalloproteinase-9. J Neuroimmunol 80(1−2), 38−46 (1997).
- Zhao X, Nozell S, Ma Z, Benveniste EN: The interferon-stimulated gene factor 3 complex mediates the inhibitory effect of interferon-beta on matrix metalloproteinase-9 expression. FEBS J 274(24), 6456−6468 (2007).
- Muraro PA, Leist T, Bielekova B, Mcfarland HF: VLA-4/CD49d downregulated on primed T lymphocytes during interferon-beta therapy in multiple sclerosis. J Neuroimmunol 111(1−2), 186−194 (2000).
- Muraro PA, Liberati L, Bonanni L, Pantalone A, Caporale CM, Iarlori C, De Luca G, Farina D, Lugaresi A, Gambi D: Decreased integrin gene expression in patients with MS responding to interferon-beta treatment. J Neuroimmunol 150(1−2), 123−131 (2004).
- Sallusto F, Lanzavecchia A: Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 177, 134−140 (2000).
- Dhib-Jalbut S, Marks S: Interferon-beta mechanisms of action in multiple sclerosis. Neurology 74 Suppl 1, SI7−24 (2010).
- Boutros T, Croze E, Yong VW: Interferon-beta is a potent promoter of nerve growth factor production by astrocytes. J Neurochem 69(3), 939−946 (1997).
- Biernacki K, Antel JP, Blain M, Narayanan S, Arnold DL, Prat A: Interferon beta promotes nerve growth factor secretion early in the course of multiple sclerosis. Arch Neurol 62(4), 563−568 (2005).
- Chiba K, Adachi K: Discovery of fingolimod, the sphingosine 1-phosphate receptor modulator and its application for the therapy of multiple sclerosis. Future Med Chem 4(6), 771 781 (2012).
- Mehling M, Brinkmann V, Antel J, Bar-Or A, Goebels N, Vedrine C, Kristofic C, Kuhle J, Lindberg RL, Kappos L: FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology 71(16), 1261−1267 (2008).
- Mehling M, Lindberg R, Raulf F, Kuhle J, Hess C, Kappos L, Brinkmann V: Thl7 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 75(5), 403−410(2010).
- Zhou PJ, Wang H, Shi GH, Wang XH, Shen ZJ, Xu D: Immunomodulatory drug FTY720 induces regulatory CD4(+)CD25(+) T cells in vitro. Clin Exp Immunol 157(1), 40−47 (2009).
- Miron VE, Jung CG, Kim HJ, Kennedy TE, Soliven B, Antel JP: FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol 63(1), 61−71 (2008).
- Yamagata K, Tagami M, Torii Y, Takenaga F, Tsumagari S, Itoh S, Yamori Y, Nara Y: Sphingosine 1-phosphate induces the production of glial cell line-derived neurotrophic factor and cellular proliferation in astrocytes. Glia 41(2), 199−206 (2003).
- Edsall LC, Pirianov GG, Spiegel S: Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci 17(18), 6952−6960 (1997).
- Harada J, Foley M, Moskowitz MA, Waeber C: Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J Neurochem 88(4), 1026−1039(2004).
- Sriram U, Barcellos LF, Villoslada P, Rio J, Baranzini SE, Caillier S, Stillman A, Hauser SL, Montalban X, Oksenberg JR: Pharmacogenomic analysis of interferon receptor polymorphisms in multiple sclerosis. Genes Immun 4(2), 147−152 (2003).
- Fernandez O, Fernandez V, Mayorga C, Guerrero M, Leon A, Tamayo JA, Alonso A, Romero F, Leyva L, Luque G, De Ramon E: HLA class II and response to interferon-beta in multiple sclerosis. Acta Neurol Scand 112(6), 391−394 (2005).
- Wergeland S, Beiske A, Nyland H, Hovdal H, Jensen D, Larsen JP, Maroy TH, Smievoll AI, Vedeler CA, Myhr KM: IL-10 promoter haplotype influence on interferon treatment response in multiple sclerosis. Eur J Neurol 12(3), 171−175 (2005).
- Weinstock-Guttman B, Tamano-Blanco M, Bhasi K, Zivadinov R, Ramanathan M: Pharmacogenetics of MXA SNPs in interferon-beta treated multiple sclerosis patients. J Neuroimmunol 182(1−2), 236−239 (2007).
- Kappos L, Weinshenker B, Pozzilli C, Thompson AJ, Dahlke F, Beckmann K, Polman C, Mcfarland H: Interferon beta-lb in secondary progressive MS: a combined analysis of the two trials. Neurology 63(10), 1779−1787 (2004).
