Помощь в написании студенческих работ
Антистрессовый сервис

Исследование ядра сворачивания апомиоглобина

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Данная диссертационная работа состоит из двух частей. Первая часть работы была посвящена разработке подхода, при помощи которого было бы возможно определять скорости отдельных переходов в белках с тремя состояниями. Целью второй части работы было исследование ядра сворачивания апомиоглобина, имеющего промежуточное состояние на пути сворачивания, которое проводили путем введения точечных замен… Читать ещё >

Исследование ядра сворачивания апомиоглобина (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Проблема сворачивания белка
    • 1. 2. Модели сворачивания белка
    • 1. 3. Промежуточные состояния белковой молекулы, реализующиеся в процессе ее сворачивания
    • 1. 4. Переходное состояние и ядро сворачивания белка
    • 1. 5. Характеристика объекта исследования
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Материалы
    • 2. 2. Приборы, параметры и условия измерений
    • 2. 3. Биохимические методы
      • 2. 3. 1. Экспрессия генов
      • 2. 3. 2. Выделение и очистка белков
    • 2. 4. Физические методы исследования
      • 2. 4. 1. Абсорбционная спектроскопия
      • 2. 4. 2. Флуоресцентная спектроскопия
      • 2. 4. 3. Круговой дихроизм
      • 2. 4. 4. Сканирующая микрокалориметрия
  • РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
  • ГЛАВА 3. РАЗРАБОТКА ПОДХОДА К АНАЛИЗУ КИНЕТИЧЕСКИХ ДАННЫХ ДЛЯ БЕЛКОВ С ПРОМЕЖУТОЧНЫМ СОСТОЯНИЕМ НА
  • ПРИМЕРЕ АПОМИОГЛОБИНА
    • 3. 1. Экспрессия и выделение апомиоглобина и его мутантных форм
    • 3. 2. Выбор условий для равновесных и кинетических исследований апомиоглобина
    • 3. 3. Исследование равновесных свойств апомиоглобина при
    • 11. °С, рН
      • 3. 4. Исследование кинетики сворачивания/разворачивания апомиоглобина
      • 3. 5. Построение и анализ зависимостей констант скоростей сворачивания/разворачивания апомиоглобина от концентрации денатуранта
      • 3. 6. Анализ зависимости констант скоростей сворачивания/разворачивания от концентрации денатуранта в случае отсутствия загиба на ветви сворачивания
      • 3. 7. Построение зависимостей свободной энергии состояний апомиоглобина от концентрации денатуранта
  • ГЛАВА 4. ИССЛЕДОВАНИЕ МУТАНТНЫХ ФОРМ АПОМИОГЛОБИНА
    • 4. 1. Выбор аминокислотных замен для исследований ядра сворачивания апомиоглобина
    • 4. 2. Исследование равновесного процесса разворачивания мутантных форм апомиоглобина
    • 4. 3. Кинетическое исследование процессов сворачивания и разворачивания мутантных форм апомиоглобина

Выяснение механизма спонтанного сворачивания белков является одной из важнейших задач биофизики. Известно, что многие болезни связаны с агрегацией или неправильным сворачиванием белка. Оба этих процесса могут быть следствием замедления скорости сворачивания белка или завязывания боковыми группами белка ненативных контактов в результате мутаций. Чтобы понять, чем определяется быстрое и правильное сворачивание полипептидной цепи в стабильную нативную функционирующую структуру, необходимо изучить влияние отдельных аминокислотных (а/к) остатков на различные стадии сворачивания белка. Путь сворачивания белков проходит через формирование переходных состояний и, в большинстве случаев, через образование наблюдаемых промежуточных состояний. В связи с этим для понимания механизма сворачивания белков необходимо исследование структурных и энергетических характеристик стабильных промежуточных и нестабильных переходных состояний. Однако такое исследование осложняется тем, что формирование ранних промежуточных состояний находится в миллисекундном временном интервале и, зачастую, не может быть измерено экспериментально методом «остановленного потока», хотя присутствие промежуточных состояний оказывает влияние на видимую константу скорости сворачивания белка. Для исследования же структуры переходных состояний необходимо знание скоростей всех этапов сворачивания и разворачивания белка в широком диапазоне концентраций денатуранта. Только в этом случае возможно оценить вклад отдельных остатков в процесс сворачивания белка, в частности, в ядро сворачивания белка, т. е. в структуру белка, образующуюся в переходном состоянии и обеспечивающую последующее быстрое и правильное сворачивание белка в нативную структуру.

