Помощь в написании студенческих работ
Антистрессовый сервис

Генетические системы деградации салицилата у флуоресцирующих псевдомонад

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Специфические праймеры для детекции генов салицилат гидроксилаз, подобранные в ходе данной работы, могут быть использованы для обнаружения и характеристики штаммов-деструкторов, а также для мониторинга популяций бактериальных деструкторов в загрязненной почве. Подобранные праймеры, наряду с праймерами для детекции других ключевых генов биодеградации ароматических углеводородов (например, гена… Читать ещё >

Генетические системы деградации салицилата у флуоресцирующих псевдомонад (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. САЛИЦИЛОВАЯ КИСЛОТА. ОБЩАЯ ХАРАКТЕРИСТИКА
    • 1. 2. САЛИЦИЛАТ — КЛЮЧЕВОЙ ИНТЕРМЕДИАТ БАКТЕРИАЛЬНОЙ ДЕГРАДАЦИИ РЯДА АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ
      • 1. 2. 1. Катаболизм индолил 3-уксусной кислоты — гормона растений
      • 1. 2. 2. Салицилат — промежуточный продукт деградации карбарила
      • 1. 2. 3. Салицилат — ключевой промежуточный продукт микробной деградации нафталина, фенантрена и антрацена
    • 1. 3. БИОХИМИЧЕСКИЕ ПУТИ БИОДЕГРАДАЦИИ САЛИЦИЛАТА
    • 1. 4. РАЗНООБРАЗИЕ ГЕНЕТИЧЕСКИХ СИСТЕМ ДЕГРАДАЦИИ САЛИЦИЛАТА У БАКТЕРИЙ
      • 1. 4. 1. Организация генов катаболизма нафталина и салнцилата плазмиды NAH
      • 1. 4. 2. Генетические системы катаболизма салицилата аналогичные nah-генам плазмиды NAH
      • 1. 4. 3. nag-Yoabi штаммов-деструкторов нафталина Ralstonia sp. штамм U и Polaromonas naphthalenivorans CJ
      • 1. 4. 4. Гены биодеградации салицилата штамма Polaromonas sp. JS
      • 1. 4. 5. /гу/ьгены Pseudomonas aeruginosa JB2 и Achromobacter xylosoxidans A
      • 1. 4. 6. Гены катаболизма ПАУ бактерий рода Sphingobium и родственных им родов
      • 1. 4. 7. Гены катаболизма салицилата грам — положительной бактерии Streptomyces sp. WA
    • 1. 5. Регуляция генов биодеградации салицилата
  • Салицилат — индуктор экспрессии некоторых оперонов
    • 1. 6. РАСПРОСТРАНЕНИЕ И ЭВОЛЮЦИЯ КАТАБОЛИЧЕСКИХ ОПЕРОНОВ.37 2 МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Бактериальные штаммы и плазмиды
    • 2. 2. Питательные среды и условия роста
    • 2. 3. Выделение бактериальных штаммов из почвенных образцов
    • 2. 4. Выделение тотальной ДНК бактерий
    • 2. 5. Выделение плазмидной ДНК
    • 2. 6. Приготовление блок-вставок
    • 2. 7. Конъюгациопный перенос плазмид
    • 2. 8. Полимеразная цепная реакция
    • 2. 9. Гидролиз ДНК эндонуклеазами рестрикции
    • 2. 10. Электрофорез в агарозном геле
    • 2. 11. Препаративное выделение фрагментов ДНК из агарозного геля
    • 2. 12. Мечение ДНК методом рассеянной затравки
    • 2. 13. Гибридизация ДНК на нейлоновых фильтрах
    • 2. 14. Лигирование ДНК
    • 2. 15. Приготовление компетентных клеток E. col
    • 2. 16. Трансформация клеток E. coli плазмидной ДНК
    • 2. 17. Определение нуклеотидной последовательности ДНК.49 '
    • 2. 18. Определение удельных активностей ферментов
    • 2. 19. Выделение тотальной РНК
    • 2. 20. Синтез первой цепи кДНЕС
    • 2. 21. Картирование стартовой точки транскрипции
  • 3. РЕЗУЛЬТАТЫ
    • 3. 1. Изоляция и характеристика штаммов-деструкторов салицилата
    • 3. 2. Участие плазмид в генетическом контроле деградации салицилата
    • 3. 3. Анализ удельных активностей ферментов биодеградации салицилата
    • 3. 4. Амплификация ключевых генов биодеградации салицилата
    • 3. 5. Поиск последовательностей, отвечающих за утилизацию салицилата, в исследуемых штаммах
    • 3. 6. Анализ генов nahGl штаммов-деструкторов салицилата
    • 3. 7. Изучение экспрессии гена nahGl у исследуемых штаммов
    • 3. 8. Идентификация последовательностей, кодирующих функциональную салицилат гидроксилазу в штаммах P. putida
    • 3. 9. Анализ генов nahUштаммов-деструкторов салицилата
    • 3. 10. Деградация салицилата штаммом P. putida АК
    • 3. 11. Клонирование генов катаболизма нафталина плазмиды рАК
    • 3. 12. Клонирование генов катаболизма салицилата плазмиды рАК
    • 3. 13. Анализ нуклеотидной последовательности генов биодеградации салицилата плазмиды рАК
  • 4. ОБСУЖДЕНИЕ
  • ВЫВОДЫ

Актуальность проблемы.

