Помощь в написании студенческих работ
Антистрессовый сервис

Конъюгаты нуклеозидов и флуоресцентных красителей, содержащие сопряженную систему кратных связей

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Осуществлен синтез четырех флуоресцентных нуклеозидных производных — 5-(1-пиренилэтинил)-2'-дезоксиуридина, 5-(4-пиренилэтинил)-2'-дезоксиуридана, 5-(3-периленилэтинил)-2'-дезоксиурид]ша и 5--этинил-2'-дезоксиуридина — первых флуоресцентно меченных нуклеозидов, в которых флуорофор тг-сопряжен с нуклеиновым основанием через этинильный спейсер. Проанализированы спектральные (абсорбционные… Читать ещё >

Конъюгаты нуклеозидов и флуоресцентных красителей, содержащие сопряженную систему кратных связей (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений

ГЛАВА I. АЛКИНИЛИРОВАННЫЕ НУКЛЕОЗИДЫ И ИХ АНАЛОГИ: СИНТЕЗ, СТРОЕНИЕ И СПЕКТРАЛЬНЫЕ СВОЙСТВА обзор литературы)

1.1 Методы синтеза алкинилированных нуклеозидов

1.1.1 Первые примеры синтезов. Генерация алкинов по методу Кори-Фукса. Синтез алкинилированных нуклеозидов гликозилированием алкинилированных оснований

1.1.2 Алкинилирование нуклеозидов и нуклеиновых оснований с помощью реакции Хека-Соногаширы

1.2 Строение алкинилированных нуклеозидов

1.3 Спектральные свойства алкинилированных нуклеозидов

ГЛАВА II. ФЛУОРЕСЦЕНТНЫЕ 5-АРИЛЭТИНИЛЬНЫЕ ПРОИЗВОДНЫЕ 2'-ДЕЗОКСИУРИДИНА: СИНТЕЗ, СПЕКТРАЛЬНЫЕ СВОЙСТВА И

ВВЕДЕНИЕ

В СОСТАВ ОЛИГОНУКЛЕОТИДОВ (результаты и обсуждение)

И.1 Синтез 5-арилэтинильных производных 2'-дезоксиурцдина

II. 1.1 5-(1 -пиренилэтинил)-2'-дезоксиуридин

II. 1.2 5-(4-пиренилэтинил)-2'-дезоксиуридин

II. 1.3 5-(3-периленилэтинил)-2'-дезоксиуридин

II. 1.4 5-[4-(2-бензоксазолил)фенил]этинил-2'-дезоксиуридин

П. 2 Спектральные свойства флуоресцентных аналогов нуклеозидов

II. 3 Синтез модифицирующих реагентов (фосфамидитов и твердофазных носителей) на основе 5-(1-пиренилэтинил) — и 5-[4-(2-бензоксазолил)фенил] этинил-2'-дезоксиуридина

И.4 Синтез и свойства олигонуклеотидов, содержащих 5-(1пиренилэтинил) — и 5-[4-(2-бензоксазолил)фенил] этинил-2'-дезоксиуридин

ГЛАВА III. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

III. 1 Материалы и оборудование

111.1.1. Растворители

111.1.2. Реактивы

111.1.3. Оборудование 102 III. 2 Методы

Выводы

Благодарности

— 118-выводы.

1. Разработаны эффективные методы синтеза ацетиленовых производных ряда флуоресцентных красителей -1-й 4-этинилпирена, 3-этинилперилена и 2-(4-этинилфенил)бензоксазола.

2. Осуществлен синтез четырех флуоресцентных нуклеозидных производных — 5-(1-пиренилэтинил)-2'-дезоксиуридина, 5-(4-пиренилэтинил)-2'-дезоксиуридана, 5-(3-периленилэтинил)-2'-дезоксиурид]ша и 5-[4-(2-бензоксазолил)фенил]-этинил-2'-дезоксиуридина — первых флуоресцентно меченных нуклеозидов, в которых флуорофор тг-сопряжен с нуклеиновым основанием через этинильный спейсер. Проанализированы спектральные (абсорбционные и флуоресцентные) эффекты, связанные с взаимодействиями между полиароматическими группировками и гетероциклическими основаниями в составе модифицированных нуклеозидов.

3. На основе 5-(1-пиренилэтинил)-2'-дезоксиуридина и 5-[4-(2-бензоксазо-лил)фенилэтинил]-2'-дезоксиуридина синтезированы реагенты (амидофосфиты и модифицированные носители) для автоматического ДНК-синтеза. Показана эффективность полученных реагентов для направленного введения флуоресцентных меток в состав олигонуклеотидов.

— 119.

БЛАГОДАРНОСТИ.

Автор выражает благодарность ЮА. Берлину и ВА. Коршуну за руководство диссертационной работойсвоим коллегам из лаборатории механизмов экспрессии генов за постоянную поддержкусотрудникам ИБХ РАН И. А. Куделиной и И. И. Михалеву за регистрацию спектров флуоресценцииДА. Стеценко за помощь в регистрации УФ-спектровЮ.П. Козьмину и A.B. Сулиме за регистрацию масс-спектровТ.А. Балашовой, Э. В. Бочарову, А. П. Голованову, Д. В. Дементьевой, В. Ю. Орехову и B.C. Пашкову за регистрацию Ш-ЯМР-спектров. Автор признателен коллегам из других институтов: Э. И. Лажко (Институт по изысканию новых антибиотиков РАМН, Москва) за регистрацию 31Р-ЯМР спектров, А. Г. Витухновскому и О. П. Варнавскому (Физический институт им. Н. П. Лебедева РАН, Москва) за помощь в регистрации спектров флуоресценции и полезное обсуждение, Д. Т. Кожичу (Медико-биотехнологический институт при концерне «Белбиофарм», Минск) за предоставление для экспериментов 2-(4о иодфенил) бензоксазола, проф. L.B.-A. Johansson (факультет физической химии, университет Umea, Швеция) за предоставление спектральных данных по полученным нами периленовым производным нуклеозидов.

— 120.

1. Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjugate Chem., 1 (3), 165−187 (1990).

2. Kessler C. (Ed.) Nonradioactive labeling and detection of biomolecules. Berlin, Heidelberg: Springer, 1992.

3. Beaucage S.L., Iyer R.P. The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron, 49 (10), 1925;1963 (1993).

4. Коршун B.A., Берлин Ю. А.

Введение

нерадиоактивных репортерных групп в синтетические олигонуклеотиды и их детекция. Биоорган, химия, 20 (6), 565 616 (1994).

5. Nunnally В.К., Не Н., Li L.C., Tucker S.A., McGown L.B. Characterization of visible dyes for four-decay fluorescence detection in DNA sequencing. Anal. Chem., 69 (13), 2392−2397 (1997).

6. Prober J.M., Trainor G.L., Dam R.J., Hobbs F. W., Robertson C. W., Zagursky R.J., Cocuzza A. J., Jensen M.A., Baumeister К A system for rapid DNA sequencing with fluorescent chain-temiinating dideoxynucleotides. Science, 238 (4825), 336−341 (1987).

7. Tyagi S., Bratu D.P., Kramer F.R. Multicolor molecular beacons for allele discrimination. Nature Biotechnology, 16, 49−53 (1998).

8. Добрецов Т. Е. Флуоресцентные зонды в исследовании клеток, мембран и липопротеинов. М.:Наука, 1987.

9. Koenig P., Reines S.A., Cantor C.R. Pyrene derivatives as fluorescent probes of conformation near the 3' termini of polyribonucleotides. Biopolymers, 16 (10), 2231−2242 (1977).

10. Yamana K, Gokota Т., Ozaki H., Nakano H., Sangen O., Shimidzu T. Enhanced fluorescence in the binding of oligonucleotides with a pyrene group in the sugar fragment to complementary polynucleotides. Nucleosides & Nucleotides, 11 (2/4), 383−390 (1992).

11. Yamana K, Ohashi Y., Nunota K, Aoki M., Nakano H., Sangen O. Fluorescent-labeled oligonucleotides that exhibit a measurable signal in the presence of complementary DNA. Nucleic Acids Symp. Ser. No. 27, 135−136 (1992).