Данная диссертационная работа состоит из двух частей. Первая часть работы была посвящена разработке подхода, при помощи которого было бы возможно определять скорости отдельных переходов в белках с тремя состояниями. Целью второй части работы было исследование ядра сворачивания апомиоглобина, имеющего промежуточное состояние на пути сворачивания, которое проводили путем введения точечных замен аминокислотных остатков и изучение влияния данных замен на стабильность белка и скорость его сворачивания.

Диссертационная работа состоит из «Введения», четырех глав, «Заключения», «Выводов» и «Списка цитируемой литературы». Во «Введении» раскрывается актуальность области исследования и дается краткое описание задач исследования. Глава 1 посвящена анализу литературных данных, отражающих современное положение исследований в области сворачивания белка. В главе 2 дано описание используемых материалов и методов. Глава 3 посвящена анализу кинетических данных апомиоглобина и разработке подхода, при помощи которого удалось разделить вклады различных процессов в скорость сворачивания данного белка. Глава 4 посвящена равновесному и кинетическому исследованию мутантных форм апомиоглобина и оценке их вклада в структуру переходного состояния (ядро сворачивания) апомиоглобина. Раздел «Заключение» содержит основные итоги работы. В конце диссертации приведены основные выводы из данной работы и список цитируемой литературы, включающий 148 наименований. Диссертация изложена на 112 страницах, содержит 22 рисунка и 4 таблицы.

Основные результаты диссертационной работы отражены в 16 печатных работах, в том числе 3 статьях в рецензируемых отечественных и международных научных журналах.

выводы.

1. Разработан метод определения кинетических и термодинамических параметров переходов между нативным, промежуточным и развернутым состояниями для белков, сворачивание и разворачивание которых проходит по двухстадийному механизму.

2. Показано, что мутации в гидрофобном ядре белка сильно дестабилизируют нативное состояние, но практически не сказываются на стабильности промежуточного состояния.

3. Показано, что консервативные нефункциональные а/к остатки образуют мало контактов в переходном состоянии на барьере, разделяющем нативное и промежуточное состояние, и, по-видимому, не входят в ядро сворачивания апомиоглобина на этой стадии, в то время как некоторые неконсервативные а/к остатки (Пе28 и Leu76), образуя более 50% нативных контактов в переходном состоянии, участвуют в формировании ядра сворачивания апомиоглобина при переходе из промежуточного состояния в нативное.

Данная работа выполнена в лаборатории физики белка Института белка РАН.

Выражаю глубокую и искреннюю благодарность моему научному руководителю Валентине Егоровне Бычковой за огромный опыт и знания, которые она мне передала, доброжелательность и терпение, сопровождавшие всю мою работу.

Хочу поблагодарить Кашпарова Ивана Андреевича и Ильину Нелли Борисовну за помощь, оказанную в процессе освоения методик экспрессии и выделения белка, Тиктопуло Елизавету Игнатьевну за помощь в измерениях микрокалориметрии и обработке полученных данных.

Большое спасибо Балобанову Виталию Александровичу за неоценимую помощь в проведении и обсуждении экспериментов по равновесному разворачиванию белков.

Особая благодарность Финкельштейну Алексею Витальевичу и Семисотнову Геннадию Васильевичу за неоднократные обсуждения моей работы и ценные советы.

Я очень признательна Мельнику Богдану Степановичу за постоянную поддержку, помощь и внимание к моей работе.

И, конечно, я очень благодарна всем сотрудникам лаборатории физики белка Института белка РАН, без участия, внимания и понимания которых работа бы не состоялась.

ЗАКЛЮЧЕНИЕ

.

Оценка энергетических параметров равновесных и кинетических процессов сворачивания/разворачивания белковой молекулы позволяет выявить наиболее дестабилизирующие мутации и мутации, замедляющие процесс сворачивания белка. Получение такой информации является важным для выявления конформационных изменений в структуре белков, приводящих к агрегационным образованиям, и для разработки подходов к конструированию лекарственных средств, предотвращающих формирование амилоидных депозитов.

Данная диссертационная работа посвящена исследованию белка апомиоглобина, а также выявлению аминокислотных остатков, замена которых сильно влияет на его стабильность и скорость сворачивания. Апомиоглобин принадлежит к белкам, сворачивающимся через образование промежуточного состояния. Оценка энергетических параметров сворачивания/разворачивания таких белков затруднена тем, что измеряемые на практике скорости являются эффективными, тогда как необходимо знать скорости, относящиеся к переходу между двумя отдельно взятыми состояниями.

Для решения данной задачи нами был разработан метод анализа кинетических данных для двухстадийных белков. Метод позволяет разделить вклады различных состояний в кинетику процесса сворачивания белка и изучать структуру переходного состояния на пути сворачивания таких белков при помощи точечного мутагенеза. Показана возможность оценки кинетических и энергетических параметров для случаев с не полностью завершенными переходами U<-*N.

