ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΎΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ²
Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π΄Π΅ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°Π·Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΊΠ»Π°ΡΡΠΎΠ² ΠΌΠΎΠ»Π΅ΠΊΡΠ»: Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ, ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ ΠΌΠΎΠ½ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ² ΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ²ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π² Π±ΠΎΠΊΠΎΠ²ΡΡ Π³ΡΡΠΏΠΏΠ°Ρ ΠΊΠΈΡΠ»ΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΡ ΠΎΡΡΠ°ΡΠΊΠΎΠ² ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π° ΠΊΠ»ΡΡΠ΅Π²Π°Ρ ΡΠΎΠ»Ρ ΡΠ°ΠΊΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π² ΠΈΠ½ΠΈΡΠΈΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π°Π»ΡΡΠ°-ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ Π½ΡΠΊΠ»Π΅Π°ΡΠΈΠΈ Π½Π° 1Π§-ΠΊΠΎΠ½ΡΠ΅… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΎΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ² (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ
- Π¦Π΅Π»Ρ ΠΈ Π·Π°Π΄Π°ΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
- ΠΠ°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π°
- ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ
ΠΡΠ²ΠΎΠ΄Ρ:
1. ΠΠ°ΡΡΠΆΠ΅Π½Π½ΡΠ΅ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΠ΅ ΠΎΡΡΠ°ΡΠΊΠΈ Π°ΡΠΏΠ°ΡΡΠ°ΡΠ°, Π³Π»ΡΡΠ°ΠΌΠ°ΡΠ°, Π°ΡΠ³ΠΈΠ½ΠΈΠ½Π°, Π»ΠΈΠ·ΠΈΠ½Π° ΠΈ Π³ΠΈΡΡΠΈΠ΄ΠΈΠ½Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΡΡΡ Π°Π»ΡΡΠ°-ΡΠΏΠΈΡΠ°Π»ΠΈ Π² ΠΏΠ΅ΠΏΡΠΈΠ΄Π°Ρ ΠΈ Π±Π΅Π»ΠΊΠ°Ρ , Π½ΠΎ ΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ ΠΈΠ½ΠΈΡΠΈΠΈΡΠΎΠ²Π°ΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π²ΡΠΎΡΠΈΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ°. Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΠΎΠ΅ ΠΏΠΎΠ³ΡΠ°Π½ΠΈΡΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΈΡ ΠΎΡΡΠ°ΡΠΊΠΎΠ² — Π΄ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΡΠ»Π΅ ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ° Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ.
2. ΠΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ ΠΈΠ½ΠΈΡΠΈΠ°ΡΠΈΠΈ «ΠΏΡΡΠΌΠΎΠΉ» ΠΈ «ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ» Π°Π»ΡΡΠ°-ΡΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ² ΠΈΠΌΠ΅ΡΡ ΠΎΠ±ΡΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ. ΠΠ»ΡΡΠ΅Π²ΠΎΠΉ Π²ΠΊΠ»Π°Π΄ Π² ΡΡΠΎΡ ΠΏΡΠΎΡΠ΅ΡΡ Π²Π½ΠΎΡΡΡ Π±ΠΎΠΊΠΎΠ²ΡΠ΅ Π³ΡΡΠΏΠΏΡ ΠΊΠΈΡΠ»ΡΡ ΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΡ ΠΎΡΡΠ°ΡΠΊΠΎΠ², ΡΠΎΡΠΌΠΈΡΡΡΡΠΈΠ΅ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΠ΅ ΡΠ²ΡΠ·ΠΈ Ρ ΠΎΡΡΠΎΠ²ΠΎΠΌ ΠΏΠ΅ΠΏΡΠΈΠ΄Π°, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠΈΠ΅ ΠΊ «ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΌΡ» Π·Π°ΠΊΡΡΡΠΈΠ²Π°Π½ΠΈΡ Π΅Π³ΠΎ ΡΡΡΡΠΊΡΡΡΡ.
3. Π Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ΅Π΄Π΅ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΠΈΠ½ΠΈΡΠΈΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π²ΠΈΡΠΊΠ° Π°Π»ΡΡΠ°-ΡΠΏΠΈΡΠ°Π»ΠΈ ΡΠΎΡ ΡΠ°Π½ΡΠ΅ΡΡΡ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΡΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΉ, ΠΏΠΎ ΠΊΡΠ°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅ΡΠ΅, Π½Π° Π΄Π²Π° ΠΏΠΎΡΡΠ΄ΠΊΠ°.
4. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ Π·Π°ΠΏΡΡΠΊΠ° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π°Π»ΡΡΠ°-ΡΠΏΠΈΡΠ°Π»ΠΈ Π½Π΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌ Π΄Π°Π½Π½ΡΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΡΡΠΎΡΠ½Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Π²ΡΠΎΡΠΈΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ Π² Π½ΠΎΠ²ΡΡ ΠΏΠ΅ΠΏΡΠΈΠ΄Π°Ρ .
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
:
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ, ΠΊΠΎΡΠΎΡΠΊΠΈΡ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ» ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½ΠΎΠΉ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠΏΠ΅ΡΠ½ΠΎ ΡΠ΅ΡΠ°ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ.
Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π΄Π΅ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°Π·Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΊΠ»Π°ΡΡΠΎΠ² ΠΌΠΎΠ»Π΅ΠΊΡΠ»: Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ, ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ ΠΌΠΎΠ½ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ² ΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ²ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π±ΠΈΡΡΡΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π² Π±ΠΎΠΊΠΎΠ²ΡΡ Π³ΡΡΠΏΠΏΠ°Ρ ΠΊΠΈΡΠ»ΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΡ ΠΎΡΡΠ°ΡΠΊΠΎΠ² ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π° ΠΊΠ»ΡΡΠ΅Π²Π°Ρ ΡΠΎΠ»Ρ ΡΠ°ΠΊΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π² ΠΈΠ½ΠΈΡΠΈΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π°Π»ΡΡΠ°-ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ Π½ΡΠΊΠ»Π΅Π°ΡΠΈΠΈ Π½Π° 1Π§-ΠΊΠΎΠ½ΡΠ΅ ΡΠΏΠΈΡΠ°Π»ΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠΎΠ²ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π° ΡΠ°Π±ΠΎΡΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π²ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΡΡΡΠΈΡ Π΄ΡΡΠ³ Π΄ΡΡΠ³Π° ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΎΠ² — ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎ-Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎ-Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΠ²ΡΠ·Π°ΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ Π·Π°ΡΡΠΆΠ΅Π½Π½ΡΡ ΠΎΡΡΠ°ΡΠΊΠΎΠ² Ρ ΠΈΡ ΡΠΎΠ»ΡΡ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ².
ΠΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ² ΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΡ ΠΎΡΡΠ°ΡΠΊΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°ΡΡ ΠΊΠ»ΡΡΠ΅Π²ΡΡ ΡΠΎΠ»Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ Π³ΡΡΠΏΠΏ ΠΊΠΈΡΠ»ΡΡ ΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΡΡΠ°Π»ΠΈΠ±ΠΈΠ·Π°ΡΠΈΠΈ Π°Π»ΡΡΠ°-ΡΠΏΠΈΡΠ°Π»Π΅ΠΉ, Π½ΠΎ ΠΈ Π΄Π»Ρ ΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΠ΄Π°Π»ΠΎΡΡ ΡΡΠΎΡΠ½ΠΈΡΡ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ Π½Π°ΡΠ°Π»Π° ΡΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡΠΈΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΠΌΠ΅ΡΡ Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Π΄Π»Ρ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ² ΠΈ Π±Π΅Π»ΠΊΠΎΠ², ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ·Π°ΠΉΠ½Π° ΠΊΠΎΠ½ΡΡΡΡΠΈΡΡΠ΅ΠΌΡΡ Π±ΠΈΠΎΠΌΠ°ΠΊΡΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ».
1. Rose G.D., Fleming P. J., Banavar J.R., Maritan A. A backbone-based theory of protein folding. //Proc.Natl.Acad.Sci.USA. 2006. V.103. P.16 623−16 633.