- Clanet M, Radue EW, Kappos L, Hartung HP, Hohlfeld R, Sandberg-Wollheim M, Kooijmans-Coutinho MF, Tsao EC, Sandrock AW: A randomized, double-blind, dose-comparison study of weekly interferon beta-la in relapsing MS. Neurology 59(10), 1507−1517 (2002).
- Martinez A, De Las Heras V, Mas Fontao A, Bartolome M, De La Concha EG, Urcelay E, Arroyo R: An IFNG polymorphism is associated with interferon-beta response in Spanish MS patients. J Neuroimmunol 173(1−2), 196−199 (2006).
- Cenit MD, Bianco-Kelly F, De Las Heras V, Bartoloihe M, De La Concha EG, Urcelay E, Arroyo R, Martinez A: Glypican 5 is an interferon-beta response gene: a replication study. Mult Scler 15(8), 913−917 (2009).
- Guerrero AL, Tejero MA, Gutierrez F, Martin-Polo J, Iglesias F, Laherran E, Martin-Serradilla JI, Merino S: Influence of APOE gene polymorphisms on interferon-beta treatment response in multiple sclerosis. Neurologia 26(3), 137−142 (2011).
- Platanias LC: Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5), 375−386 (2005).
- Alvarez-Lafuente R, Garcia-Montojo M, De Las Heras V, Dominguez-Mozo MI, Bartolome M, Arroyo R: CD46 expression and HHV-6 infection in patients with multiple sclerosis. Acta Neurol Scand 120(4), 246−250 (2009).
- Astier AL, Meiffren G, Freeman S, Hafler DA: Alterations in CD46-mediated Trl regulatory T cells in patients with multiple sclerosis. J Clin Invest 116(12), 3252−3257 (2006)
- Shusta EV, Zhu C, Boado RJ, Pardridge WM: Subtractive expression cloning reveals high expression of CD46 at the blood-brain barrier. J Neuropathol Exp Neurol 61(7), 597−604 (2002).
- Tamura T, Yanai H, Savitsky D, Taniguchi T: The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26, 535−584 (2008).
- Favorov AV, Andreewski TV, Sudomoina MA, Favorova OO, Parmigiani G, Ochs MF: A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics 171(4), 2113−2121 (2005).
- Montalban X: Early treatment: PreCISe-ly what the patient needs. J Neurol Sci 287 Suppl 1, S2−6 (2009).
- Фаворова OO, Кулакова ОГ, Бойко АН: Рассеянный склероз как полигенное заболевание: современное состояние проблемы. Генетика 46(3), 302−313 (2010).
- Seboun Е, Robinson MA, Doolittle ТН, Ciulla ТА, Kindt TJ, Hauser SL: A susceptibility locus for multiple sclerosis is linked to the T cell receptor beta chain complex. Cell 57(7), 1095−1100(1989).
- Dyment DA, Steckley JL, Morrison K, Wilier CJ, Cader MZ, Deluca GC, Sadovnick AD, Risch N, Ebers GC: TCR beta polymorphisms and multiple sclerosis. Genes Immun 5(5), 337 342 (2004).
- Barton A, Worthington J: Genetic susceptibility to rheumatoid arthritis: an emerging picture. Arthritis Rheum 61(10), 1441−1446 (2009).
- Noble JA, Valdes AM: Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep 11(6), 533−542 (2011).
- Sadovnick AD: Genetic background of multiple sclerosis. Autoimmun Rev 11(3), 163 166 (2012).
- Marrosu MG, Murru MR, Costa G, Cucca F, Sotgiu S, Rosati G, Muntoni F: Multiple sclerosis in Sardinia is associated and in linkage disequilibrium with HLA-DR3 and -DR4 alleles. Am J Hum Genet 61(2), 454−457 (1997).
- Weatherby SJ, Thomson W, Pepper L, Donn R, Worthington J, Mann CL, Davies MB, Fryer AA, Boggild MD, Young CA, Jones PW, Strange RC, Oilier WE, Hawkins CP: HLA-DRB1 and disease outcome in multiple sclerosis. J Neurol 248(4), 304−310 (2001).
- Teige I, Liu Y, Issazadeh-Navikas S: IFN-beta inhibits T cell activation capacity of central nervous system APCs. J Immunol 177(6), 3542−3553 (2006).
- Siveke JT, Hamann A: T helper 1 and T helper 2 cells respond differentially to chemokines. J Immunol 160(2), 550−554 (1998).
- Aranami T, Yamamura T: Thl7 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int 57(2), 115−120 (2008).