Использование этого подхода для исследования сворачивания и разворачивания апомиоглобина позволило найти аминокислотные остатки, ответственные за его стабильность и скорость сворачивания в нативную структуру. Впервые получена зависимость доли кинетического промежуточного состояния, формирующегося в процессе сворачивания апомиоглобина, от концентрации денатуранта. Это позволило разделить вклады различных состояний в кинетику процесса сворачивания апомиоглобина. Показано, что в ядро сворачивания апомиоглобина в переходе из промежуточного в нативное состояние входят аминокислотные остатки, расположенные в В и Е спиралях.

Показать весь текст

Список литературы

  1. И.А. 1987. Определение вторичной структуры белков из спектров кругового дихроизма. Вторичная структура белков в состоянии «расплавленной глобулы». // Молекуляр. биология. Т.21. С.1625−1635.
  2. Э.А. 1977. Итоги науки и техники. // Биофизика. Т.7. С. 1−187.
  3. Н.Л. 1998. Фотоника биологических структур. // Пущино: Изд. НЦБИ.
  4. Д. 1988. Клонирование ДНК. Методы. // Изд. «Мир» Москва. С. 140 167.
  5. Е.Н., Шарапов М. Г., Кашпаров И. А., Ильина Н. Б., Бычкова В. Е. 2005. Изучение стабильности апомиоглобина в зависимости от мочевины и температуры при двух значениях рН. // Молекуляр. Биология. Т.39. С.292−297.
  6. Котова Н. В, Семисотнов Г. В. 1998. Сворачивание глобулярных белков in vivo. II Успехи биологической химии. Т.38. С. 199−223
  7. Дж. 1986. Основы флуоресцентной спектроскопии. // Изд. «Мир». Москва.
  8. О.Б. 1973. Стадийный механизм самоорганизации белковых молекул. //Докл. Акад. Наук СССР. Т.210. С. 1213−1215.
  9. В. 1998. Стабильность и кооперативные свойства частично свернутых белков. // Биохимия. Т.63. С.349−359.
  10. Н.А., Семисотнов Г. В., Кутышенко В. П., Уверский В. Н., Болотина И. А. Бычкова В.Е., Птицын О. Б. 1989. Стадийность равновесного разворачивания карбоксиангидразы В сильными денатурантами. // Молекуляр. Биология. Т.23. С.683−692.
  11. А.В., Бадретдинов А. Я. 1997. Физические причины быстрой самоорганизации стабильной пространственной структуры белков: решение парадокса Левинталя. // Молекуляр. Биология. Т.31. С.469−477.
  12. Abkevich V.I., Gutin A.M., and Shakhnovich E.I. 1994. Specific nucleus as the transition state for protein folding: evidence from the lattice model. // Biochemistry. V.33. P.10 026−10 036.
  13. Aim E., and Baker D. 1999. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. // Proc. Natl. Acad. Sci. U.S.A. V.96. P. l 1305−11 310.
  14. C.B. 1973. Principles that govern the folding of protein chains // Science. V.181. P.223−230.
  15. D.A. 2000. Surprising simplicity to protein folding//Nature. V.405. P.39−42.
  16. , R.L. 1996. On-pathway versus off-pathway folding intermediates. // Fold. Des. V.l. P. R1-R8.
  17. Barrick D., and Baldwin R.L. 1993. The molten globule intermediate of apomyoglobin and the process of protein folding. // Protein Sci. V.2. P.869−876.
  18. Baum J., Dobson C.M., Evans P.A., and Hanly C. 1989. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig a-lactalbumin. // Biochemistry. V.28. P.7−13.
  19. Brahms S., and Brahms J. 1980. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. // J. Mol. Biol. P. 138.
  20. Burns L.L. Dalessio P.M. and Ropson I.J. 1998. Folding mechanism of three structurally similar beta-sheet proteins. // Proteins. V.33. P.107−118.
  21. Burton R.E., Huang G.S., Daugherty M.A., Calderoni T.L., and Oas T.G. 1997. The energy landscape of a fast-folding protein mapped by Ala—>Gly substitutions. // Nature Struct. Biol. V.4. P.305−310.
  22. Bychkova V.E., and Ptitsyn O.B. 1993. The molten globule in vitro and in vivo. H Chemtracts: Biochem. Mol. Biol. V.4. P.133−163.
  23. Bychkova V.E., and Ptitsyn O.B. 1993. The state of unfolded globules of protein molecules is more quickly becoming a rule, rather then an exception. // Biophysics. V.38. P. 58−66.