12. Mann J.S., Shibata Y., Meehan T. Synthesis and properties of an oligodeoxynucleotide modified with a pyrene derivative at the 5'-phosphate. Bioconjugate Chem., 3 (6), 554−558 (1992).

13. Bevilacqua P.C., Kierzek R., Johnson K.A., Turner D.H. Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods. Science, 258 (5086), 1355−1358 (1992).

14. Kierzek R., Li Y., Turner D.H., Bevilacqua P.C. 5'-Amino pyrene provides a sensitive, nonperturbing fluorescent probe of RNA secondary and tertiary structure formation. /. Am. Chem. Soc., 115 (12), 4985−4992 (1993).

15. Murakami A., Furutani S., Yamana K., Makino K. A fluorescent DNA probe containing 2'-(l-pyrenylmethyl)uridine. Nucleic Acids Symp. Ser. No. 31, 53−54 (1994).

16. Yamana K., Nunota K., Nakano H., Sangen O. A new method for introduction of a pyrene group into a terminal position of an oligonucleotide. Tetrahedron Lett., 35 (16), 2555−2558 (1994).

17. Tong G., Lawlor J.M., Tregear G.W., Haralambidis J. Oligonucleotide-polyamide hybrid molecules containing multiple pyrene residues exhibit significant excimer fluorescence. J. Am. Chem. Soc., 117 (49), 12 151−12 158 (1995).

18. Iwase R., Furutani S., Yamaoka T., Yamana K., Murakami A. Fluorescent-labeled oligonucleotides for studies on gene structure. Nucleic Acids Symp. Ser. No. 35, 117−118 (1996).

19. Yguerabide J., Talavera E., Alvarez J.M., Afkir M. Pyrene-labeled DNA probes for homogeneous detection of complementary DNA sequences: poly© model system. Anal. Biochem., 241 (2), 238−247 (1996).

20. Dapprich J., Walter N. G., Salingue F., Staerk H. Base-dependent pyrene fluorescence used for in-solution detection of nucleic acids. J. Fluoresc., 7 (suppl.) 87S-89S (1997).

21. Preufi R., Dapprich J., Walter N.G. Probing RNA-protein interactions using pyrene-labeled oligodeoxynucleotides: QJ3 replicase efficiently binds small RNAs by recognizing pyrimidine residues J. Mol. Biol., 273 (3), 600−613 (1997).

22. Ebata K., Masuko M., Ohtani H., Jibu M. Excimer formation by hybridization using two pyrene-labeled oligonucleotide probes. Nucl. Acids Symp. Ser. No. 34, 187−188 (1995).

23. Ebata K, Masuko M., Ohtani H., Kashiwasake-Jibu M. Nucleic acid hybridization accompanied with excimer formation from two pyrene-labeled probes. Photochem. Photobiol., 62 (5), 836−839 (1995).

24. Masuko M., Ebata K, Ohtani H., Optimization of pyrene excimer fluorescence emitted by excimer-forming two-probe nucleic acid hybridization method. Nucl. Acids Symp. Ser. No. 34, 187−188 (1995).

25. Rippe К., Fiitsch V., Westhof Е., Jovin Т.М. Alternating d (G-A) sequences form a parallel-stranded DNA homoduplex. EMBO /., 11 (10), 3777−3786 (1992).

26. Fritzsche H., Akhebat A., Taillandier E., Rippe K, Jovin T.M. Structure and drug interactions of parallel-stranded DNA studied by infrared spectroscopy and fluorescence. Nucl. Acids Res., 21 (22), 5085−5091 (1993).

27. Fortsch I., Fritzsche H., Birch-Hirschfeld E, Evertsz E., Klement R., Jovin T.M., Zimmer C. Parallel-stranded duplex DNA containing dA-dU base pairs. Biopolymers, 38 (2), 209−220 (1996).

28. Векшин H.JI. Перенос возбуждения в макромолекулах. Итоги науки и техники. Сер. Радиационная химия. Фотохимия, 7, 3−176 (1989).

29. Clegg R.M. Fluorescence resonance energy transfer and nucleic acids. Meth. Enzymol., 211, 353−388 (1992).

30. Selvin P.R. Fluorescence resonance energy transfer. Meth. Enzymol., 246, 300−334 (1995).

31. Wu P., Brand L. Resonance energy transfer: methods and applications. Anal. Biochem., 218 (1), 1−13 (1994).

32. Clegg R.M. Fluorescence resonance energy transfer (FRET). In: Fluorescence Imaging Spectroscopy and Microscopy, X.F. Wang, B. Herman, Eds., New York: Wiley, 1996, 179−252.

33. Glazer A.N., Mathies R.A. Energy-transfer fluorescent reagents for DNA analyses. Curr. Opin. Biotechnol., 8 (1), 94−102 (1997).

34. De SilvaA.P., Gunaratne H.Q.N., Gunnlaugsson Т., Huxley A. J.M., McCoy C.P., Rademacher J. Т., Rice Т.Е. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 97 (5), 1515−1566 (1997).

35. Lee L.G., Connell C.R., Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucl. Acids Res., 21 (16), 3761−3766 (1993).

36. Morrison L.E., Haider T.C., Stols L.M. Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Anal. Biochem., 183 (2), 231−244 (1989).

37. Morrison L.E., Stols L.M. Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. Biochemistry, 32 (12), 3095−3104 (1993).

38. Sixou S., Szoka F.C., Jr., Green G.A., Guisti B., Zon G., Chin D.J. Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucl. Acids Res., 22 (4), 662−668 (1994).

39. Cardullo R.A., Agrawal S., Flores C., Zamecnik P.C., Wolf D.E. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA, 85 (23), 8790−8794 (1988).

40. Cooper J.P., Hagerman P.J. Analysis of fluorescence energy transfer in duplex and branched DNA molecules. Biochemistry, 29 (39), 9261−9268 (1990).

41. Clegg R.M., Murchie A.I.H., Zechel A, Lilley D.M.J. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA, 90 (7) 2994−2998 (1993).

42. Tuschl T., Gohlke C., Jovin T.M., Westhof E., Eckstein F. A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science, 266 (5186), 785−789 (1994).

43. Gohlke C., Murchie A.I.H., Lilley D.M.J., Clegg R.M. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA, 91 (24), 11 660−11 664 (1994).

44. Jares-Erijman E.A., Jovin T.M. Determination of DNA helical handedness by fluorescence resonance energy transfer. J. Mol. Biol., 257 (3), 597−617 (1996).

45. Bannwarth W., Miiller F. Energy transfer from a lumazine (=pteridine-2,4(IH, 3H)~ dione) chromophore to batophenanthroline-ruthenium (II) complexes during hybridization processes of DNA. Helv. Chim. Acta, 74 (8), 2000;2008 (1991).

46. Ozaki H., McLaughlin L. W. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer. Nucl. Acids Res., 20 (19), 5205−5214 (1992).

47. Clegg R.M., Murchie A.I.H., Zechel A., Lilley D.M.J. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA, 90 (7), 2994−2998 (1993).

48. Bjornson K.P., Amaratunga M., Moore K.J.M., Lohman T.M. Single-turnover kinetics of helicase-catalyzed DNA unwinding monitored continuously by fluorescence energy transfer. Biochemistry, 33 (47), 14 306−14 316 (1994).

49. Yang M., Ghosh S.S., Millar D.P. Direct measurement of thermodynamic and kinetic parameters of DNA triple helix formation by fluorescence spectroscopy. Biochemistry, 33 (51), 15 329−15 337 (1994).

50. Selvin PR., Rana T.M., Hearst J.E. Luminescence resonance energy transfer. J. Am. Chem. Soc. 116 (13), 6029−6030 (1994).

51. Selvin P.R., Hearst J.E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc. Natl. Acad. Sci. USA, 91 (21), 10 024−10 028 (1994).