- Favorova OO, Andreewski TV, Boiko AN, Sudomoina MA, Alekseenkov AD, Kulakova OG, Slanova AV, Gusev EI: The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4-positive Russians. Neurology 59(10), 1652−1655 (2002).
- Nedwin GE, Naylor SL, Sakaguchi AY, Smith D, Jarrett-Nedwin J, Pennica D, Goeddel DV, Gray PW: Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res 13(17), 6361−6373 (1985).
- Dheen ST, Kaur C, Ling EA: Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11), 1189−1197 (2007).
- Smith JA, Das A, Ray SK, Banik NL: Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1), 10−20 (2012).
- He B, Navikas V, Lundahl J, Soderstrom M, Hillert J: Tumor necrosis factor alpha-308 alleles in multiple sclerosis and optic neuritis. J Neuroimmunol 63(2), 143−147 (1995).
- Gray PW, Goeddel DV: Structure of the human immune interferon gene. Nature 298(5877), 859−863 (1982).
- Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ, Hutchinson IV: In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet 26(1), 1−3 (1999).
- Cavet J, Dickinson AM, Norden J, Taylor PR, Jackson GH, Middleton PG: Interferon-gamma and interleukin-6 gene polymorphisms associate with graft-versus-host disease in HLA-matched sibling bone marrow transplantation. Blood 98(5), 1594−1600 (2001)
- Fujii D, Brissenden JE, Derynck R, Francke U: Transforming growth factor beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet 12(3), 281−288 (1986).
- Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24, 99−146 (2006).
- Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD: Genetic control of the circulating concentration of transforming growth factor type betal. Hum Mol Genet 8(1), 93−97 (1999).
- Allan DS, Rybalov B, Awong G, Zuniga-Pflucker JC, Kopcow HD, Carlyle JR, Strominger JL: TGF-beta affects development and differentiation of human natural killer cell subsets. Eur J Immunol 40(8), 2289−2295 (2010).
- Delvig AA, Lee JJ, Chrzanowska-Lightowlers ZM, Robinson JH: TGF-betal and IFN-gamma cross-regulate antigen presentation to CD4 T cells by macrophages. J Leukoc Biol 72(1), 163−166 (2002).
- Chitnis T, Khoury SJ: Cytokine shifts and tolerance in experimental autoimmune encephalomyelitis. Immunol Res 28(3), 223−239 (2003).
- Crow MK: Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res Ther 12 Suppl 1, S5 (2010).
- Hardy MP, Owczarek CM, Jermiin LS, Ejdeback M, Hertzog PJ: Characterization of the type I interferon locus and identification of novel genes. Genomics 84(2), 331−345 (2004).
- Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM: Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res 67(20), 9609−9612(2007).
- Wang GJ, Yang P, Xie HG: Gene variants in noncoding regions and their possible consequences. Pharmacogenomics 7(2), 203−209 (2006).
- Biron CA: Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innate and adaptive immune responses to viral infections. Semin Immunol 10(5), 383−390 (1998).
- Dariavach P, Mattei MG, Golstein P, Lefranc MP: Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur J Immunol 18(12), 1901−1905 (1988).
- Zhernakova A, Eerligh P, Barrera P, Wesoly JZ, Huizinga TW, Roep BO, Wijmenga C, Koeleman BP: CTLA4 is differentially associated with autoimmune diseases in the Dutch population. Hum Genet 118(1), 58−66 (2005).
- Ligers A, Xu C, Saarinen S, Hillert J, Olerup O: The CTLA-4 gene is associated with multiple sclerosis. J Neuroimmunol 97(1−2), 182−190 (1999).
- Ligers A, Teleshova N, Masterman T, Huang WX, Hillert J: CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Genes Immun 2(3), 145−152 (2001).
- Cizmarevic NS, Gasparovic I, Peterlin B, Sepcic J, Rudolf G, Kapovic M, Lavtar P, Ristic S: CTLA-4 +49 A/G gene polymorphism in Croatian and Slovenian multiple sclerosis patients. Int J Immunogenet 38(5), 419−426 (2011).k
- Favorova 00, Favorov AV, Boiko AN, Andreewski TV, Sudomoina MA, Alekseenkov AD, Kulakova OG, Gusev EI, Parmigiani G, Ochs MF: Three allele combinations associated with multiple sclerosis. BMC Med Genet 7, 63 (2006).
- Bagos PG, Karnaouri AC, Nikolopoulos GK, Hamodrakas SJ: No evidence for association of CTLA-4 gene polymorphisms with the risk of developing multiple sclerosis: a meta-analysis. Mult Scler 13(2), 156−168 (2007).