  24. Cavagnero S., Dyson H.J., and Wright P.E. 1999. Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin. // J. Mol. Biol. V.285. P.269−282.
  25. Cavagnero S., Nishimura Ch., Schwarzinger St., Dyson, H.J., and Wright P.E. 2001. Conformational and dynamic characterization of the molten globule state of an apomyoglobin mutant with the altered folding pathway. // Biochemistry. V.40. P.14 459−14 467.
  26. Chaffotte A.F., Cuigarro J.I., Guillon Y. Delepierre M., and Goldberg M.E. 1997. The «premolten globule», a new intermediate in protein folding. // J. Protein Chem. V.16. P.433−439.
  27. Chiti F" Taddei N" White P., Bucciantini M., Magherini F., Stefani M., and Dobson C. 1999. Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. // Nature Struct. Biol. V.6. P. 1005−1009.
  28. Clarke A.R., and Waltho J.P. 1997. Protein folding pathways and intermediates. // Curr. Opin. Biotechnol. V.8. P.400−410.
  29. Clementi С., Jennings P.A., and Onuchic J.N. 2000. How native-state topology affects the folding of dihydrofolate reductase and interleukin-lbeta. // Proc. Natl. Acad. Sci. U.S.A. V.97. P.5871−5876.
  30. Cocco M.J., and Lecomte J.T. 1996. The native state of apomyoglobin described by proton NMR spectroscopy: the A-B-G-H interface of wild-type sperm whale apomyoglobin. // Proteins. V.25. P.267−285.
  31. Т.Е. 1994. The protein folding problem: In Mechanisms of Protein Folding: Frontiers in Molecular Biology. // Edited by Pain R.H., NY, Oxford University Press. P. 1−25.
  32. Dill K.A., and Chan H.S. 1997. From Levinthal to pathways to funnels. // Nature Struct. Biol. V.4. P.10−19.
  33. Dobson C.M., and Karplus M. 1999. The fundamentals of protein folding: bringing together theory and experiment. // Curr. Opin. Struct. Biol. V.9. P.92−101.
  34. Dolgikh D.A., Kolomiets A.P., Bolotina I.A., and Ptitsyn O.B. 1984. «Molten-globule» state accumulates in carbonic anhydrase folding. // FEBS Lett. V.165. P.88−92.
  35. Dolgikh D.A., Gilmanshin R.I., Brazhnikov E.V., Bychkova V.E., Semisotnov G.V., Venyaminov S.Yu., and Ptitsyn O.B. 1981. a-lactalbumin: compact state with fluctuating tertiary structure? // FEBS Lett. V.136. P.311−315.
  36. Baryshnikova E.N., Melnik B.S., Finkelstein A.V., Semisotnov G.V., and Bychkova V.E. 2005. Three-state protein folding: experimental determination of free-energy profile. // Protein Sci. V.14. P.2658−2667.
  37. Eliezer D., and Wright P.E. 1996. Is apomyoglobin a molten globule? Structural characterization by NMR. // J. Mol. Biol. V.263. P.531−538.
  38. Ellis R.L. and Hartl F.U. 1999. Principles of protein folding in the cellular environment//Curr. Opin. Struct. Biol. V.9. P.102−110.
  39. Elove G.A., Bhuyan A.K., and Roder H. 1994. Kinetic mechanism of cytochrome с V folding: involvement of the heme and its ligands. // Biochemistry. V.33. P.6925−6935.
  40. A.R. 2000. Structure and Mechanism in Protein Science. // 3nd ed. W.H.Freeman & Co. Press, NY.
  41. A.R. 1995. Characterizing transition states in protein folding: an essential step in the puzzle. // Curr. Opin. Struct. Biol. V.5. P.79−84.
  42. A.R. 1997. Nucleation mechanisms in protein folding. // Curr. Opin. Struct. Biol. V.7. P.3−9
  43. Fersht A.R., and Dagget V. 2002. Protein folding and unfolding at atomic resolution. // Cell. V.108. P. l-20.
  44. Fersht A.R., Matouschek A., and Serrano L. 1992. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. // J. Mol. Biol. V.224. P.771−782.
  45. Finkelstein A.V., and Badretdinov A.Ya. 1997. Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold. // Fold. Design. V.2. P. 115−121.
  46. Fulton K., Main E., Daggett V., and Jackson S. 1999. Mapping the interactions present in the transition state for unfolding/folding of FKBP12. // J. Mol. Biol. V.291.1. P.445−461.
  47. Galzitskaya O.V., and Finkelstein A.V. 1999. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. // Proc. Natl. Acad. Sci. U.S.A. V.96. P. l 1299−11 304.