2. Anfinsen C.B. Principles that govern the folding of protein chains. // Science. 1973. V.18. P.223−230.
3. Jeffrey G.A., Saenger W. Hydrogen bonding in biological structures. Springer-Verlag. 1991.569 P.
4. ΠΠ΅Π½ΠΈΠ½Π΄ΠΆΠ΅Ρ Π. ΠΡΠ½ΠΎΠ²Ρ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΠΈ. Π 3-Ρ Ρ. — M.: ΠΠΈΡ., 1985. 367 ΡΡΡ.
5. ΠΡΡΡΠΊΠ°Ρ Π. Π. Π‘ΡΡΡΠΊΡΡΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ. — Π.: ΠΠ°ΡΠΊΠ°., 1966. 159 ΡΡΡ.
6. Π€ΠΈΠ½ΠΊΠ΅Π»ΡΠΏΡΠ΅ΠΉΠ½ Π. Π., ΠΡΠΈΡΡΠ½ Π. Π. Π€ΠΈΠ·ΠΈΠΊΠ° Π±Π΅Π»ΠΊΠ°. — Π.: ΠΠ½ΠΈΠΆΠ½ΡΠΉ Π΄ΠΎΠΌ «Π£Π½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅Ρ», 2002.376 ΡΡΡ.
7. Berman Π.Π., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. //Nucleic Acids Research. 2000. V.28. P.235−242.
8. Pauling L., Corey R.B. The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. //Proc.Nat.Acad.Sci.USA. 1951. V.37. P.205−211.
9. Pauling L., Corey R.B. Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds: Two New Pleated Sheets. // Proc.Natl.Acad.Sci.USA. 1951. V.37. P.729−740.
10. Pauling L, Corey R.B. The polypeptide-chain configuration in hemoglobin and other globular proteins. //Proc.Natl.Acad.Sci.USA. 1951. V.37. P.282−285.
11. Elliott A. and Malcolm B. R. Chain Arrangement and Sense of the a-Helix in Poly-L-Alanine Fibres. // Proc.Roy.Soc.London. 1959. A. 249. P.30−41.
12. Fasman G.D., Blout E.R. The Synthesis and the Conformation of Poly-L-serine and Poly-O-acetyl-L-serine. // Journal of the American Chemical Society. 1960. V.82. P.2262−2267.
13. Auer H.E., Doty P. The conformational stability of alpha-helical nonpolar polypeptides in solution. //Biochemistry. 1966. V.5. P.1716−1725.
14. Chou P.Y., Fasman G.D. Conformational parameters for amino acids in helical, betasheet, and random coil regions calculated from proteins. // Biochemistry. 1974. V.13. P.211−222.
15. Chou P.Y., Fasman G.D. Prediction of protein conformation. // Biochemistry. 1974. V.13. P.222−245.
16. Π‘ΠΏΠΈΡΠΈΠ½ A.C. Π‘ΡΡΡΠΊΡΡΡΠ° ΡΠΈΠ±ΠΎΡΠΎΠΌΡ ΠΈ Π±ΠΈΠΎΡΠΈΠ½ΡΠ΅Π· Π±Π΅Π»ΠΊΠ°. Π: ΠΡΡΡΠ°Ρ ΡΠΊΠΎΠ»Π°, 1986.
17. ΠΠ»Π±Π΅ΡΡΡ Π., ΠΡΠ΅ΠΉ Π., ΠΡΡΠΈΡ ΠΠΆ., Π ΡΡΡ Π., Π ΠΎΠ±Π΅ΡΡΠ΅ Π., Π£ΠΎΡΡΠΎΠ½ ΠΠΆ. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ ΠΊΠ»Π΅ΡΠΊΠΈ. Π 3-Ρ ΡΠΎΠΌΠ°Ρ , 2-Π΅ ΠΈΠ·Π΄Π°Π½ΠΈΠ΅. Π.: ΠΠΈΡ, 1993.
18. Levinthal Π‘. Are there pathways for protein folding? // J.Chim.Phys. PCB. 1968. V.65. P.44−45.
19. Karplus M. The Levinthal paradox: yesterday and today. // Fold.Des. 1997.V.2. P.69−75.
20. Shakhnovich E.I. Theoretical studies of protein-folding thermodynamics and kinetics. // Curr.Opin.Struct.Biol. 1997. V.7. P.29−40.