Салицилат является широко распространенным в природе соединением, важным звеном метаболизма животных, растений и микроорганизмов. Он служит ключевым интермедиатом в бактериальных путях биодеградации нафталина, фенантрена, антрацена, карбарила и других токсичных и канцерогенных соединений, загрязняющих окружающую среду (Davies and Evans, 1964; Evans et al., 1965; Shamsuzzaman and Barnsley, 1974). Салицилат также играет важную роль в регуляции экспрессии некоторых бактериальных генов. Многие микроорганизмы способны использовать салицилат в качестве единственного источника углерода и энергии. Однако накопление салицилатов в среде может подавлять рост микроорганизмов. К настоящему времени биохимические пути деградации салицилата у микроорганизмов достаточно хорошо исследованы. Бактерии рода Psendomonas могут утилизировать салицилат двумя способами: во-первых, трансформируя его в катехол с помощью салицилат гидроксилазы с дальнейшим расщеплением последнего по ортоили мета-путиво-вторых, окисляя его посредством салицилат 5-гидроксилазы в гентизиновую кислоту.

Изучение как биохимических, так и генетических аспектов метаболизма салицилата тесно связано с исследованием системы утилизации его высокомолекулярного предшественника — нафталина. Имеющиеся данные указывают на то, что генетический контроль катаболизма как нафталина, так и салицилата у флуоресцирующих псевдомонад является весьма консервативным. Вероятно, это объясняется тем, что организацию генов деградации салицилата изучали на штаммах-деструкторах нафталина. Кроме того, у этой группы микроорганизмов исследование касалось в основном генов, контролирующих деградацию салицилата по мета-пути расщепления катехола. Несмотря на широкое распространение салицилата в природе разнообразие генетических систем биодеградации данного соединения у штаммов-деструкторов салицилата (но не нафталина) до настоящего времени не изучалось. Штаммы, метаболизирующие только салицилат, могут иметь отличную от деструкторов нафталина организацию катаболических генов и, возможно, другие пути утилизации данного соединения.

Особый интерес представляет изучение менее распространенного среди псевдомонад альтернативного пути деградации салицилата через гентизиновую кислоту.

У флуоресцирующих псевдомонад гены катаболизма различных ароматических углеводородов, в том числе салицилата, могут располагаться на коньюгативных плазмидах большого размера (Yen and Serdar, 1988; Herrick et.al., 1997). Известно, что гены биодеградации могут находиться в составе различных транспозонов (Tsuda and lino, 1990; Bosch et.al., 1999bTan, 1999). Транспозонная организация катаболических генов, их расположение на коньюгативных плазмидах способствует распространению биодеградативных признаков как внутри, так и между микробными популяциями и играет ключевую роль в адаптации микробных сообществ к возрастающему загрязнению окружающей среды. Рекомбинация между гомологичными областями может привести к делеции несущественных генов и последовательностей ДНК. В результате образуется структура оперона, наиболее эффективная для транскрипции всего катаболического пути. Исследование разнообразия и распространения генетических систем биодеструкции ароматических углеводородов позволяет понять молекулярные1 механизмы адаптации микроорганизмов к загрязнению окружающей среды ксенобиотиками.

Цель и задачи работы.

Целью данной работы являлось изучение разнообразия и распространения генетических систем катаболизма салицилата у штаммов флуоресцирующих псевдомонад, изолированных из загрязненных нефтепродуктами почв различных географически удаленных регионов.

В соответствии целью, в работе были поставлены следующие задачи:

1. Определение субстратной специфичности и генотипический анализ штаммов-деструкторов салицилата бактерий рода Pseudomonas изолированных из образцов почв, загрязненных нефтепродуктами.

2. Определение путей биодеградации салицилата вновь изолированными штаммами-деструкторами.

3. Исследование разнообразия генов салицилат 1-монооксигеназы, ключевого фермента биодеградации салицилата.

4. Изучение генетического контроля деградации салицилата штаммом Р. putida АК5, метаболизирующим данное соединение через гентизнновую кислоту.

Научная новизна.

В настоящей работе проведен анализ генетических систем деградации салицилата 16 штаммов P. putida, изолированных из загрязненных почв различных географических регионов.

Подобраны новые специфические праймеры для обнаружения методом ПЦР и характеристики генов салицилат гидроксилаз, nahGl и nahU, негомологичных «классическим». Впервые изучено разнообразие данных генов, обнаружены два новых варианта последовательностей гена nahGl и один новый вариант гена nahU. Исследованы штаммы, содержащие несколько негомологичных друг другу последовательностей, кодирующих салицилат гидроксилазу.

Изучена организация генов катаболизма нафталина и салицилата штамма P. putida АК5, утилизирующего нафталин через салицилат и гентнзиновую кислоту. Исследована организация нового, не описанного ранее, .sgp-оперона, контролирующего деградацию салицилата в данном штамме.

Практическая значимость работы.

Результаты, полученные в настоящей работе, представляют интерес как с фундаментальной точки зрения, так и имеют практическое применение.

Полученная в настоящей работе информация позволяет расширить представления о молекулярных механизмах адаптации микроорганизмов к загрязнению ксенобиотиками, приводящих к возникновению разнообразия генов катаболических путей и изменению спектра утилизируемых субстратов.

Специфические праймеры для детекции генов салицилат гидроксилаз, подобранные в ходе данной работы, могут быть использованы для обнаружения и характеристики штаммов-деструкторов, а также для мониторинга популяций бактериальных деструкторов в загрязненной почве. Подобранные праймеры, наряду с праймерами для детекции других ключевых генов биодеградации ароматических углеводородов (например, гена большой субъединицы нафталин 1,2-диоксигеназы — nahAc и катехол 2,3-дноксигеназы — nahH) можно использовать для создания ПЦР тест — систем для более точной оценки биодеградативного потенциала загрязненной территории. Поскольку полученные данные свидетельствуют о большей каталитической активности салицилат гидроксилазы NahU по сравнению с «классическими» салицилат гидроксилазами NahG, этот факт следует учитывать при выборе штаммов, используемых в биотехнологиях очистки окружающей среды.

Апробация работы.