  48. Galzitskaya O.V., and Finkelstein A.V. 1995. Folding of chains with random and edited sequences: similarities and differences. // Protein Eng. V.8. P.883−892.
  49. Galzitskaya O.V., Skoogarev A.V., Ivankov D.N. and Finkelstein A.V. 1999. Folding nuclei in 3D protein structures. // Proceedings of the Pacific Symposium on Biocomputong'2000. Singapore-New Jersey-London-Hong Kong: World Scientific. P.131−142.
  50. Garcia C., Nishimura Ch., Cavagnero S., Dyson H.J. and Wright P.E. 2000. Changes in the apomyoglobin pathway caused by mutation in the distal histidine residue. // Biochemistry. V.39. P. l 1227−11 237.
  51. Gast K., Damaschun H" Muller-Frohne M., Zirwer D. and Damaschun G. 1994. Compactness of protein molten globules: temperature-induced structural changes of the apomyoglobin folding intermediate. // Eur. Biophys. J. V.23. P.297−306.
  52. Goldberg M.E., Semisotnov G.V., Friguet В., Kuwajima K" Ptitsyn O.B. and Sugai S. 1990. An early immunoreactive folding intermediate of the tryptophan synthase 02 -subunit is a «molten globule». // FEBS Lett. V.263. P.51−59.
  53. D.P., Creighton Т.Е. 1983. Circular and circularly permuted forms of bovine pancreatic trypsin inhibitor//J. Mol. Biol. V.165. P.407−413.
  54. V.P., Riddle D.S., Santiago J.V., Baker D. 1998. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. //Nature Struct. Biol. V.5. P.714−720.
  55. Griko Y.V., and Privalov P.L. 1994. Thermodynamic puzzle of apomyoglobin unfolding. //J. Mol. Biol. V.235. P. 1318−1325.
  56. Griko Y.V., Privalov P.L., Veniaminov V.P., and Kutyshenko V.P. 1988. Thermodynamic study of the apomyoglobin structure. // J. Mol. Biol. V.202. P.27−35.
  57. Gutin A.M., Abkevich V.I., and Shakhnovich E.I. 1996. Chain Length Scaling of Protein Folding Time. // Phys. Rev. Lett. V.77. P.5433−5436.
  58. Gutin A.M. Abkevich V.I., and Shakhnovich E.I. 1995. Is burst hydrophobic collapse necessary for protein folding? // Biochemistry. V.34. P.3066−3076.
  59. Hargrove M. S., Krzywda S., Wilkinson A. J., Dou Y., Ikeda-Saito M., and Olson J.S. 1994. Stability of myoglobin: a model for the folding of heme proteins. // Biochemistry. V.33. P. l 1767−11 775.
  60. Hughson F.M. and Baldwin R.L. 1989. Use of site-directed mutagenesis to destabilize native apomyoglobin relative to folding intermediates. // Biochemistry V.28. P.4415−4422.
  61. Hughson F.M., Wright P.E., and Baldwin R.L. 1990. Structural characterization of a partly folded apomyoglobin intermediate. // Science. V.249. P. l544−1551.
  62. S.E. 1998. How do small single-domain proteins fold? // Fold. Design. V.3. P. R81-R91.
  63. Jackson S.E., and Fersht A.R. 1991. Folding of chymotrypsin inhibitor 2. Evidence for a two-state transition. // Biochemistry. V.30. P.10 428−10 435.
  64. L. 1974. A rapid micromethod for the determination of nitrogen and phosphate in biological material. // Anal. Biochem. V.61. P.623−627.
  65. Jamin M., Antalik M., Loh S.N., Bolen D.W., and Baldwin R.L. 2000. The unfolding enthalpy of the pH 4 molten globule of apomyoglobin measured by isothermal titration calorimetrv. // Protein Sci. V.9. P. 1340−1346.
  66. Jamin M., and Baldwin R.L. 1998. Two forms of the pH 4 folding intermediate of apomyoglobin. // J. Mol. Biol. V.276, P.491−504.
  67. Jamin M., Yeh S.-R., Rousseau D.L., and Baldwin R.L. 1999. Submillisecond unfolding kinetics of apomyoglobin and its pH 4 intermediate. // J. Mol. Biol. V.292. P.731−740.
  68. Jeffrey К., Pace C. and Scholtz J. 1995. Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. // Protein Sci. V.4. P.2138−2148.
  69. Jennings P.A. and Wright P.E. 1993. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. // Science. V.262. P.292−398.
  70. Jennings P.A., Stone M.J., and Wright P.E. 1995. Overexpression of myoglobin and assignment of the amid, Ca and C (3 resonances. // J. Biomol. NMR. V.6. P.271−276.
  71. Kay M.S., and Baldwin R.L. 1996. Packing interactions in apomyoglobin folding intermediate. //Nature Struct. Biol. V.3. P.439−445.