21. Honig B. Protein folding: from the Levinthal paradox to structure prediction. // J.Mol.Biol. 1999. V.293. P.283−93.
22. Shastry M.C., Roder H. Evidence for barrier-limited protein folding kinetics on the microsecond time scale. //Nat.Struct.Biol. 1998. V.5. P.385−392.
23. Jones C.M., Henry E.R., Hu Y, Chan C.K., Luck S.D., Bhuyan A., Roder H., Hofrichter J., Eaton W.A. Fast events in protein folding initiated by nanosecond laser photolysis. // Proc.Natl.Acad.Sci.USA. 1993. V.90. P. l 1860−11 864.
24. Pascher Π’., Chesick J.P., Winkler J.R., Gray H.B. Protein folding triggered by electron transfer. // Science. 1996. V.271. P.1558−1560.
25. Mines G.A., Pascher Π’., Lee S.C., Winkler J.R., Gray H.B. Cytochrome Π‘ folding triggered by electron transfer. // Chem.Biol. 1996. V.3. P.491−497.
26. Nolting B. Temperature-jump induced fast refolding of cold-unfolded protein. // Biochem.Biophys.Res.Commun. 1996. V.227. P.903−908.
27. Ballew R.M., Sabelko J., Gruebele M. Observation of distinct nanosecond and microsecond protein folding events. //Nat.Struct.Biol. 1996. V.3. P.923−926.
28. Ballew R.M., Sabelko J., Gruebele M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. //Proc.Natl.Acad.Sci.USA. 1996. V.93. P.5759−5764.
29. Eaton W. A, Munoz V., Thompson P.A., Chan C.K., Hofrichter J. Submillisecond kinetics ofprotein folding. // Curr.Opin.Struct.Biol. 1997. V.7. P.10−14.
30. Tsong T.Y., Baldwin R.L. A sequential model of nucleation-dependent protein folding: kinetic studies of ribonuclease A. // J.Mol.Biol. 1972. V.63. P.453−469.
31. Tsong T.Y., Baldwin R.L., Elson E.L. The sequential unfolding of ribonuclease A: detection of a fast initial phase in the kinetics of unfolding. // Proc.Natl.Acad.Sci.USA. 1971. V.68. P.2712−2715.
32. Ptitsyn O.B. Thermodynamic parameters of helix-coil transitions in polypeptide chains. //Pure.Appl.Chem. 1972. V.3 l. P .227−244.
33. Finkelstein A.V., Ptitsyn O.B. Statistical analysis of the correlation among amino acid residues in helical, beta-structural and non-regular regions of globular proteins. // J.Mol.Biol. 1971. V.62.P.613−24.
34. Ptitsyn O.B. Stages in the mechanism of self-organization of protein molecules. // Dokl.Akad.Nauk SSSR. 1973. V.210.P.1213−1215.
35. Pande V.S., Grosberg A.Yu., Tanaka Π’., Rokhsar D.S. Pathways for protein folding: is a new view needed? // Curr.Opin.Struct.Biol. 1998. V.8.P.68−79.
36. Dill K.A., Chan H.S. From Levinthal to pathways to funnels. // Nat.Struct.Biol. 1997. V.4.P.10−19.
37. Wolynes P.G. Energy landscapes and solved protein-folding problems. // Philos.Transact.A Math.Phys.Eng.Sci. 2005. V.363. P.45364.
38. Bogatyreva N.S., Finkelstein A.V. Cunning simplicity of protein folding landscapes. // Protein Eng. 2001. V.14.P.521−523.
39. ΠΠΈΠΌ Π. Π. ΠΠΎΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠ΅, ΠΊΠΎΡΠ΅ΠΊΡΠ΅ΡΠΎΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° ΠΈ Π΅Π³ΠΎ ΡΠ΅Π½Π°ΡΡΡΠ°ΡΠΈΡ ΠΈΠ· Π΄Π΅Π½Π°ΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ. //ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°. 1991. Π’.36. № 3.441−454.
40. Fedorov A.N., Baldwin Π’.Π. Cotranslational protein folding. // J.Biol.Chem. 1997. V. 272. P.32 715−32 718.
41. ΠΠ°ΡΠ°ΡΠΎΠ² M.A. ΠΠΎΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ². // ΠΠΈΠΎΡ ΠΈΠΌΠΈΡ. 2000. Π’.65. ΠΡΠΏ. 12. Π‘.1639−1644.