Материалы диссертации были представлены на российских и международных конференциях: International Conference on Environmental Biotechnology ISEB ESEB JSEB, Leipzig, 2006; Российская школа-конференция молодых ученых «Экотокснкология: современные биоаналитические системы, методы и технологии», 2006; международная школа-конференция «Генетика микроорганизмов и биотехнология», посвященная 100-летию со дня рождения С. И. Алиханяна. 2006; Российская школа — конференция «Генетика микроорганизмов и биотехнология», посвященная 40-летию создания института ГосНИИгенетика, 2008.

Публикации.

По материалам диссертации опубликовано 8 работ, из них 3 статьи и 5 тезисов.

Структура и объем диссертации

.

Диссертация состоит из введения, обзора литературы, материалов и методов, результатов, обсуждения, выводов и списка литературы. Работа изложена на 113 страницах машинописного текста, включает 5 таблиц и 32 рисунка. Библиография включает 181 наименования, из них 8 отечественных и 173 зарубежных работ.

выводы.

1. Установлено, что штаммы — деструкторы салицилата, выделенные из различных регионов, являются близкородственными штаммам — деструкторам нафталина.

2. Обнаружено, что тринадцать исследованных штаммов P. putida утилизируют салицилат по орто-пути расщепления катехола без участия ферментов мета-пути, кодируемых «классическим» /7аЛ2-опероном.

3. У исследуемых штаммов P. putida обнаружены новые типы генов салицилат гидроксилаз: nahU и nahGl. Метаболизм салицилата штаммами, осуществляется при участии гена nahU. Во всех изучаемых штаммах ген nahGl является молчащим.

4. Впервые описана организация генов катаболизма нафталина через салицилат и гентизат у бактерий рода Pseudomonas на примере штамма P. putida АК5, в котором обнаружено сочетание оперона деградации салицилата через гентизат с «классическим» nah — опероном. Утилизация салицилата происходит под контролем не описанного ранее .sgp-onepoHa.

5. Структурная организация генов sgp-оперона у P. putida АК5 подтверждает «модульную теорию эволюции катаболических путей».