52. Parkhurst KM., Parkhurst L.J. Kinetic studies by fluorescence resonance energy transfer employing a double-labeled oligonucleotide: hybridization to the oligonucleotide complement and to single-stranded DNA. Biochemistry, 34 (1), 285−292 (1995).

53. Parkhurst KM., Parkhurst L.J. Donor-acceptor distance distributions in a doublelabeled fluorescent oligonucleotide both as a single strand and in duplexes. Biochemistry, 34 (1), 293−300 (1995).

54. Tyagi S., Kramer F.R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol., 14 (3), 303−308 (1996).

55. Tyagi S., Landegren U., Tazi M., Lizardi P.M., Kramer F.R. Extremely sensitive, background-free gene detection using binary probes and Q (3 replicase. Proc. Natl. Acad. Sci. USA, 93 (11), 5395−5400 (1996).

56. Ghosh S.S., Eis P. S., Blumeyer K, Fearon K, Millar D.P. Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer. Nucl. Acids Res., 22 (15), 3155−3159 (1994).

57. Lee S.P., Censullo M.L., Kim H.G., Knutson J.R., Han M.K. Characterization of endonucleolytic activity of HIV-1 integrase using a fluorogenic substrate. Anal. Biochem., 227 (2), 295−301 (1995).

58. Uchiyama H., Hirano K, Kashiwasake-Jibu M., Taira K. Detection of undegraded oligonucleotides in vivo by fluorescence resonance energy transfer. J. Biol. Chem., 271 (1), 380−384 (1996).

59. Ju J., Ruan C., Fuller C.W., Glazer A.N., Mathies R.A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Natl. Acad. Sci. USA, 92 (10), 4347−4351 (1995).

60. Ju J., Kheterpal I., Scherer J.R., Ruan C., Fuller C.W., Glazer A.N., Mathies R.A. Design and synthesis of fluorescence energy transfer dye-labeled primers and their application for DNA sequencing and analysis. Anal. Biochem231 (1), 131−1 401 995).

61. Hung S.-C., Ju J., Mathies R.A., Glazer A.N. Energy transfer primers with 5- or 6-carboxyrhodamine-6G as acceptor chromophores. Anal. Biochem., 238 (2), 165−1 701 996).

62. Hung S.-C., Ju J., Mathies R.A., Glazer A.N. Cyanine dyes with high absorption cross-section as donor chromophores in energy transfer primers. Anal. Biochem., 243 (1), 15−27 (1996).

63. Ju J., Glazer A.N., Mathies R.A. Energy transfer primers a new fluorescence labeling paradigm for DNA sequencing and analysis. Nature Med., 2 (2), 246−249 (1996).

64. Livak K, Flood S.J.A., Marmaro J., Giusti W., Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Applic., 4 (6), 357−362 (1995).

65. Ju J., Glazer A.N., Mathies R.A. Cassette labeling for facile construction of energy transfer fluorescent primers. Nucl. Acids Res., 24 (6), 1144−1148 (1996).

66. Zelphati O., Szoka F.C., Jr. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA, 93 (21), 11 493−11 498 (1996).

67. Saito I., Ito S., Shinmura T., Matsuura T. A simple synthesis of fluorescent uridines by photochemical method. Tetrahedron Lett. 21 (29), 2813−2816 (1980).

68. Otvos L., Szecsi J., Sagi J., Kovacs T. Substrate specificity of DNA polymerases. II. 5-(l-Alkynyl)-dUTPs as substrates of the Klenow DNA polymerase enzyme. Nucl. Acids Symp. Ser. No. 18, 125−129 (1987).

69. Confalone P.N. The use of heterocyclic chemistry in the synthesis of natural and unnatural products. /. Heterocycl. Chem., 27 (1), 31−46 (1990).

70. Rosenblum B.B., Lee L.G., Spurgeon S.L., Khan S.H., Menchen S.M., Heiner C.R., Chen S.M. New dye-labeled terminators for improved DNA sequencing patterns. Nucl. Acids Res., 25 (22), 4500−4504 (1997).

71. Biala E., Jones A.S., Walker R.T. Synthesis and properties of poly (5-ethynyluridylic acid). Tetrahedron, 36 (1), 155−158 (1980).

72. Froehler B.C., Wadwani S., Terhorst T.J., Gerrard S.R. Oligodeoxynucleotides containing C-5 propyne analogs of 2'-deoxyuridine and 2'-deoxycytidine. Tetrahedron Lett., 33 (37), 5307−5310 (1992).

73. Wagner R. W., Matteucci M.D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science, 260 (5113), 1510−1513 (1993).

74. Milligan J.F., Jones R.J., Froehler B.C., Matteucci M.D. Development of antisense therapeutics. Implications for cancer gene therapy. Ann. NY Acad. Sci., 716 (2), 228−241 (1994).

75. Fenster S.D., Wagner R.W., Froehler B.C., Chin D.J. Inhibition of human immunodeficiency virus type-1 env expression by C-5 propyne oligonucleotides specific for rev-response element stem-loop V. Biochemistry, 33 (28), 8391−8398 (1994).

76. Moulds C, Lewis J.G., Froehler B.C., Grant D., Huang T., Milligan J.F., Matteucci M.D., Wagner R. W. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry, 34 (15), 5044−5053 (1995).

77. Wagner R.W., Matteucci M.D., Grant D., Huang T., Froehler B.C. Potent and selective inhibition of gene expression by an antisense heptanucleotide. Nature Biotechnol., 14 (7), 840−844 (1996).

78. Flanagan W.M., Su L.L., Wagner R. W. Elucidation of gene function using C-5 propyne antisense oligonucleotides. Nature Biotechnol., 14 (9), 1139−1145 (1996).

79. Flanagan W.M., Kothavale A., Wagner R.W. Effects of oligonucleotide length, mismatches and mRNA levels on C-5 propyne-modified antisense potency. Nucl. Acids Res., 24 (15), 2936−2941 (1996).

80. Gutierrez A. J., Matteucci M.D., Grant D., Matsumura S., Wagner R. W., Froehler B.C. Antisense gene inhibition by C-5-substituted deoxyuridine-containing oligodeoxynucleotides. Biochemistry, 36 (4), 743−748 (1997).

81. Freier S.M., Altmann K.-H. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA: RNA duplexes. Nucl. Acids Res., 25 (22), 4429−4443 (1997).

82. Spaltenstein A., Robinson B.H., Hopkins P.B. A rigid and nonperturbing probe for duplex DNA motion! J. Am. Chem. Soc., 110 (4), 1299−1301 (1988).

83. Spaltenstein A., Robinson B.H., Hopkins P.B. DNA structural data from a dynamics probe. The dynamic signatures of single-stranded, hairpin-looped, and duplex forms of DNA are distinguishable. J. Am. Chem. Soc., Ill (6), 2303−2305 (1989).

84. Spaltenstein A., Robinson B.H., Hopkins P.B. Sequenceand structure-dependent DNA base dynamics: synthesis, structure, and dynamics of site and sequence specifically spin-labeled DNA. Biochemistry, 28 (24), 9484−9495 (1989).

85. Kirchner J.J., Hustedt E.J., Robinson B.H., Hopkins P.B. DNA dynamics from a spin probe: dependence of probe motion on tether length. Tetrahedron Lett., 31 (5), 593−596 (1990).

86. Hustedt E.J., Kirchner J.J., Spaltenstein A., Hopkins P.B., Robinson B.H. Monitoring DNA dynamics using spin-labels with different independent mobilities. Biochemistry, 34 (13), 4369−4375 (1995).

87. Fischhaber P.L., Reese A.W., Nguen T., Ktchner J.J., Hustedt EJ., Robinson B.H., Hopkins P.B. Synthesis of duplex DNA containing a spin labeled analog of 2'-deoxycytidine. Nucleosides & Nucleotides, 16 (4), 365−377 (1997).

88. Maulding D.R., Roberts B.G. Electronic and fluorescence of phenylethynyl-substituted acenes. J. Org. Chem., 34 (6), 1734−1736 (1969).

89. Hanhela P.J., Paul D.B. Synthesis and evaluation of fluorescent materials for colour control of peroxylate chemiluminescence. I. The phenylethynylation of antraquinone. Aust. J. Chem., 34 (8) 1669−1685 (1981).