- Андреевский ТВ, Судомоина MA, Гусев ЕИ, Бойко АН, Алексеенков АД, Фаворова ОО: Полиморфизм A/G в положении +49 первого экзона гена CTLA4 при рассеяном склерозе у русских. Мол.биол. 36(4), 643−648 (2002).
- Bilinska М, Frydecka I, Noga L, Dobosz T, Zoledziewska M, Suwalska К, Tutak A, Pokryszko-Dragan A: Progression of multiple sclerosis is associated with exon 1 CTLA-4 gene polymorphism. Acta Neurol Scand 110(1), 67−71 (2004).
- Fukazawa T, Yanagawa T, Kikuchi S, Yabe I, Sasaki H, Hamada T, Miyasaka K, Gomi K, Tashiro K: CTLA-4 gene polymorphism may modulate disease in Japanese multiple sclerosis patients. J Neurol Sci 171(1), 49−55 (1999).
- Van Veen T, Crusius JB, Van Winsen L, Xia B, Barkhof F, Salvador Pena A, Polman CH, Uitdehaag BM: CTLA-4 and CD28 gene polymorphisms in susceptibility, clinical course and progression of multiple sclerosis. J Neuroimmunol 140(1−2), 188−193 (2003).
- Maurer M, Ponath A, Kruse N, Rieckmann P: CTLA4 exon 1 dimorphism is associated with primary progressive multiple sclerosis. J Neuroimmunol 131(1−2), 213−215 (2002).
- Lutfalla G, Gardiner K, Proudhon D, Vielh E, Uze G: The structure of the human interferon alpha/beta receptor gene. J Biol Chem 267(4), 2802−2809 (1992).
- Lynch M, Baker E, Park LS, Sutherland GR, Goodwin RG: The interleukin-7 receptor gene is at 5pl3. Hum Genet 89(5), 566−568 (1992).
- Haas J, Korporal M, Schwarz A, Balint B, Wildemann B: The interleukin-7 receptor alpha chain contributes to altered homeostasis of regulatory T cells in multiple sclerosis. Eur J Immunol 41(3), 845−853 (2011).
- Von Freeden-Jeffry U, Vieira P, Lucian LA, Mcneil T, Burdach SE, Murray R: Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine J Exp Med 181(4), 1519−1526 (1995).
- Butte MJ, Haines C, Bonilla FA, Puck J: IL-7 receptor deficient SCID with a unique intronic mutation and post-transplant autoimmunity due to chronic GVHD. Clin Immunol 125(2), 159−164 (2007).
- Sambrook J. Fritsch E, Maniatis T: Chapter 6: Preparation and analysis of eukaryotic genomic DNA. In- Molecular Cloning. Nolan С (Ed.). Cold Spring Harbor Lab Press, NY, USA, 6.4−6.5 (2001).
- Маниатис T, Фрич Э, Сэмбрук Э: Молекулярное клонирование, стр. 162 (1984)
- Sandford AJ, Pare PD: Direct PCR of small genomic DNA fragments from serum Biotechniques 23(5), 890−892 (1997).
- Yusuf S, Peto R, Lewis J, Collins R, Sleight P: Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 27(5), 335−371 (1985).
- Imyanitov EN: Use of elderly tumor-free subjects as a «supercontrol» for cancer epidemiological studies: pros and cons. Mech Ageing Dev 130(1−2), 122−127 (2009).
- Fridkis-Hareli M, Strominger JL: Promiscuous binding of synthetic copolymer 1 to purified HLA-DR molecules. J Immunol 160(9), 4386−4397 (1998).
- Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW: Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med 188(8), 1511−1520(1998).
- Hestvik AL, Skorstad G, Price DA, Vartdal F, Holmoy T: Multiple sclerosis: glatiramer acetate induces anti-inflammatory T cells in the cerebrospinal fluid. Mult Scler 14(6), 749−758 (2008).
- Fugger L, Friese MA, Bell JI: From genes to function: the next challenge to understanding multiple sclerosis. Nat Rev Immunol 9(6), 408−417 (2009).
- Huston DP, Liu YJ: Thymic stromal lymphopoietin: a potential therapeutic target for allergy and asthma. Curr Allergy Asthma Rep 6(5), 372−376 (2006).
- Li MO, Sanjabi S, Flavell RA: Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25(3), 455−471 (2006).
- Marie JC, Liggitt D, Rudensky AY: Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25(3), 441−454 (2006).
- Paglinawan R, Malipiero U, Schlapbach R, Frei K, Reith W, Fontana A: TGFbeta directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokine genes and cell migratory genes. Glia 44(3), 219−231 (2003).
- Korn T, Bettelli E, Oukka M, Kuchroo VK: IL-17 and Thl7 Cells. Annu Rev Immunol 27, 485−517(2009).