Показать весь текст

Список литературы

  1. A.M., Кулакова А. Н., Цой Т.В., Кошелева И. А., Кочетков В. В. Молчащие гены мета пути окисления катехола в составе плазмид биодеградации нафталина //Биохимия. 1988. Т. 229. № 1. С. 237−240.
  2. Т.Ю., О.И. Сазонова, C. J1. Соколов, И. А. Кошелева, A.M. Воронин. Плазмиды биодеградации нафталина и салицилата Р-7 группы несовместимости в штаммах флуоресцирующих псевдомонад // Микробиология. 2005а. Т.74. № 3. С. 342 -348.
  3. Т.Ю., О.И. Сазонова, C.JI. Соколов, И. А. Кошелева, A.M. Воронин. Разнообразие генетических систем биодеградации нафталина у штаммов Pseudomonas fluorescens // Микробиология. 20 056. Т.74. № 1. С. 70−78
  4. И.А., Цой Т.В., Кулакова А. Н., Воронин A.M. Сравнительный анализ организации плазмиды NPL-1, контролирующей окисление нафталина клетками Pseudomonas putida и ее производных // Генетика. 1986. Т.22. № 10. С. 23 892 397.
  5. Т., Фрич Э., Самбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М., «Мир». 1984. 480 с.
  6. C.JI., Кошелева И. А., Мавроди О. В., Мавроди Д. В., Воронин A.M. Структурная организация и экспрессия гена салицилат гидроксилазы штамма Pseudomonas putida BS814 (pBS106) // Генетика. 1998. Т.34. № 2. С. 206−212.
  7. И.И., Нефедова М. Ю., Яковлев Г. И., Зякун A.M., Аданин В. М. Гентизиновая кислота продукт микробного окисления нафталина // Изв. Акад. Наук. Сер. Хим. 1975. № 9. 2091−2092.
  8. Alonso R., Martin A., Pelaez Т., Marin М., Rodriguez-Creixems М., Bouza Е. An improved protocol for pulsed-field gel electrophoresis typing of Clostridium difficile IIJ Med Microbiol. 2005. Vol.54. № 2. P. 155−157.
  9. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (ed.), 1999. Shot Protocols in Molecular Biology. John Wiley and Sons, Inc. 4lh ed., p.1056.
  10. Bayly R.C., Chapman P.J., Dagley S., Di Berardino D. Purification and some properties of maleylpyruvate hydrolase and fumarylpyruvate hydrolase from Pseudomonas alcaligenes // J Bacteriol. 1980. Vol.143. № 1. P.70−77.
  11. Bosch R., Garcia-Valdes E., Moore E.R.B. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri АШ01/ Gene. 1999a. Vol. 236. P. 149−157.
  12. Bosch R., Moore E.R.B., Garcia-Valdes E., Pieper D.H. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10 // J.Bacteriol. 1999b. Vol.181. P.2315−2322.
  13. Bosch R., Garcia-Valdes E., Moore E.R.B. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN 10 // Gene. 2000. Vol.245. P. 65−74.
  14. Bhushan В., Halasz A., Spain J.C., Hawaii J. Initial reaction (s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain АТС С 29 352 // Appl. Environ. Microbiol. 2004. Vol. 70. № 7. P. 4040−7.
  15. Cane P.A., Williams P.A. The Plasmid-coded Metabolism of Naphthalene and 2-Methylnaphthalene in Pseudomonas strains: Phenotypic Changes Correlated with Structural modification of the Plasmid pWW60-l // J. Gen. Microbiol. 1982. Vol.128. P. 2281−2290.
  16. Cerniglia C.E. Microbial Metabolism of Polycyclic Aromatic Hydrocarbons // Larkin A (Ed) Advances in Applied Microbiology. Academic Press. New York. 1984. Vol.30. P.31−37.
  17. Cerniglia C.E. Biodegradation of Polycyclic Aromatic Hydrocarbons // Curr. Opin. Biotechnol. 1993. Vol. 4. P. 331 -338.
  18. Chapalamadugu S., Chaudhry G. R. Hydrolysis of carbaryl by a Pseudomonas sp. and construction of a microbial consortium that completely metabolizes carbaryl // Appl. Environ. Microbiol. 1991. Vol. 57. P. 744−750.
  19. Chapalmadugu S., Chaudhry G. R. Isolation of constitutively expressed enzyme for hydrolysis of carbaryl in Pseudomonas aeruginosa II J. Bacteriol. 1993. Vol. 175. P. 6711−6716.
  20. Chaudhry G. R., Mateen A., Kaskar В., Bloda M., Riazuddin S. Purification and biochemical characterization of the carbamate hydrolase from Pseudomonas sp. 50 432 // Biotechnol. Appl. Biochem. 2002. Vol. 36. P. 63−70.
  21. Chen Z., Klessig D.F. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response // Proc. Nath. Acad. Sci. USA. 1991. Vol. 88. № 18. P. 8179−8183.
  22. Cohen S.P., Levy S.B., Foulds J., Rosner J.L. Salicylate Induction of Antibiotic Resistance in Escherichia coli: Activation of the mar Operon and a mar-Independent Pathway // J. Bacteriol. 1993a. Vol. 175. № 24. P. 7856−7862.
  23. Cohen S. P., Hachier H., Levy S. B. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli // J. Bacteriol. 1993b. Vol. 175. № 24. P. 1484−1492.
  24. Costacurta A., Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria// Crit. Rev. Microbiol. 1995. Vol. 21. P. 1−18.
  25. Claus G. Kutzner HJ. Degradation of indole by Alcaligenes spec // System. Appl. Microbiol. 1983. Vol. 4. P. 169−180.
  26. Dagley S., Evans W.C., Ribbone D.W. New pathways in the oxidative metabolizm of aromatic compounds by microorganisms //Nature. 1960. P. 188−560.
  27. Sl.Dagher F., Deziel E., Lirettc P., Paquette G., Bisaillon J.G., Villemur R. Comparative study of five polycyclie aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils // Can. J. Microbiol. 1997. Vol. 43. P. 368−377.
  28. Davies J.I., Evans W.C. Oxidative metabolism of naphthalene by soil pseudomonas: The ring-fission mechanism // J. Biochem. 1964. Vol. 91. P. 251−261.
  29. Delaney S.M., Mavrodi D.V., Bonsall R.F., Thomashow L.S., phzO, a gene for ' biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens30.84 // J. Bacteriol. 2001. Vol. 183. P. 318−327.
  30. Denome S.A., Stanley D.C., Olston E.S., Young K.D. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway // J.Bacteriol. 1993. Vol. 176. P. 21 582 164.