90. Hanhela P.J., Paul D.B. Synthesis and evaluation of fluorescent materials for colour control of peroxylate chemiluminescence. II. Violet and blue emitters. Aust. J. Chem., 34 (8) 1687−1700 (1981).

91. Hanhela P.J., Paul D.B. Synthesis and evaluation of fluorescent materials for colour control of peroxylate chemiluminescence. III. Yellow and red fluorescent emitters. Aust. J. Chem., 34 (8) 1701−1717 (1981).

92. Hanhela P./., Paul D.B. Evaluation of fluorescent materials for colour control of peroxylate chemiluminescence. IV. Fluorescence quantum yields of some phenyl and phenylethynyl aromatic compounds. Aust. J. Chem., 37 (3), 553−559, (1984).

93. Sanechika K., Yamamoto T., Yamamoto A. Palladium catalyzed C-C coupling for synthesis of 7i-conjugated polymers composed of arylene and ethynylene units. Bull. Chem. Soc. Jpn., 57 (3), 752−755 (1984).

94. Takalo H., Mukkala V.-M., Mikola H., Liitti P., Hemmila I. Synthesis of europium (III) chelates suitable foJlabeling of bioactive molecules. Bioconjugate Chem., 5 (3) 278−282 (1994).

95. Perman J., Sharma R.A., Bobek M. Synthesis of l-(2-deoxy-J3-D-erythro-pentofuranosyl)-5-ethynyl-1,2,3,4-tetrahydropyrimidine-2,4-dione (5-ethynyl-2'-deoxyuridine). Tetrahedron Lett., 1976 (28), 2427−2430.

96. Jones A.S., Walker R.T. The preparation and properties of some 5-substituted uracil derivatives. Nucl. Acids Spec. Publ. No. 1, sl-s4 (1975).

97. Jones A.S., Serafinowski P., Walker R.T. Synthesis of 5-ethynylcytosine and 5-ethynylcytidine. Tetrahedron Lett., 1977 (28), 2459−2460.

98. Bobek M., Bloch A. The chemistry and biology of some new nucleoside analogs active against tumor cells. In: Chemistry and Biology of Nucleosides and Nucleotides. R.E. Harmon, R.K. Robins, L.B. Townsend, Eds., New York: Academic Press, 1978, 135−148.

99. Sharma R.A., Kavai I., Hughes R.G., Jr., Bobek M. Acetylenic nucleosides. 3. Synthesis and biological activities of some 5-ethynylpyrimidine nucleosides. /. Med. Chem., 27 (4), 410−412 (1984).

100. Barr P.J., Jones A.S., Serafinowski P., Walker R.T. The synthesis of nucleosides derived from 5-ethynyluracil and 5-ethynylcytosine. J. Chem. Soc., Perkin Trans. 1, 1978 (10), 1263−1267.

101. Eger K., Jalalian M., Schmidt M. Synthesis of a potential antiviral compound: 5-bromoethynyl-2'-deoxyuridine. Tetrahedron, 50 (28), 8371−8380 (1994).

102. Walker R. T, Jones A. S., Rahim S.G., Serafinowski P., De Clercq E. The synthesis and properties of some 5-substituted uracil derivatives. Nucl. Acids Symp. Ser. No. 9, 21−24 (1981).

103. Sharma R.A., Goodman M.M., Bobek M. Acetylenic nucleosides. II. Synthesis of 5-ethynylcytidine and 1 (P — D — arabinofuranosy I) — 5 — ethyny lcytosine. J. Carbohydr. Nucleosides & Nucleotides, 7 (1), 21−34 (1980).

104. Efange S.M.N., Cheng Y.-C., Bardos T.J. Synthesis and biological activities of 2-pyrimidinone nucleosides. III. 5-alkynyl-2-pyrimidinone 2'-deoxyribosides. Nucleosides & Nucleotides, 4 (5), 545−564 (1985).

105. Bardos T.J., Cheng Y.-C., Schroeder A.C., Efange S.M.N. 5-Ioso-2-pyrimidinone nucleoside. Pat. US 4 895 937 (1990).

106. Bardos T.J., Cheng Y.-C., Schroeder A.C., Efange S.M.N Novel 5-substituted 2-pyrimidinone nucleosides and methods of use. Pat. US 4 782 142 (1988).

107. Castro C.E., Stephens R.D. Substitutions by ligands of low valent transition metals. A preparation of tolanes and heterocyclics from aryl iodides and cuprous acetylides. J. Org. Chem., 28 (8), 2163 (1963).

108. Stephens R.D., Castro C.E. The substitution of aryl iodides with cuprous acetylides. A synthesis of tolanes and heterocyclics. J. Org. Chem., 28 (12), 3313−3315 (1963).

109. HeckR.F. Palladium-catalyzed reactions of organic halides with olefins. Acc. Chem. Res., 12 (4), 146−151 (1979).

110. Heck R.F. Palladium-catalyzed vinylation of organic halides. Org. React., 21, 345 390 (1982).

111. Heck R.F. Palladium Reagents in Organic Syntheses. London: Academic Press, 1985.

112. Cabri W., Candiani I. Recent developments and new perspectives in the Heck reaction. Acc. Chem. Res., 28 (1), 2−7 (1995).

113. De Meijere A., Meyer F.E. Kleider machen Leute: Heck-Reaktion in neuen Gewand. Angew. Chem., 106 (23/24), 2473−2506 (1994).

114. Dieck H.A., Heck F.R. Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives. /. Organometal. Chem., 93 (2), 259−263 (1975).

115. Cassar L. Synthesis of aryland vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes. J. Organometal. Chem., 93 (2), 253−257 (1975).

116. Sonogashira K, Tohda Y., Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes, and bromopyridines. Tetrahedron Lett., 1975 (50), 4467−4470.

117. Edo K, Sakamoto T., Yamanaka H. Studies on pyrimidine derivatives. IX. Coupling reaction of monosubstituted acetylenes with iodopyrimidines. Chem. Pharm. Bull., 26 (12), 3843−3850 (1978).

118. Edo K, Yamanaka H., Sakamoto T. Coupling reaction of monosubstituted acetylenes with iodopyrimidines. Heterocycles, 9 (3), 271−274 (1978).

119. Tanji K, Sakamoto T., Yamanaka H. Studies on pyrimidine derivatives. XXVII. Synthesis of 2- and 4-pyrimidinyl ketones by means of the hydration of alkynylpyrimidines. Chem. Pharm. Bull., 30 (5), 1865−1867 (1982).

120. Akita Y, Ohta A. Facile syntheses of (Z) — and (E)-2,5-dimethyl-3-styrylpyrazines, isolated from the argentine ants. Heterocycles, 19 (2), 329−331 (1982).

121. Nair V., Sells T.B. Copper mediated reactions in nucleoside synthesis. Tetrahedron Lett, 31 (6), 807−810 (1990).

122. Tanaka H., Haraguchi K., Koizumi Y, Fukui M., Miyasaka T. Synthesis of 6-alkynylated uridines. Can. J. Chem., 64 (8), 1560−1563 (1986).

123. Schroeder A.C., Bloch A., Perman J.L., Bobek M. Synthesis and biological evaluation of 6-ethynyluracil, a thiol-specific alkylating pyrimidine. J. Med. Chem., 25 (10), 1255−1258 (1982).

124. Thornburg L.D., Stubbe J. Mechanism-based inactivation of thymine hydroxylase, an a-ketoglutarate-dependent dioxygenase, by 5-ethynyluracil. Biochemistry, 32 (50), 14 034−14 042 (1993).

125. Meunier P., Ouattara I., Gautheron B., Tirouflet J., Camboli D., Besancon J. Synthese, caracterisation et proprietes cytotoxiques des premiers «metallocenonucleosides». Eur. J. Med. Chem., 26 (3), 351−362 (1991).

126. Koyama S., Kumazawa Z., Kashimura N. Synthesis of 6- and 8-alkynylated purines and their ribonucleosides by the coupling of halopurines with alkynes. Nucl. Acids Symp. Ser. No. 11, 41−44 (1982).