  72. T. 1995. Kinetic traps in lysozyme folding // Proc. Natl. Acad. Sci. U.S.A. V.92. P.9029−9033.
  73. Kim P. S., and Baldwin R.L. 1990. Intermediates in the folding reactions of small proteins. // Annu. Rev. Biochem. V.59. P. 631−666.
  74. Kragelund B.B., Robinson C.V., Knudsen J., Dobson C.M., and Poulsen F.M. 1995. Folding of a four-helix bundle: studies of acyl-coenzyme A binding protein. // Biochemistry. V.34. P.7217−7224.
  75. Kuwajima K., Nitta K., Yoneyama M., and Sugai S. 1976. Three-state denaturation of alpha-lactalbumin by guanidine hydrochloride. // J. Mol. Biol. V.106. P.359−379.
  76. Laurents D.V., Corrales S., Elias-Arnanz M., Sevilla P., Rico M., and Padmanabhan S. 2000. Folding kinetics of phage 434 Cro protein. // Biochemistry. V.39. P.13 963−13 973.
  77. Lecomte J.T., Sukits S.F., Bhattacharya S., and Falzone C.J. 1999. Conformational properties of native sperm whale apomyoglobin in solution. // Protein Sci. V.8. P. 14 841 491.
  78. C. 1968. Are there pathways for protein folding? // J. Chim. Phys. V.65. P.44−45.
  79. Li L., Mirny L.A., and Shakhnovich E.I. 2000. Kinetics, thermodynamics and evolution of non-native interactions in a protein folding nucleus. // Nature Struct. Biol. V.7. P.336−342.
  80. Lopez-Hernandez E., Serrano L. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2. // Fold. Design. 1996. V.l. P.43−55.
  81. Luo Y" Kay M.S., Baldwin R.L. 1997. Cooperativity of folding of the apomyoglobin pH 4 intermediate studied by glycine and proline mutations. // Nature Struct. Biol. V.4. P.925−930.
  82. J.C., Serrano L. 1999. The folding transition state between SH3 domainsis conformationally restricted and evolutionarily conserved. // Nature Struct. Biol. V.6. P. l 010−1016.
  83. Matouschek A., Kellis J.T., Jr., Serrano L" and Fersht A.R. 1990. Transient folding intermediates characterized by protein engineering. // Nature. V.346. P.440−445.
  84. Matouschek A., Kellis J.T., Jr., Serrano L., and Fersht A.R. 1989. Mapping the transition state and pathway of protein folding by protein engineering. // Nature. V.340. P.122−126.
  85. R.B. 1965. Automated synthesis of peptides. // Science. V.150. P.178−185.
  86. Mirny L.A. and Shakhnovich E.l. 1999. Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. // J. Mol. Biol. V.291. P.177−196.
  87. Mun5z V., and Eaton W.A. 1999. A simple model for calculating the kinetics of protein folding from three-dimensional structures. // Proc. Natl Acad. Sci. U.S.A. V.96. P. l1311−11 316.
  88. Munoz V., Lopez E.M., Jager M., and Serrano L. 1994. Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. Kinetic analysis of the inverse hydrophobic effect. // Biochemistry. V.33. P.5858−5866
  89. Myers J.K., Pace C.N., and Scholtz J.M. 1995. Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. // Protein Sci. V.4. P.2138−2148.
  90. B.T. 1994. Proline isomerization as a rate limiting step in mechanisms of protein folding: Frontiers in Molecular Biology. // Edited by Pain R.H. NY. Oxford University Press. P. 80−103
  91. Nishimura С., Dyson H.J., and Wright P.E. 2002. The apomyoglobin folding pathway revisited: structural heterogeneity in the kinetic burst phase intermediate. // J. Mol. Biol. V.322. P.483−489.
  92. Nishimura C. Prytilla S" Dyson H.J., and Wright P.E. 2000. Conservation of folding pathways in evolutionarily distant globin sequences. // Nature Struct. Biol. V.7. P.679−86.
  93. Nolting В., and Andret K. 2000. Mechanism of protein folding. // Proteins. V.41. P.288−298.
  94. Odefey C., Mayr L.M., and Schmid F.X. 1995. Non-prolyl cys-trans peptide bond isomerization as a rate-determing step in protein unfolding and refolding. // J.Mol.Biol. V.245. P.69−78
  95. Onuchic J.N., Socci N.D., Luthey-Schulten Z" and Wolynes P.G. 1996. Protein folding funnels: the nature of the transition state ensemble. // Fold. Design. V.l. P.441−450.