  31. Deslandes В., Gariepy C.} Houde A. Review of microbiological and biochemical effects of skatole on animal production // Livestock Production Sci. 2001. Vol. 71. P. 193−200.
  32. Doddamani H. P., Ninnekar H. Z. Biodegradation of carbaryl by a Micrococcus species // Curr. Microbiol. 2001. Vol. 43. P. 69−73.
  33. Dombek P.E., Johnson L.K., Zimmerley S.T., Sadowsky M.J. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources // Appl. Environm. Microbiol. 2000. Vol. 66. P. 2572−2577.
  34. Dunn N.W., Gunsalus I.C. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida // J.Bacteriol. 1973. Vol. 114. P. 974 979.
  35. Durrant W. E., Dong X. Systemic acquired resistance // Annu. Rev. Phytopathol. 2004. Vol. 42. P. 185−209.
  36. Einarsdottir G.H., Stankovich M.T., Tu S.C. Studies of electron-transfer properties of salicylate hydroxylase from Pseudomonas cepacia and effects of salicylate and benzoate binding // Biochemistry. 1988. Vol. 27. № 9. P. 3277−3285.
  37. Ensley B.D., Ratzkin B.J., Osslund T.D., Simon M.J., Wackett L.P., Gibson D.T. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo // Science. 1983. Vol. 222. № 4620. P. 167−169.
  38. Evans W.C., Fernley H.N. Griffiths E. Oxidative metabolism of phenantrene and anthracene by soil pseudomonads: the ring-fission mechanism // J. Biochem. 1965. Vol. 95. P. 819−831.
  39. Evans C.G.T., Herbert D., Tempest D.B. The continuous cultivation of microorganisms. 2. Construction of a chemostat // Methods in Microbiology. 1970. Vol. 2. P. 277−327.
  40. Evans W.C., Fichs G. Anaerobic degradation of aromatic compounds // Annu. Rev. Microbiol. 1988. Vol. 42. P. 289−317.
  41. Fuenmayor S.L., Wild M., Boyles A.L., Williams P.A. A gene cluster encoding steps in conversion of naphthalene to gentisatc in Pseudomonas sp. strain U2 // J. Bacteriol. 1998. Vol. 180. P. 2522−2530.
  42. Gaille C., Kast P., Haas D. Salicylate biosynthesis in Pseudomonas aeruginosa II J. Biol. Chem. 2002. Vol. 277. P. 21 768−21 775.
  43. Gieg L.M., Otter A., Fedorak P.M. Carbazole degradation by Pseudomonas sp LD2: metabolic characteristics and the identification of some metabolites // Environ. Sci. Technol. 1996. Vol. 30. P. 575−585.
  44. Goethals K., Van Montagu M., Holsters M. Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins // Proc. Natl. Acad. Sci. USA. 1992 Vol. 89. № 5. P. 1646−50.
  45. Grimm A.C., Harwood C.S. NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene // J. Bacteriol. 1999. Vol.181. P. 3310−3316.
  46. Grund E., Denecke D., Eichenlaub R. Naphthalene degradation via salicylate and gentisate by Rodococcus sp strain B4 // Appl. Environm. Microbiol. 1992. Vol. 58. P. 1874−1877.
  47. Grund E., Knorr C., Eichenlaub R. Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp. // Appl. Environ. Microbiol. 1990. Vol. 56. № 5. P. 1459−1464.
  48. Habe H., Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria//Biosci. Biotechnol. Biochem. 2003. Vol. 67. P.225−243.
  49. Hahlbrock K., Scheel D. Physiology and molecular biology of phenypropanoid metabolism // Annual Review of Plant Physiology of Plant Molecular Biology. 1989. Vol. 40. P. 347.
  50. Hachler H., Cohen S. P., Levy S. B. marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli // J. Bacterid. 1991. Vol. 173. P. 5532−5538.
  51. Hamzah R.Y., Tu S.C. Determination of the position of monooxygenation in the formation of catechol catalyzed by salicylate hydroxylase // J. Biol. Chem. 1981. Vol. 256. № 12. P. 6392−6394.
  52. Harpel M.R., Lipscomb J.D. Gentisate 1,2-dioxygenase from Pseudomonas. Substrate1Acoordination to active site Fe and mechanism of turnover // J. Biol. Chem. 1990 Vol. 265. № 36. P. 22 187−22 196.
  53. Harpel M.R., Lipscomb J.D. Gentisate 1,2-dioxygenase from pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans // J. Biol. Chem. 1990. Vol. 265. № 11. P. 6301−6311.
  54. Hayatsu M., Hirano M., Nagata T. Involvement of two plasmids in the degradation of carbaryl by Arthrobacter sp. strain RC100 // Appl. Environ. Microbiol. 1999. Vol. 65. P. 1015−1019.
  55. Herrick J.B., Stuart-Keil K.G., Ghiorse W.C., Madsen E.L. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site //Appl. Environm. Microbiol. 1997. Vol. 63. P. 2330−2337.
  56. Hintner J. P., Lechner C., Riegert U., Kuhm A.E., Storm Т., Reemtsma Т., Stolz A. Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans II J. Bacteriol. 2001. Vol. 183. P. 6936−6942.
  57. Hopper DJ, Chapman PJ, Dagley S. Enzymic formation of D-malate // Biochem J. 1968. Vol. 110. № 4. P. 798−800.
  58. Izmalkova T.Y., Mavrodi D.V., Sokolov S.L., Kosheleva I.A., Smalla K., Thomas C.M., Boronin A.M. Molecular classification of IncP-9 naphthalene degradation plasmids // Plasmid. 2006. Vol. 56. № 1. P. 1−10.
  59. Ishiyama D., Vujaklija D., Davies J. Novel pathway of salicylate degradation by Streptomyces sp. strain WA46 // Appl. Environ. Microbiol. 2004. Vol .70. № 3. P. 1297−306
  60. James W.O., Beevers H. The respiration of Arum spadix. A rapid respiration, resistant to cyanide // New Phytol. 1950. Vol. 49. P. 353−374.
  61. Jensen J.B., Egsgaard H., Vanonckelen H., Jochimsen B.U. Catabolism of indole-3-acetic-acid and 4-chloroindole-3- acetic and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum II J. Bacteriol. 1995. Vol. 177. P. 5762−5766.