127. Kundu N.G., Chaudhuri L.N. Synthesis of dimethoxypyrimidines and uracils with novel C-5 substituents. J. Chem. Soc., Perkin Trans. 1, 1991 (7), 1677−1682.

128. Kundu N.G., Dasgupta S. K Synthesis of 5-(acylethynyl)uracils and then-corresponding 2'-deoxyribonucleosides through palladium-catalysed reactions. J. Chem. Soc., Perkin Trans. 1, 1993 (21), 2657−2663.

129. Langli G., Gundersen L.-L., Rise F. Regiochemistry in Stille couplings of 2,6-dihalopurines. Tetrahedron, 52 (15), 5625−5638 (1996).

130. Bergstrom D., Lin X., Wang G., Rotstein D., Beal P., Norrix K, Ruth J. C-5-substituted nucleoside analogs. Synlett, 1992 (3), 179−188.

131. Bergstrom D.E., Ogawa M. K C-5-substituted pyrimidine nucleosides. 2. Synthesis via olefin coupling to organopalladium intermediates derived from uridine and 2'-deoxyuridine. J. Am. Chem. Soc., 100 (26), 8106−8112 (1978).

132. Hobbs F.W., Jr. Palladium-catalyzed synthesis of alkynylamino nucleosides. A universal linker for nucleic acids. /. Org. Chem., 54 (14), 3420−3422 (1989).

133. Robins M.J., Barr P.J. Nucleic acid related compounds. 31. Smooth and efficient palladium-copper catalyzed coupling of terminal alkynes with 5-iodouracil nucleosides. Tetrahedron Lett., 22 (22), 421−424 (1981).

134. Robins M.J., Barr P.J. Nucleic acid related compounds. 39. Efficient conversion of 5-iodo to 5-alkynyl and derived 5-substituted uracil bases and nucleosides. J. Org. Chem., 48 (11), 1854−1862 (1983).

135. De Clercq E., Descamps J., Balzarini J., Giziewicz J., Barr P.J., Robins M.J. Nucleic acid related compounds. 40. Synthesis and biological activities of 5-alkynyluracil nucleosides. J. Med. Chem., 26 (5), 661−666 (1983).

136. Haralambidis J., Chai M., Tregear G.W. Preparation of base-modified nucleosides suitable for non-radioactive label attachment and their incorporation into synthetic oligodeoxyribonucleotides. Nucl. Acids Res., 15 (12), 4857−4876 (1987).

137. Vincent P., Beaucourt J.-P., Pichat L., Balzarini J., De Clercq E. Syntheses, activites biologiques et etude conformationnelle D’alcynyl-5 desoxy-2' uridines. Nucleosides & Nucleotides, 4 (5), 429−445 (1985).

138. Goodchild J., Porter R.A., Raper R.H., Sim I.S., Upton R.M., Viney J., Wadsworth H.J. Structural requirements of olefinic 5-substituted deoxyuridines for antiherpes activity. /. Med Chem., 26 (9), 1252−1257 (1983).

139. Tolstikov V.V., Stetsenko D.A., Potapov V.K., Sverdlov E.D. Synthesis and DNA duplex stabilities of oligonucleotides containing C-5-(3-methoxypropynyl)-2'-deoxyuridine residues. Nucleosides & Nucleotides, 16 (3), 215−225 (1997).

140. Perlman M.E., Watanabe K.A., Schinazi R.F., Fox J.J. Nucleosides. 133. Synthesis of 5-alkenyl-1 -(2-deoxy-2-fluoro-p-D-arabmofuranosyl)cytosines and related pyrimidine nucleosides as potential antiviral agents. J. Med. Chem., 28 (6), 741−748 (1985).

141. Matsuda A., Shinozaki M., Miyasaka T., Machida H., Abiru T. Palladium-catalyzed cross-coupling of 2-iodoadenosine with terminal alkynes: synthesis and biological activities of 2-alkynyladenosines. Chem. Pharm. Bull., 33 (4), 1766−1769 (1985).

142. Matsuda A., Ueda T. The synthesis, mutagenic and pharmacological activities of 2-carbon-substituted adenosines. Nucleosides & Nucleotides, 6 (½), 85−94 (1987).

143. Matsuda A., Shinozaki M., Miyasaka T., Abiru T., Ueda T. Synthesis and pharmalogical activities of 2-alkynyland 2-alkenyladenine nucleosides. Nucl. Acids Symp. Ser. No. 16, 97−100 (1985).

144. Adah S.A., Nair V. Triflic enolates in the palladium-mediated synthesis of complex ethynyl adenosines. Tetrahedron Lett., 36 (36), 6371−6372 (1995).

145. Abiru T., Miyashita T., Watanabe Y., Yamaguchi T., Machida H, Matsuda A. Nucleosides and nucleotides. 107. 2-(Cycloalkylalkynyl)adenosines: adenosine A2receptor agonists with potent antihypertensive effects. /. Med. Chem., 35 (12), 2253−2260 (1992).

146. Cristalli G., Eleuteri A., Vittori S., Volpini R., Lohse M.J., Klotz K.-N. 2-Alkynyl derivatives of adenosine and adenosine-5'-N-ethyluronamide as selective agonists at A2 adenosine receptors. /. Med. Chem., 35 (13), 2363−2368 (1992).

147. Shealy Y.F., O’Dell C.A., Arnett G., Shannon W.M. Synthesis and antiviral activity of the carbocyclic analogues of 5-ethyl-2'-deoxyuridine and of 5-ethynyl-2'-deoxyuridine. J. Med. Chem., 29 (1), 79−84 (1986).

148. Inoue H., Imura A., Ohtsuka E. Synthesis of dodecadeoxyribonucleotides containing a pyrrolo2,3-d.pyrimidine nucleoside and their base-pairing ability. Nippon Kagaku Kaishi, 1987 (7), 1214−1220.

149. Matsuda A., Minakawa N., Sasaki T., Ueda T. The design, synthesis and antileukemic activity of 5-alkynyl-l-p-D-ribofuranosylimidazole-4-carboxamides. Chem. Pharm. Bull., 36 (7), 2730−2733 (1988).

150. Minakawa N., Takeda T., Sasaki T., Matsuda A., Ueda T. Nucleosides and nucleotides. 96. Synthesis and antitumor activity of 5-ethynyl-l-p-D-ribofuranosylimidazole-4-carboxamide (EICAR) and its derivatives. J. Med. Chem., 34 (2), 778−786 (1991).

151. Cruickshank K.A., Stockwell D.L. Oligonucleotide labelling: a concise synthesis of a modified thymidine phosphoramidite. Tetrahedron Lett., 29 (41), 5221−5224 (1988).

152. Saintome C., Clivio P., Fourrey J.-L., Woisard A., Favre A. Development of new nucleic acid photoaffinity probes: synthesis of 4-thiothymine labelled nucleoside analogues. Tetrahedron Lett, 35 (6), 873−876 (1994).

153. Gibson K.J., Benkovic S.J. Synthesis and application of derivatizable oligonucleotides. Nucl. Acids Res., 15 (16), 6455−6467 (1987).

154. HobbsF.W., Jr., Trainor G.L. Alkynylamino-nucleotides. Pat. US 5 151 507 (1992).

155. Casalnuovo A.L., Calabrese J.C. Palladium-catalyzed alkylations in aqueous media. J. Am. Chem. Soc., 112 (11), 4324−4330 (1990).

156. Kwiatkowski M., Samiotaki M., Lamminntiki U., Mukkala V.-M., Landegren U. Solid-phase synthesis of chelate-labelled oligonucleotides: application in triple-color ligase-mediated gene analysis. Nucl. Acids Res., 22 (13), 2604−2611 (1994).

157. HobbsF.W., Jr., Cocuzza A.J. Alkynylamino-nucleotides. Pat. US 5 047 519 (1991).

158. Hashimoto H., Nelson M.G., Switzer C. Zwitterionic DNA. J. Am. Chem. Soc., 115 (16), 7128−7134 (1993).

159. Prober J.M., Dam R.J., Robertson C.W., Jr., HobbsF.W., Jr., Trainor G.L. Method, systems and reagents for DNA sequencing. Pat. US 5 306 618 (1994).