42. ΠΠΎΠ»Π± Π. Π. ΠΠΎΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΡΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ². // ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ. 2001. Π’.35, № 4. Π‘.682−690.
43. Wright P.E., Dyson H.J., Lerner R.A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. // Biochemistry. 1988. V.20. P.7167−75.
44. Teale J.M., Benjamin D.C. Antibody as immunological probe for studying refolding of bovine serum albumin. Refolding within each domain. // J.Biol.Chem. 1977. V.10. P.4521−4526.
45. Blond-Elguindi S., Goldberg M.E. Kinetic characterization of early immunoreactive intermediates during the refolding of guanidine-unfolded Escherichia coli tryptophan synthase beta 2 subunits. // Biochemistry. 1990. V.29. P.2409−2417.
46. Π‘ΠΏΠΈΡΠΈΠ½ A.C. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ. ΠΠΈΠΎΡΠΈΠ½ΡΠ΅Π· Π±Π΅Π»ΠΊΠ°. Π.: ΠΡΡΡΠ°Ρ ΡΠΊΠΎΠ»Π°, 1984.
47. Lim V.I., Spirin A.S. Stereochemical analysis of ribosomal transpeptidation. Conformation of nascent peptide. //J.Mol.Biol. 1986. V.188. P.565−574.
48. Tanford C. Protein denaturation. // Adv.Protein.Chem. 1968. V.23. P.121−282.
49. Anfinsen C.B., Scheraga H.A. Experimental and theoretical aspects of protein folding. // Adv.Protein.Chem. 1975. V.29. P.205−300.
50. Kim P. S., Baldwin R.L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. // Annu.Rev.Biochem. 1982. V.51. P.459−489.
51. Kim P. S, Baldwin R.L. Intermediates in the folding reactions of small proteins. // Annu.Rev.Biochem. 1990. V.59. P.631−60.
52. Privalov P.L. Stability of proteins. Proteins which do not present a single cooperative system. // Adv.Protein.Chem. 1982. V.35.P.1−104.
53. Creighton Π’.Π. Protein folding. // Biochem.J. 1990. V.270. P. l-16.
54. Finkelstein A.V., Reva B.A. A search for the most stable folds of protein chains. // Nature. 1991. V.351. P.497−499.
55. Dill K.A., Bromberg S., Yue K., Fiebig K.M., Yee D.P., Thomas P.D., Chan H.S. Principles of protein folding a perspective from simple exact models. // Protein Sci. 1995. V.4. P.561−602.
56. Baum J., Brodsky B. Folding of peptide models of collagen and misfolding in disease. // Curr.Opin.Struct.Biol. 1999. V.9. P. 122−128.
57. Kelly J.W. The environmental dependency of protein folding best explains prion and amyloid diseases. //Proc.Natl.Acad.Sci.USA. 1998. V.95. P.930−932.
58. Jaenicke R. Folding and association of proteins. // Prog.Biophys.Mol.Biol. 1987. V.49. P. l 17−237.
59. Tsou C. Folding of the nascent peptide chain into a biologically active protein. // Biochemistry. 1988. V.27. P. 1809−1812.
60. Fischer G., Schmid F.X. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. // Biochemistry. 1990. V.29. P.2205−2212.
61. Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. // Biochemistry. 1991. V.30. P.3147−3161.
62. Baker D., Agard D.A. Kinetics versus thermodynamics in protein folding. // Biochemistry. 1994. V.33. P.7505−7509.
63. Chasse G.A., Rodriguez A.M., Mak M. L., Deretey E., Perczel A., Sosa C. P., Enriz R. D. and Csizmadia I. G. //J.Mol.Stract.(THEOCHEM). 2001. V.537. P.319−361.
64. Socci N.D., Onuchic J.N., Wolynes P.G. Protein folding mechanisms and the multidimensional folding funnel. // Proteins. 1998. V.32. P.136−58.
65. Dobson C.M. NMR spectroscopy and protein folding: studies of lysozyme and alpha-lactalbumin. // Ciba.Found.Symp. 1991. V.161. P.167−181.