  96. Otzen D.E., and Fersht A.R. 1998. Folding of circular and permuted chymotrvpsin inhibitor 2. // Biochemistry. V.37. P.8139−8146.
  97. Otzen D.E., Kristensen O., Proctor M., and Oliveberg M. 1999. Structural changes in the transition state of protein folding: alternative interpretations of curved chevron plots. // Biochemistry. V.38. P.6499−6511.
  98. C.N. 1986. Determination and analysis of urea and guanidine hydrochloride denaturation curves. // Methods Enzymol. V.131. P.266−280.
  99. Pace C.N., Laurents D.V., and Thomson J.A. 1990. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease Tl. // Biochemistry. V.29. P.2564−2572.
  100. Pande V.S., Grosberg A.Yu., Tanaca Т., and Rokhasar D.S. 1998. Pathways for protein folding. // Curr. Opin. Struct. Biol. V.8. P.68−79.
  101. Pande V.S., and Rocksar D.S. 1999. Folding pathway of a lattice model for proteins. // Proc. Natl. Acad. Sci. U.S.A. V.96. P.1273−1278.
  102. Parker M.J., Dempsey C. E, Lorch M., and Clarke A.R. 1997. Acquisition of native beta-strand topology during the rapid collapse phase of protein folding. // Biochemistry. V.36. P. 13 396−13 405.
  103. Parker M.J., Spencer J., and Clarke A.R. 1995. An integrated kinetic analysis of intermediates and transition states in protein folding reactions. // J. Mol. Biol. V.253. P.771−786.
  104. Parker M.J., and Marqusee S. 1999. The cooperativity of burst phase reactions explored. //J. Mol. Biol. V.293. P. l 195−1210
  105. Perl D., Welker Ch., Schindler T, Schroder K" Marahiel M.A., Jaenicke R., and Schmid F.X. 1998. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. // Nature Struc. Biol. V.5. P.229−235.
  106. E.A. 1993. Luminescence spectroscopy of Proteins. // CRC Press. London. Tokyo.
  107. Phillips C.M., Mizutani Y. and Hochstrasser R.M. 1995. Ultrafast thermally induced unfolding of RNase A. // Proc. Natl. Acad. Sci. U.S.A. V.92. P.7292−7296.
  108. Plaxco K.W., Larson S" Ruczinski I., Riddle D.S., Thayer E.C., Buchwitz В., Davidson A.R., and Baker D. 2000. Evolutionary conservation in protein folding kinetics. // J.Mol.Biol. V.298. P.303−312.
  109. Plaxo K.W., Simons K.T., and Baker D. 1998. Contact order, transition state placement and the refolding rates of single domain proteins. // J. Mol. Biol. V.277. P.985−994.
  110. Plotkin S.S. and Onuchic J.N. 2000. Investigation of routes and funnels in protein folding by free energy functional methods. // Proc. Natl. Acad. Sci. U.S.A. V.97. P.6509−6514.
  111. P.L. 1982. Stability of proteins. Proteins which do not present a single cooperative system. // Adv. Protein Chem. V.35. P. 1−104.
  112. P.L. 1992. Physical basis of the folded conformations of protein. // Protein Folding, Ed. Т. E. Creighton, NY, Freeman P. 83−126.
  113. P.L. 1979. Stability of proteins. Small globular proteins. // Adv. Protein 'V Chem. V.33. P. 167−241.
  114. Ptitsyn O.B. and Ting K-L.H. 1999. Non- functional conserved residues in globins and their possible role as a folding nucleus. // J. Mol. Biol. V.291. P.671−677.
  115. O.B. 1995. Molten globule and protein folding. // Adv. Protein Chem. V.47. P.83−229.
  116. O.B. 1998. Protein folding and protein evolution: common folding nucleus in different subfamilies of c-type cytochromes. // J.Mol.Biol. V.278. P.655−666.
  117. Riddle D.S., Grantcharova V.P., Santiago J.V., Aim E., Ruczinski I., and Baker D. 1999. Experiment and theory highlight role of native state topology in SH3 folding. г
  118. Nature. Struct. Biol. V.6. P. l016−1024.
  119. Roder H., and Colon W. 1997. Kinetic role of early intermediate in protein folding // Curr. Opin. Struct. Biol. V.7. P. 15−28.
  120. Santoro. M.M. and Bolen, D.W. 1988. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. // Biochemistry V.27. P.8063−8068.
  121. Schreiber, G., and Fersht, A.R. 1993. The refolding of cis- and trans-peptidylprolyl isomers of barstar. // Biochemistry. V.32 P. l 1195−11 203.