160. Prober J.M., Dam R.J., Robertson C.W., Jr., Hobbs F.W., Jr., Trainor G.L. Method, systems and reagents for DNA sequencing. Pat US 5 332 666 (1994).

161. Robins M.J., Vinayak R.S., Wood S.G. Solvent, not palladium oxidation state, is the primary determinant for successful coupling of terminal alkynes with iodo-nucleosides. Tetrahedron Lett., 31 (26), 3731−3734 (1990).

162. Crisp G.T., Flyrm B.L. Palladium-catalyzed coupling of terminal alkynes with 5-(trifluoromethanesulfonyloxy)pyrimidine nucleosides. J. Org. Chem., 58 (24), 66 146 619 (1993).

163. Lin K.-Y., Pudlo J.S., Jones R.J., Bischofberger N., Matteucci M.D., Froehler B.C. Oligodeoxynucleotides containing 5-(l-propynyl)-2'-deoxyuridine foraiacetal and thioformacetal dimer synthons. Bioorg. Med. Chem. Lett., 4 (8), 1061−1064 (1994).

164. Kasnar B. Synthesis of «reversed» and «double headed» nucleosides. Nucleosides & Nucleotides, 14 (3/5), 341−344 (1995).

165. Tong G., Lawlor J.M., Tregear G.W., Haralambidis J. The synthesis of oligonucleotide-polyamide conjugate molecules suitable as PCR primers. J. Org. Chem., 58 (8), 2223−2231 (1993).

166. Chaudhuri N.C., Kool E.T. Very high affinity DNA recognition by bicyclic and cross-linked oligonucleotides. J. Am. Chem. Soc., 117 (42), 10 434−10 442 (1995).

167. Goodwin J. T., GHck G.D. Incorporation of alkylthiol chains at C-5 of deoxyuridine. Tetrahedron Lett., 34 (35), 5549−5552 (1993).

168. Osborne S.E., Cain R.J., Glick G.D. Structure and dynamics of disulfide cross-linked DNA triple helices. J. Am. Chem. Soc., 119 (6), 1171−1182 (1997).

169. Davison A., Duckworth G., Vaman Rao M., McClean J., Grzybowski J., Potier P., Brown T., Cubie H. Synthesis and antibody mediated detection of 2,4-dinitrophenyl (DNP) labelled oligonucleotides. Nucleosides & Nucleotides, 14 (3/5), 1049−1052 (1995).

170. Davison A.R., Duckworth G.S., Rao V., Brown T., McClean J.P. Labelling and detection of nucleic acids. EP 754 700 (1997).

171. Rahim S.G., Krenitsky T.A. 2', 3'-Dideoxy-3'-fluoro-5-ethynyluridine. Pat. US 5 157 114 (1992).

172. Manfredim S., Baraldi P.G., Bazzanini R., Marangoni M., Simoni D., Balzarini J., De Clercq E. Synthesis and cytotoxic activity of 6-vinyland 6-ethynyluridine and 8-vinyland 8-ethynyladenosine. /. Med. Chem., 38 (1), 199−203 (1995).

173. Switzer С., Prakash T.P., Ahn Y. Synthesis and characterization of an oligonucleotide containing the bifurcated nucleobase a-adenylpropyl uracil. Bioorg. Med. Chem. Lett., 6 (6), 815−818 (1996).

174. Devadas В., Rogers Т.Е., Gray S.H. Syntheses of novel 3-substituted-2'-deoxy-3-deazauridine nucleosides. Synth. Commun., 25 (20), 3199−3210 (1995).

175. Sagi G., Otvos L., Ikeda S., Andrei G., Snoeck R., De Clercq E. Synthesis and antiviral activities of 8-alkynyl-, 8-alkenyl-, and 8-alkyl-2'-deoxyadenosine analogues. J. Med. Chem., 37 (9), 1307−1311 (1994).

176. Nat V., Purdy D.F. Synthetic approaches to new doubly modified nucleosides: congeners of cordycepin and related 2'-deoxyadenosine. Tetrahedron, 47 (3), 365 382 (1991).

177. Edstrom E.D., Wei Y. A new synthetic route to (3−2'-deoxyribosyl-5-substituted pyrrolo2,3-d.pyrimidines. Synthesis of 2'-deoxycadeguomycin. J. Org. Chem., 60 (16), 5069−5076 (1995).

178. Ramzaeva N., Seela F. 7-Substituted 7-deaza-2'-deoxyguanosines: regioselective halogenation of pyrrolo2,3-d.pyrimidine nucleosides. Helv. Chim. Acta, 78 (5), 1083−1090 (1995).

179. Balow G., Brugger J., Lesnik E., Acevedo O.L. Positioning of functionalities in a heteroduplex major groove: synthesis of 7-deaza-2-amino-2'-deoxyadenosines. Nucleosides & Nucleotides, 16 (7/9), 941−944 (1997).

180. Acevedo O.L., Andrews R.S., Dunkel M., Dan Cook P. Synthesis of C-4 substituted pyrimidine nucleoside analogs. Preparation of several 4-(2-oxoalkylidene)-2(l.fl)-pyrimidinone ribonucleosides. J. Heterocycl. Chem., 31 (4), 989−995 (1994).

181. Palmisano G., Santagostino M. Base-modified pyrimidine nucleosides. Efficient entry to 6-derivatized uridines by Sn-Pd transmetallation-coupling process. Tetrahedron, 49 (12), 2533−2542 (1993).

182. Bergstrom D.E. Organometallic intermediates in the synthesis of nucleoside analogs. Nucleosides & Nucleotides, 1 (1), 1−34 (1982).

183. Bergstrom D.E., Ruth J.L. Synthesis of C-5-substituted pyrimidine nucleosides via organopalladium intermediates. J. Am. Chem. Soc., 98 (6), 1587−1589 (1976).

184. Castro C.E., Gaughan EJ., Owsley D.C. Indoles, benzofurans, phthalides, and tolanes via copper (I) acetylides. J. Org. Chem., 31 (12), 4071−4078 (1966).

185. Castro C.E., Havlin R., Honwad V.K., Malte A., Moje S. Copper (I) substitutions. Scope and mechanism of cuprous acetylide substitutions. J. Am. Chem. Soc., 91 (23), 6464−6470 (1969).

186. Толстяков ГЛ., Мустафин А. Г., Гатауллин P.P., Спирихин JI.B., Абдрахманов И. Б. Новый тип взаимодействия 5-иодпиримидинонуклеозидов с алкинами. Изв. АН, Сер. хим., 1992 (6), 1449−1450.

187. Толстиков Г. А., Мустафин А. Г., Гатауллин P.P., Спирихин Л. В., Султанова B.C., Абдрахманов И. Б. Новый тип взаимодействия 5-иодпиримидиновых нуклеозидов с алкинами. Изв. АН, Сер. хим., 1993 (3), 596−598.

188. Ikehara М., Tada Н. 2'-Deoxyadenosine and З'-deoxyadenosine (cordycepin). In: Synthetic Procedures in Nucleic Acid Chemistry. Zorbach W.W., Tipson R.S., Eds., Interscience Publishers: New York, 1968, 188−192.

189. Long R.A., Robins R.K., Townsend L.B. 8-Bromoguanosine. In: Synthetic Procedures in Nucleic Acid Chemistry. Zorbach W.W., Tipson R.S., Eds., Interscience Publishers: New York, 1968, 228−229.

190. Robins M.J., Barr P.J., Giziewicz J. Nucleic acid related compounds. 38. Smooth and high-yield iodination and chlorination at C-5 of uracil bases and p-toluyl-protected nucleosides. Can. J. Chem., 60 (5), 554−557 (1982).

191. Cristalli G., Camaioni E., Vittori S., Volpini R. Platelet aggregation inhibitory activity of selective Aq adenosine receptor agonists. Nucleosides & Nucleotides, 14 (3/5), 449−453 (1995).