  62. Jones D.C., Cooper R.A. Catabolism of 3-hydroxybenzoate by the gentisate pathway in Klebsiella pneumoniae M5al // Arch. Microbiol. 1990. Vol. 154. № 5. P. 489−495.
  63. Jones R.M., Britt-Compton В., Williams P.A. The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are on operon that is regulated by NagR, a LysR-type transcriptional regulator//J. Bacteriol. 2003. Vol. 185. P. 5847−5853.
  64. Jouanneau Y., Micoud J., Meyer C. Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1 // Appl Environ Microbiol. 2007. Vol. 73. № 23. P. 7515−7521.
  65. Ka J.O., Tiedje J.M. Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer//J. Bacteriol. 1994. Vol. 176. P. 5284−5289.
  66. Katagiri M., Yamamoto S., Hayaishi O. Flavin adenine dinucleotide requirement for the enzymic hydroxylation and decarboxylation of salicylic acid // J. Biol.Chem. 1962. Vol. 237. № 7. P. 2413−2414.
  67. Kim E., Zylstra G.J. Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1 //J. Ind. Microbiol. Biotechnol. 1999. Vol. 23. P. 294−302.
  68. Kiyohara H., Nagao K., Yana K. Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates // Appl. Environ. Microbiol. 1982a. Vol.43. P. 454 457.
  69. Sl.Krieg, N.J., Holt J.G. (ed.). Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, Md, 1. 1984.
  70. Krupasagar V., Sequeira L. Auxin destruction by Marasmius perniciosus. II Am. J. Bot. 1969. Vol. 56. P. 390−397.
  71. Kurkela S.H., Lehvaslaiho E.T., Oalva E.T., Teeri Т.Н. Cloning, nucleotide sequencing and characterisation of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816 // Gene. 1988. Vol. 73. P.355−362.
  72. Lack L. The enzymic oxidation of gentisic acid // Biochim. Biophys. Acta. 1959. Vol. 34. P. 117−123.
  73. Lack L. Enzymic cis-trans isomerization of maleylpyruvic acid. // J. Biol. Chem. 1961. Vol. 236. P. 2835−2840.
  74. Larkin M. J., Day M. J. The metabolism of carbaryl by three bacterial isolates, Pseudomonas sp. (NCIB 12 042 & 12 043) and Rhodococcus sp. (NCIB 12 038) from garden soil // J. Appl. Bacteriol. 1986. Vol. 60. P. 233−242.
  75. Laurie A.D., Lloyd-Jones G. Quanification ofphnAc and nahAc in contaminated New Zealand soils by competitive PCR // Appl.Environ.Microbiol. 2000. Vol. 66. P. 18 141 817.
  76. Lendenmann U, Spain JC. 2-aminophenol 1,6-dioxygenase: a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45 // J. Bacteriol. 1996. Vol. 178. № 21. P. 6227−6232.
  77. Leveau J.H.J., Lindow S.E. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290 // Appl. Environ. Microbiol. 2005. Vol. 71. P. 2365−2371.
  78. Li W., Shi J., Wang X., Han Y., Tong W., Ma L., Liu В., Cai B. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-l from Pseudomonas sp. strain ND6 // Gene. 2004. Vol. 336. P. 231−40.
  79. Loffler F., Miiller R. Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 // FEBS Lett. 1991. Vol. 290. № 1−2. P. 224−226.
  80. Meeuse В.J.D., Raskin I. Sexual reproduction in the arum, lily family, with emphasis on thermogenicity // Sex. Plant. Reprod. 1988. Vol. 1. P. 3−15.
  81. Menn F.-M., Applegate B.M., Sayler G.S. Plasmid-mediated catabolism of naphthalene, phenenthrene and anthracene to naphthoic acid // Appl.Environ.Microbiol. 1993. Vol. 59. P. 1938−1942.
  82. Mino Y. Studies on destruction of indole-3-acetic acid by a species of Arthrobacter. IV. Decomposition products // Plant Cell Physiol. 1970. Vol. 11. P. 129.
  83. Monticello D.J., Bakker D., Schell M., Finnerty W.R. Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate // Appl. Environ. Microbiol. 1985. Vol. 49. № 4. P. 761−764.
  84. Mulbry W. W., Eaton R. W. Purification and characterization of iV-methylcarbamate hydrolase from Pseudomonas strain CRL-OK //Appl. Environ. Microbiol. 1991. Vol. 57. P. 3679−3682.
  85. Mtiller U., Lingens F. Degradation of 1, 4-naphthoquinones by Pseudomonas putida II Biol. Chem. Hoppe Seyler. 1988. Vol. 369. № 9. P. 1031−1043.
  86. Nakai C., Kagamiyama H., Saeki Y., Nozaki M. Nonidentical subunits of pyrocatechase from Pseudomonas arvilla C-l // Arch. Biochem. Biophys. 1979. Vol. 195. № i.p. 12−22.
  87. Nakai C., Nakazawa Т., Nozaki M. Purification and properties of catechol 1,2-dioxygenase (pyrocatechase) from Pseudomonas putida mt-2 in comparison with that from Pseudomonas arvilla C-l // Arch. Biochem. Biophys. 1988. Vol. 267. № 2. P. 701−713.
  88. Nozaki M. Oxygenases and dioxygenases // Top. Curr. Chem. 1979. Vol. 78. P. 145−186.
  89. Okujo N., Saito M., Yamamoto S., Yoshida Т., Miyoshi S., Shinoda S. Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus II Biometals. 1994. Vol. 7. P. 109−116.
  90. Ornston L.N. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. enzymes of catechol pathway I I J. Biol. Chein. 1966. Vol. 166. P.9−14.
  91. Park M, Jeon Y., Jang H.H., Ro H.S., Park W., Madsen E.L., Jeon C.O. Molecular and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase from Polaromonas naphthalenivorans CJ2 // Appl. Environ. Microbiol. 2007. Vol. 73. № 16. P. 5146−5152.
  92. Patten C.L., Glick B.R. Bacterial biosynthesis on indole-3-acetic acid // Can. J. Microbiol. 1996. Vol. 42. P. 207−220.
  93. Pinyakong O., Habe H., Yoshida Т., Nojiri PI., Omori T. Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2 // Biochem. Biophys. Res. Commun. 2003. Vol. 301. № 2. P. 350−357.
  94. Proctor M.H. Bacterial dissimilation of indoleacetic acid new route of breakdown of the indole nucleu//Nature. 1958. Vol. 181. P. 1345−1345.