  122. Semisotnov G.V., Rodionova N.A., Kutyshenko V.P., Ebert В., Blanc J. and Ptitsyn O.B. 1987. Sequential mechanism of refolding of carbonic anhydrase B. // FEBS Lett. V.223. P.9−13.
  123. Shakhnovich E., Abkevich V., and Ptitsyn O. 1996. Conserved residues and the mechanism of protein folding. // Nature. V.379. P.96−98.
  124. Shastry M.C.R. and Roder H. 1998. Evidence for barrier-limited protein folding kinetics on the microsecond time scale. // Nature Struct. Biol. V.5. P.385−92.
  125. Shoemaker B.A., Wang J., and Wolynes P.G. 1999. Exploring structures in protein folding funnels with free energy functional: the transition state ensemble. // J. Mol. Biol. V.287. P.675−694.
  126. Shoemaker B.A., and Wolynes P.G. 1999. Exploring structures in protein folding funnels with free energy functionals: the denatured ensemble. // J. Mol. Biol. V.287. P.657−674.
  127. Sosnick T.R. Mayne L., Hiller R., and Englander S.W. 1994. The barriers in protein folding // Nature Stract. Biol. V.l. P. 149−156.
  128. Sosnick T.R., Shtilerman M.D., Mayne L., and Englander S.W. 1997. Ultra fast signals in protein folding and the polypeptide contracted state. // Proc. Natl. Acad. Sci. U.S.A. V.5. P.8545−8550.
  129. Steensma E., and van Mierlo C.P.M. 1998. Structural characterization of apoflavodoxin shows that the location of the stable nucleus differs among proteins with a flavodoxin-like topology. // J. Mol. Biol. V.282. P.653−666.
  130. C. 1968. Protein denaturation. // Adv. Protein Chem. V.23. P. 121−282.
  131. Tang, K. S, Guralnick, B.J., Wang, W.K., Fersht, A.R., and Itzhaki, L.S. 1999. Stability and folding of the tumour suppressor protein pi6. // J. Mol. Biol. V.285. P.1869−1886.
  132. Tcherkasskaya O., and Ptitsyn O.B. 1999. Direct energy transfer to study the 3D structure of non-native proteins: AGH complex in molten globule state of apomyoglobin. // Protein Eng. V.12. P.485−490.
  133. Ternstorm Т., Mayor U. Akke M" and Oliveberg M. 1999. From snapshot to movie: Ф-analysis of protein folding transition states taken one step further. // Proc. Natl. Acad. Sci. U.S.A. V.96. P.14 854−14 859.
  134. Tsong T.Y. Baldwin R.L. and McPhie P.A. 1972. Sequential model of nucleation-dependent protein folding kinetic studies of ribonuclease A. // J. Mol. Biol. V.63. P.453−469
  135. Tsui V., Garcia C., Cavagnero S" Siuzdak G" Dyson H.J., and Wright P.E. 1999. Quench-flow experiments combined with mass spectrometry show apomyoglobin folds through an obligatory intermediate. // Protein Sci. V.8. P.45−49.
  136. Uversky V.N., and Ptitsyn O.B. 1996. Further evidence on the equilibrium «pre-molten-globule state»: four state guanidinium chloride — induced unfolding of carbonic anhydrase В at low temperature. // J. Mol. Biol. V.255. P.215 — 228.
  137. Vanhove M" Raquet X., Palzkill Т., Pain R.H. and Frere J.M. 1996. The rate-limiting step in the folding of the cis-Pro 167Thr mutant of Tem-ip lactamase in the trans to cis isomerization of a non-prolyne peptide bond. // Proteins. V.25. P.104−111.
  138. Viguera A.R., Serrano L., and Wilmanns M. 1996. Different folding transition states may result in the same native structure. // Nature Struct. Biol. V.3. P.874−880.
  139. Villegas V., Martinez J.C., Aviles F.X., and Serrano L. 1998. Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain. //J. Mol. Biol. V. 83. P. 1027−1036.
  140. Weissman J.S., and Kim P. S. 1992. Kinetic role of the normative intermediates in the folding of BPTI. // Proc. Natl. Acad. Sci. U.S.A. V.89. P.9900−9904.
  141. P.G. 1997. Folding funnels and energy landscapes of larger proteins within the capillarity approximation. // Proc. Natl. Acad. Sci. U.S.A. V.94. P.6170−6175.
  142. Wrabl J., and Shortle D. 1999. A model of the changes in denatured state structure underlying m value effects in staphylococcal nuclease. // Nature Struct. Biol. V.6.1. P.876−883.
Заполнить форму текущей работой