192. Asakura J., Robins M.J. Cerium (IV)-mediated halogenation at C-5 of uracil derivatives. J. Org. Chem., 55 (16), 4928−4933 (1990).

193. Tanaka H., Hayakawa H., Haraguchi K, Miyasaka T. Introduction of an azido group to the 6-position of uridine by the use of a 6-iodouridine derivative. Nucleosides & Nucleotides, 4 (5), 607−612 (1985).

194. Nat V., Richardson S.G. Modification of nucleic acid bases via radical intermediates: synthesis of dihalogenated purine nucleosides. Synthesis, 1982 (8), 670−672.

195. Cocuzza A. J. Total synthesis of 7-iodo-2', 3'-dideoxy-7-deazapurine nucleosides, key intermediates in the preparation of reagents for the automated sequencing of DNA. Tetrahedron Lett, 29 (33), 4061−4064 (1988).

196. Barr P.J., Hamor ТА., Walker R.T. Antiviral nucleic acid derivatives. III. Crystal structure of 5-ethynyl-2'-deoxyuridine. Acta Cryst., Ser. B, B34 (9), 2799−2802 (1978).

197. Cygler M., Anderson W.F., Giziewicz J., Robins M.J. The crystal and molecular structure of 5-(propyn-l-yl)-l-(p-D-arabinofuranosyl)uratil. A very short C=C triple bond. Can. J. Chem., 62 (1), 147−152 (1984).

198. Зенгер В. Принципы структурной организации нуклеиновых кислот. М.: Мир, 1987.

199. Molina J.M., Espinosa MR. Theoretical studies of 5-X-2'-deoxyuracils with known antiviral activity. Part 2. A comparison of molecular mechanics, AMI, and PM3 metodologies. J. Mol. Struct. (Theochem), 333 (½), 111−119 (1995).

200. Olah G.A., Ed. Friedel-Crafts and Related Reactions. NY: Interscience, 1963; Vol. 3, Pt. 1, 271−272.

201. Bachmann W.E., Carmack M. Methyl derivatives of 3,4-benzpyrene. The Willgerodt reaction on some 3-acylpyrenes. J. Am. Chem. Soc., 63 (9), 2494−2499 (1941).

202. Bodendorf K, Kloss P. Acetylen-Derivate durch Fragmentierung. Angew. Chem., 75 (2), 139 (1963).

203. Bodendorf K, Mayer R. Uber die Darstellung und Fragmentierung von (3-Chlor-acroleinen. Chem. Ber., 98 (11), 3554−3560 (1965).

204. Lotzbeyer J., Bodendorf K. Darstellung von Aryl-buten-inen und Phenyl-hexadien-in. Chem. Ber., 100 (8), 2620−2624 (1967).

205. Gordon A. J., Ford R.A. The Chemist’s Companion. A Handbook of Practical Data, Techniques, and References. New York: Wiley-Interscience, 1972, p. 269.

206. Rosenblum M., Brawn N., Papenmeier J., Applebaum M. Synthesis of ferrocenylacetylenes. J. Organometal. Chem., 6 (2), 173−180 (1966).

207. Суворов H.H., Каменский А. Б., Смушкевич Ю. И., Лившиц А. И. Синтез и превращения индол-3-ацетилена. Ж. орган, химии, 13 (1), 197−199 (1977).

208. Royles B.J.L., Smith D.M. The 'inverse electron-demand' Diels-Alder reaction in polymer synthesis. Part 1. A convenient synthetic route to diethynyl aromatic compounds. /. Chem. Soc., Perkin Trans. 1, 1994 (4), 355−358.

209. Koch S.S.C., Dardashti L.J., Hebert J. J, White S.K., Croston G. E, Flatten K.S., Heyman R.A., Nadzan A.M. Identification of the first retinoid X receptor homodimer antagonist. J. Med. Chem., 39 (17), 3229−3234 (1996).

210. Okamoto Y, Chellappa K.L., Kundu S.K. Magnetic shielding of acetylenic protons in ethynylarenes. J. Org. Chem., 37 (20), 3185−3187 (1972).

211. Gan L.-S.L., Acebo A.L., Alworth W.L. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzojajpyrene hydroxylase activity in liver microsomes. Biochemistry- 23 (17), 3827−3836 (1984).

212. Nakasuji K, Akiyama S., Nakagawa M. Linear Conjugated systems bearing aromatic terminal groups. VII. Syntheses and electronic spectra of 1,1'- and 2,2'-dipyrenylpoly-ynes. Bull. Chem. Soc. Japan, 45 (3), 875−882 (1972).

213. Woo J., Meyer R.B., Jr., Gamper H.B. G/C-modified oligodeoxynucleotides with selective complementarity. Nucl. Acids Res., 24 (13), 2470−2475 (1996).

214. Коршун B.A., Манасова E.B., Берлин Ю. А. Алкинилнрованные нуклеозиды и их аналоги. I. Методы синтеза. Биоорган, химия, 23 (5), 324−386 (1997).

215. Asakura J. Metal carbonate-mediated complete deacylation of polyacyl protected nucleosides. Nucleosides & Nucleotides, 12 (7), 701−711 (1993).

216. Rodenburg L., de Block R., Bieze T. W.N., Corneh’sse J., Lugtenburg J. Reactivity of pyrene dianion and some of its 2-substituted derivatives. Reel. Trav. Chim. Pays-Bas, 107 (1), 9−14 (1988).

217. Musa A., Sridharan В., Lee H., Mattern D.L. 7-Amino-2-pyrenecarboxylic acid. J. Org. Chem., 61 (16), 5481−5484 (1996).

218. Han W., Tran J., Zhang H., Jeffrey S., Swartling D., Ford G., Biehl R 4-Bromopyrenes with arylacetonitriles and 3-cyanophthalides under aryne-forming conditions. Synthesis, 1995 (7), 827−830.

219. Goldschmiedt G. Uber die Structur des Pyrens. Justus Liebigs Ann. Chem., 351, 218−232 (1907).

220. Langstem E. Beitrage zur Kenntnis der Struktur des Pyrens. Monatsh. Chem., 31 (8), 861−870 (1910).

221. Cook J.W., Hewett C.L., Hieger I. The isolation of a cancer-producing hydrocarbon from coal tar. Parts I, II, and III. J. Chem. Soc., 1933 (pt. 1), 395−405.

222. Coulson ЕЛ. Studies in tar hydrocarbons. Part I. Reduction products of pyrene. J. Chem. Soc., 1937 (II), 1298−1305.

223. Vollmann H., Becker H., Corell M., Streeck H. Beitrage zur Kenntnis des Pyrens und seiner Derivate. Justus Liebigs Ann. Chem., 531 (½), 1−159 (1937).

224. Герасименко Ю. Е., Шевчук И. Н. Химия пирена. VIII. 4-Ацетилпирены и ЗН-бензс^пирен-3-он. Ж. орган, химии, 4 (12), 2198−2203 (1968).

225. Konieczny М., Harvey R.G. Synthesis of cyclopentac?^pyrene. J. Org. Chem., 44 (13), 2158−2160 (1979).

226. Sangaiah R., Gold A. Synthesis of cyclopentafccflpyrene and its benzannelated derivative naphthol, 2,3-mno.acephenantrylene. J. Org. Chem., 53 (11), 2620−2622 (1988).

227. Foroozesh M., Primrose G., Guo Z., Bell L.C., Alworth W.L., Guengerich F.P. Aryl acetylenes as mechanism-based inhibitors of cytochrome P450-dependent monooxygenase enzymes. Chem. Res. Toxicol., 10 (1), 91−102 (1997).

228. Friedel R.A., Orchin M. Ultraviolet spectra of aromatic compounds. John Wiley & Sons Inc., New York, 1951, spectrum no. 563.

229. Johansson L.B.-A., Molotkovsky J.G., Bergelson L.D. Fluorescence and absorption properties of perylenyl and perylenoyl probe molecules in solvents and liquid crystals. J Am. Chem. Soc., 109 (24), 7374−7381 (1987).