  95. Rajgopal B. S.,. Rao V. R, Nagendraappa G., Sethunathan N. Metabolism of carbaryl and carbofuran by soil enrichment and bacterial cultures // Can. J. Microbiol. 1984. Vol. 30. P. 1458−1466.
  96. Raskin I. Salicylate, A New Plant Hormone // Plant Physiol. 1992. Vol. 99. P. 799 803.
  97. Reiner A.M. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-l, 2-diol-1-carboxylic acid is an intermediate in the formation of catechol // J. Bacteriol. 1971 Vol. 108. № l.P. 89−94.
  98. Robson N.D., Parrott S., Cooper R.A. In vitro formation of a catabolic plasmid carrying Klebsiella pneumoniae DNA that allows growth of Escherichia coli K-12 on 3-hydroxybenzoate // Microbiology. 1996. Vol. 142. P. 2115−2120.
  99. Rosner, J. L. Nonheritable resistance to chloramphenicol and other antibiotics induced by salicylates and other chemotactic repellents in Escherichia coli K-12 // Proc. Natl. Acad. Sci. USA. 1985. Vol. 82. P. 8771−8774.
  100. Rossello-Mora R.A., Lalucat J., Garcia-Valdes E. Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strain // Appl.Environ.Microbiol. 1994. Vol. 60. P. 966−972.
  101. Sanseverino J., Applegate B.M., King J.M.H., Sayler G.S. Plasmid-mediated mineralisation of naphthalene, phenenthrene and anthracene // Appl.Environ.Microbiol. 1993. Vol. 59. P. 1931−1937.
  102. Schell M.A., Sukordhaman M. Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionary related to the transcription activator encoded by the Rhizobium nodD genes // J. Bacteriol. 1989. Vol. 171. P. 1952−1959.
  103. Sentchilo V.S., Ravatn R., Werlen C., Zehnder A.J., van der Meer J.R. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain В13 // J. Bacteriol. 2003. Vol. 185. P. 4530−4538.
  104. Shamsuzzaman K.M., Barnsley E.A. The regulation of naphthalene metabolism in pseudomonads // Biochem. Biophys. Rec. Comm. 1974. Vol.60. P. 582−587.
  105. Schell M.A. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product // Gene. 1985. Vol.36. P. 301−303.
  106. Schell M.A., Brown P.H., Raju S. Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator //J. Biol. Chem. 1990. Vol. 265. № 7. P. 3844−3850.
  107. Scholten J.D., Chang K.H., Babbitt P.C., Charest H., Sylvestre M., Dunaway-Mariano D. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic // Science. 1991. Vol. 253. № 5016. P. 182−185.
  108. Silakowski В., Kunze В., Nordsiek G., Blocker H., Hofle G., Mttller R. The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg al5 //Eur. J. Biochem. 2000. Vol. 267. № 21. P. 6476−6485.
  109. Simon M.J., Osslund D.T., Saunders R., Ensley B. D., Suggs S., Harcourt A., Suen W., Gruden D.T., Zylstra G.J. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strain G7 and NCIB 9816−4 // Gene. 1993. Vol. 127. P. 31 -37.
  110. Sims J.L., Sims R.N., Matthews J.E. Approach to bioremediation of contaminated soil // Haz. Waste Haz.Matter. 1990. Vol.7. P. 117−149.
  111. Sokol P.A., Lewis C.J., Dennis J.J. Isolation of a novel siderophore from Pseudomonas cepacia //J. Med. Microbiol. 1992. Vol. 36. P. 184−189.
  112. Spaepen S., Vanderleyden J., Remans R. Indole 3-acetic acid in microbial and microorganism-plant signaling // FEMS Microbiol. Rev. 2007. Vol. 31. P. 425−448.
  113. Stolz A., Nortemann В., Knackmuss H.J. Bacterial metabolism of 5-aminosalicylic acid. Initial ring cleavage // J.Biochem. 1992. Vol. 282. (Pt 3). P. 675−680.
  114. Strawinski R.J., Stone R.W. Conditions governing the oxidation of naphthalene and the chemical analysis of its products // J.Bacteriol. 1943. Vol. 45. P.16−24.
  115. Suemori A., Nakajima K. Kurane R., Nakamura Y. o-, m- and p-hydroxybenzoate degradative pathways in Rhodococcus erythropolis II FEMS Microbiol. Lett. 1995. Vol. 125. № 1. P. 31−35.
  116. Suzuki K., Katagiri M. Mechanism of salicylate hydroxylase-catalyzed decarboxylation// Biochim. Biophys. Acta. 1981. Vol. 657. № 2. P. 530−534.
  117. Suzuki K., Ohnishi K. Functional modification of an arginine residue on salicylate hydroxylase // Biochim. Biophys. Acta. 1990. Vol. 1040. № 3. P. 327−336.
  118. Suzuki К., Gomi Т., Kaidoh Т., Itagaki E. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase // J. Biochem. 1991a. Vol. 109. № 2. P. 34 853.
  119. Suzuki K., Gomi Т., Itagaki E. Intermediate and mechanism of hydroxylation of o-iodophenol by salicylate hydroxylase // J. Biochem. 1991b. Vol. 109. № 5. P. 791−797.
  120. Suzuki K., Mizuguchi M., Gomi Т., Itagaki E. Identification of a lysine residue in the NADH-binding site of salicylate hydroxylase from Pseudomonas putida S-l I I J. Biochem. 1995. Vol. 117. № 3. P. 579−585.
  121. Suzuki K., Mizuguchi M., Ohnishi K., Itagaki E. Structure of chromosomal DNA coding for Pseudomonas putida S-l salicylate hydroxylase I I Biochim. Biophys. Acta. 1996. Vol. 1275. № 3. P. 154−156.
  122. Suzuki K., Asao E., Nakamura Y., Nakamura M., Ohnishi K., Fukuda Sh. Overexpression of salicylate hydroxylase and the crucial role of Lys as its NADH binding site // J. Biochem. 2000. Vol. 128. P. 239−299.
  123. Swetha V.P., Phale P. S. Metabolism of Carbaryl via 1,2-Dihydroxynaphthalene by Soil Isolates Pseudomonas sp. Strains C4, C5, and C6 // Appl. Environm. Microbiol. 2005. Vol. 71. № 10. P. 5951−5956.
  124. Takemori S., Yasuda H., Mihara K., Suzuki K., Katagiri M. Mechanism of the salicylate hydroxylase reaction. II. The enzyme-substrate complex // Biochim. Biophys. Acta. 1969. Vol. 191. № 1. P. 58−68.