230. Balakin K.V., Korshun V.A., Mikhalev I.I., Maleev G.V., Malakhov A.D., Prokhorenko I.A., Berlin Y.A. Conjugates of oligonucleotides with polyaromatic fluorophores as promising DNA probes. Biosensors & Bioelectronics, 13 (7/8), 771 778 (1998).

231. Balakin K.V., Korshun V.A., Esipov D.S., Mikhalev 1.1., Berlin Y.A. Perylene-labeled oligonucleotide as a probe in homogeneous hybridization assay. Submitted to Nucleosides & Nucleotides.

232. Shimadzu A., Ohtani H., Ohuchi S., Sode K, Masuko M. Perylene excimer formation by excimer-forming two-probe nucleic acid hybridization method. Nucl. Acids Symp. Ser. No. 39, 45−46 (1998).

233. Zieger Н.Е. Alkylperylenes. The isomeric ethylperylenes. J. Org. Chem., 31 (9), 2977−2981 (1966).276.i Гречишникова И. В., Михалев И. И, Молотковский Юл.Г. Флуоресцентные липидные зонды с периленовой меткой. Биоорган, химия, 21 (1), 70−76 (1995).

234. Hall М., Parker D. К, GroverP.L., LuJ.-Y.L., Hopkins N.E., Alworth W.L. Effects of 1-ethynylpyrene and related inhibitors of P450 is zymes upon benzoa. pyrene metabolism by liver microsomes. Chem.-Biol. Interactions, 76 (2), 181−192 (1990).

235. Devadoss C., Bharathi P., Moore J.S. Energy transfer in dendritic macromolecules: molecular size effects and the role of an energy transfer. J. Am. Chem. Soc., 118 (40), 9635−9644 (1996).

236. Пушкина JI.H., Ткачев В. В. О люминесцентных и сцинтилляционных свойствах некоторых 2-замещенных бензоксазолов. Ж прикл. спектроскопии, 1 (3), 275−279 (1964).

237. Reiser A., Leyshon L.J., Saunders D., Mijovic M.V., Bright A., Bogie J. Fluorescence of aromatic benzoxazole derivatives. J. Am. Chem. Soc., 94 (7), 24 142 421 (1972).

238. Roussilhe J., Despax В., Lopez A., Paillous N. Photodimerization of 2-phenylbenzoxazole and its acid-catalysed reversion as a new system for light energy conversion. J. Chem. Soc., Chem. Commun., 1982 (7), 380−381.

239. Fery-Forgues S., Paillous N. Photodehalogenation and photodimerization of 2-(4-halophenyl)benzoxazoles). Dependence of the mechanism on the nature of the halogen atom. J. Org. Chem., 51 (5), 672−677 (1986).

240. Fery-Forgues S., Lavabre D., Paillous N. Electron transfer on the photodehalogenation of 2-(4-halophenyl)benzoxazole assisted by amines. J. Org. Chem., 52 (15), 3381−3386 (1987).

241. Hein D. W., Alhem R.J., Leavitt J.J. The use of polyphosphoric acid in the synthesis of 2-aryland 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles. /. Am. Chem. Soc., 79 (2), 427−429 (1957).

242. So Y.-H., Zaleski J.M., Murlick C., Ellaboudy A. Synthesis and photophysical properiiejof some benzoxazole and benzothiazole compounds. Macromolecules, 29 (8), 2783−2795 (1996).

243. So Y.-H., Heeschen J.P. Mechanism of polyphosphoric acid and phosphorus pentoxide-methanesulfonic acid as synthetic reagents for benzoxazole formation. J. Org. Chem., 62 (11), 3552−3561 (1997).

244. Covello M., De Simone F, Dim A. Nuovi iodorganici di sintesi 2-iodoaribenzossazoli. Rend. Accad. Sci. Fis. Mat., Naples, 36, 219−225 (1969).

245. Varum R.S., Saini R. K, Prakash O. Hypervalent iodine oxidation of phenolic Schiffs bases: synthesis of 2-arylbenzoxazoles. Tetrahedron Lett., 38 (15), 2621−2622 (1997).

246. Delia Giana L., Haim A. Synthesis of l, 4-bis (4-pyridyl)butadiyne. J. Heterocycl. Chem., 21 (2), 607−608 (1984).

247. MeUssaris A.P., Litt M.H. A simple and economical synthetic route to p-ethynylaniline and ethynyl-terminated substrates. J. Oig. Chem., 59 (19), 5818−5821 (1994).

248. Mal’kina A.G., Brandsma L., Vasilevsky S.F., Trofimov B.A. An improved procedure for the preparation of aryland hetarylacetylenes. Synthesis, 1996 (5), 589−590.

249. Cosford N.D.P., Bleicher L., Herbaut A., McCallum J.S., Vernier J.-M., Dawson H., Whitten J.P., Adams P., Chavez-Noriega L., Correa L.D., Crona J.H., Mahaffy.

250. Crisp G.Т., Jiang Y.-L. A convenient route to condensed-ring aromatic acetylenes. Synth. Commun., 28 (14), 2571−2576 (1998).

251. Grechishnikova I.V., Johansson L.B.-A., Molotkovsky J.G. Synthesis of new bifluorophoric probes adapted to studies of donor-donor electronic energy transfer in lipid system. Chem. Phys. Lipids, 18 (1), 87−98 (1996).

252. Sessler J.L., Wang R. Self-assembly of an «artificial dinucleotide duplex». J. Am. Chem. Soc., 118 (40), 9808−9809 (1996).

253. Sessler J. L., Wang R. Design, synthesis, and self-assembly of «artificial dinucleotide duplexes». / Org. Chem., 63 (12), 4079−4091 (1998).

254. Sessler J.L., Wang R. A new base-pairing motif based on modified guanosines. Angew. Chem., Int. Ed., 37 (12), 1726−1729 (1998).

255. Caruthers M.H., Barone A.D., Beaucage S.L., Dodds D.R., Fisher E.F., McBride L.J., Matteucci M., Stabinsky Z., Tang J.-Y. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. Meth. Enzymol., 154, 287 313 (1987).

256. Damha M.J., Giannaris P.A., Zabarylo S.V. An improved procedure for derivatization of controlled-pore glass beads for solid-phase oligonucleotide synthesis. Nucl. Acids Res., 18 (13), 3813−3821 (1990).

257. Kobertz W.R., Essigmann J.M. Solid-phase synthesis of oligonucleotides containing a site-specific psoralen derivative. J. Am. Chem. Soc., 119 (25), 5960−5961 (1997).

258. Шпаковский Г. В., Лебеденко E.H. Первый представитель нового семейства эукариотических факторов транскрипции, обнаруженный с помощью межвидовой комплементации. Биоорган, химия, 23 (3), 234−237 (1997).

259. Atkinson Т., Smith М. Solid-phase synthesis of oligodeoxyribonucleotides by the phosphite-triester method. In: Oligonucleotide synthesis: a practical approach. Gait M.H., Ed., IRL Press: Oxford, 35−81 (1984).

260. Органикум. M: Мир, 1992. Т. 2, с. 409−410.

261. Coulson D.R. Tetrakis (triphenylphosphine)palladium (0). Inorg. Synth., 13, 121−124 (1972).

262. Nielsen J., Dahl O. Improved synthesis of (Pr^N^POCHaC^CN. Nucl. Acids Res., 15 (8), 3626 (1987).

263. Bannwarth W., Trzeciak A. A simple and effective chemical phosphorylation procedure for biomolecules. Helv. Chim. Acta, 70 (1), 175−186 (1987).

264. Sarobe M., Zwikker J.W., Snoeijer J.D., Wiersum U.E., Jenneskens L.W.

265. Preparative flash vacuum thermolysis. A short synthesis of cyclopentac,?/?pyrene. J. Chem. Soc., Chem. Commun., 1994 (1), 89−90.

266. Graebe C. Uber Pyren. Justus LiebigsAnn. Chem., 158 (3), 285−299 (1871).

Показать весь текст
Заполнить форму текущей работой