  125. Takemori S., Nakamura M., Suzuki K., Katagiri M., Nakamura T. The kinetics of salicylate hydroxylase reaction // FEBS Lett. 1970. Vol. 6. № 4. P. 305−308.
  126. Tan H.-M. Bacterial catabolic transposons // Appl. Microbiol. Biotechnol. 1999. Vol. 51. P. 1−12.
  127. Teale W.D., Paponov I.A., Palme K. Auxin in action: signalling, transport and the control of plant growth and development // Nat. Rev. Mol. Cell Biol. 2006. Vol. 7. P. 847−859.
  128. Top E.M., Moenne-Loccoz Y., Pembroke Т., Thomas, C.M. (ed.) Phenotypic traits conferred by plasmids // The horizontal gene pool. Harwood Academic Publishers, Amsterdam, 2000. pp. 249−285.
  129. Tropel D., van der Meer J.R. Bacterial transcriptional regulators for degradation pathways of aromatic compounds // Microbiol. Mol. Biol. Rev. 2004. Vol. 68. № 3. P. 474−500.
  130. Tsubokura S., Sakamoto Y., Ichihara K. The bacterial decomposition of indoleacetic acid//J. Biochem. 1961. Vol. 49. P. 38.
  131. Tsuda M., lino T. Naphthalene degrading genes on plasmid NAH7 are on a defective transposon // Mol. Gen. Genet. 1990. Vol. 223. P.33−39.
  132. Tu S.C., Romero F.A., Wang L.H. Uncoupling of the substrate monooxygenation and reduced pyridine nucleotide oxidation activities of salicylate hydroxylase by flavins // Arch. Biochem. Biophys. 1981. Vol. 209. № 2. P. 423−432.
  133. Vane J. R., Botting R. M. The history of aspirin. In J. R. Vane and R. M. Botting (ed.), Aspirin and other salicylates. Chapman and Hall, London, United Kingdom. 1992. p. 3−34.
  134. Visca, P., Ciervo A., Sanfilippo V. Orsi N. Iron-regulated Salicylate synthesis by Pseudomonas spp. // J. Gen. Microbiol. 1993. Vol. 139. P. 1995−2001.
  135. Vontor Т., Socha J., Vecera M. Kinetics and mechanism of hydrolysis of 1-naphthyl, //-methylcarbamate and AW-dimethylcarbamates // Collect. Czech. Chem. Commun. 1972. Vol. 37. P. 2183−2196.
  136. Wang L.H., Tu S.C. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects // J. Biol. Chem. 1984. Vol. 259. № 17. P. 10 682−10 688.
  137. Wang L.H., Tu S.C. Lusk R.C. Apoenzyme of Pseudomonas cepacia salicylate hydroxylase. Preparation, fluorescence property, and nature of flavin binding // J. Biol. Chem. 1984. Vol. 259. № 2. P. 1136−1142.
  138. W.G., Barnes S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study // J. Bacteriol. 1991. Vol.73. P. 697−703.
  139. Weller D.M. Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all // Phytopathology. 1983. Vol. 73. P. 1548−1553.
  140. White-Stevens R.H., Kamin H. Uncoupling of oxygen activation from hydroxylation in a bacterial salicylate hydroxylase // Biochem. Biophys. Res. Commun. 1970. Vol. 38. №> 5. P. 882−889.
  141. White-Stevens R.H., Kamin H., Gibson Q.H. Studies of a flavoprotein, salicylate hydroxylse. I. Enzyme mechanism // J. Biol. Chem. 1972. Vol. 247. № 8. P. 23 712 381.
  142. Williams P.A., Catterall F.A., Murray K. Metabolism of naphthalene, 2-methylnaphthlene, salicylate, and benzoate by Pseudomonas PG: tangential pathways // J. Bacteriol. 1975. V.124. P. 679−685.
  143. Wikstrom P., Wiklund A., Andersson A.C., Forsman M. DNA recovery and PCR quantification of catechol-2,3-dioxygenase genes from different soil types // Journal of Biotechnology. 1996. Vol.52. P. 107−120.
  144. Williams P.A., Sayers J.R. The evolution of pathway for aromatic hydrocarbons oxidation in Pseudomonas II Biodegradation. 1994. Vol.5. P. 195−217.
  145. Yamamoto S., Katagiri M., Maeno H., Hayaishi O. Salicylate hydroxylase, monooxygenase requiring flavin adenine dinucleotide. 1. Purification and general properties // J. Biol. Chem. 1965. Vol. 230. P. 3408−3413.
  146. Yen K.M., Serdar C.M. Genetics of naphthalene catabolism in Pseudomonads II CRC Crit.Rev.Microbiol. 1988. Vol. 15. P. 247−268.
  147. Yen K.M., Gunsalus I.C. Regulation of naphthalene catabolic genes of plasmid NAH7 // J. Bacteriol. 1985. Vol.162. P.1008−1013.
  148. Yen K.M., Gunsalus I.C. Plasmid gene organization: naphthalene/salicylate oxidation //Proc.Natl.Acad.Sci.U.S.A. 1982. Vol.79. P.874−878
  149. You I.-S., Murray R.I., Jollie D., Gunsalus I.C. Purification and characterization of salicylate hydroxylase from Pseudomonas putida PpG7 // Biochem. Biophys. Res. Comm. 1990. Vol.169. P. 1049−1054.
  150. You I.S., Ghosal D, Gunsalus I.C. Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3'-flanking region//Biochemistry. 1991. Vol. 30. P. 1635−1641.
  151. Yokoyama M.T., Carlson J.R., Holdeman L.V. Isolation and characteristics of a skatole-producing Lactobacillus sp from the bovine rumen // Appl. Environ. Microbiol. 1977. Vol. 34. P. 837−842.
  152. Zabinski R., Munck E., Champion P.M., Wood J.M. Kinetic and Mossbauer studies on the mechanism of protocatechuic acid 4,5-oxygenase // Biochemistry. 1972. Vol. 11. № 17. P. 3212−3219.
  153. Zhao H, Chen D, Li Y, Cai B. Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6 // Microbiol. Res. 2005. Vol. 160. № 3. p. 307−313.
  154. Zhou N.Y., Fuenmayor S.L., Williams P.A. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism // J.Bacteriol. 2001. Vol.183. P. 700−708.
  155. Zylstra G.J., Kim E., Goyal A.K. Comparative Molecular Analysis of Genes for Polycyclic Aromatic Hydrocarbon Degradation // Genetic Engineering. 1997. Vol.19. P. 257−269.
  156. Особую благодарность автор выражает своим наставникам и учителям чл.-корр РАН., проф. Воронину А. М., к.б.н. Кошелевой И. А. и к.б.н. Измалковой Т. Ю. за чуткое и умелое руководство, постоянное внимание и поддержку.
Заполнить форму текущей работой