66. Fersht A.R. From the first protein structures to our current knowledge of protein folding: delights and scepticisms. //Nat.Rev.Mol.Cell.Biol. 2008. V.9. P.650−654.
67. Mirny L.A., Finkelstein A.V., Shakhnovich E.I. Statistical significance of protein structure prediction by threading. // Proc.Natl.Acad.Sci.USA. 2000. V.97. P.9978−9983.
68. Dill K.A., Ozkan S.B., Shell M.S., Weikl T.R. The protein folding problem. // Annu.Rev.Biophys. 2008. V.37. P.289−316.
69. Daggett V. Protein folding-simulation. // Chem.Rev. 2006. V.106. P.1898−1916.
70. ΠΡΠΈΠΌΠΎΠ² A.B., ΠΠΎΠ½Π΄ΡΠ°ΡΠΎΠ²Π° M.C. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅ΠΆΡΠΏΠΈΡΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΠ»ΡΡΠ½ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΏΠ°ΠΊΠΎΠ²ΠΊΠ°Ρ Π°-ΡΠΏΠΈΡΠ°Π»Π΅ΠΉ Π² Π±Π΅Π»ΠΊΠ°Ρ . // ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ. 2003. Π’ΠΎΠΌ.37, № 3. Π‘ΡΡ.515−521.
71. Π Π°Ρ ΠΌΠ°Π½ΠΈΠ½ΠΎΠ²Π° Π. Π., ΠΠΈΡΠΎΠ½ΠΎΠ² Π. Π. ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ½ΡΡΠΎΠΏΠΈΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡΠΈΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΏΡΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ. // ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ. 2001. Π’ΠΎΠΌ.35, № 3. Π‘ΡΡ.451−461.
72. Go N. The consistency principle in protein structure and pathways of folding. // Adv.Biophys. 1984. V.18. P. 149−164.
73. Go N. Theoretical studies of protein folding. // Annu.Rev.Biophys.Bioeng. 1983. V.12. P.183−210.
74. Karplus M., Weaver D.L. Diffusion-collision model for protein folding. // Biopolymers. 1979. V.18. P.1421−1437.
75. Ptitsyn O.B. Structures of folding intermediates. Curr.Opin.Struct.Biol. 1995. V.5.P.74−78.
76. Galzitskaya O.V., Higo J, Finkelstein A.V. a-Helix and Ρ-Hairpin Folding from Experiment, Analytical Theory and Molecular Dynamics Simulations. // Current Protein & Peptide Science. 2002. V.3. P.191−200.
77. Daidone I., D’Abramo M., Di Nola A., Amadei A. Theoretical characterization of alpha-helix and beta-hairpin folding kinetics. // J.Am.Chem.Soc. 2005. V.127. P.14 825−14 832.
78. Nolting Π., Agard D.A. How general is the nucleation-condensation mechanism? Proteins. 2008. V.73. P.754−764.
79. Levitt M., Warshel A. Computer simulation of protein folding. // Nature. 1975. V. 253. P.694−698.
80. Tanaka S., Scheraga H.A. Model of protein folding: inclusion of short-, medium-, and long-range interactions. //Proc.Natl.Acad.Sci.USA. 1975. V.12. P.3802−3806.
81. Wright P.E., Dyson H.J., Lerner R.A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. //Biochemistry. 1988. V.27. P.7167−7175.
82. Sansom M.S., Tieleman D.P., Berendsen H.J. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations. // Novartis.Found.Symp. 1999. V.225. P.128−141.
83. Skolnick J., Kolinski A. Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics. //J.Mol.Biol. 1991. V.221. P.499−531.
84. Sung S.S., Helix folding simulations with various initial conformations. // Biophys.J. 1994. V.66. P.1796−1802.
85. Sung S.S., Folding simulations of alanine-based peptides with Lysine residues. // BiophysJ. 1995. Y.68.P.826−834.
86. Cheung M.S., Garcia A.E., Onuchic J.N. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. // Proc.Natl.Acad.Sci.USA. 2002. V.99. P.685−690.
87. Zhou R. Trp-cage: folding free energy landscape in explicit water. // Proc.Natl.Acad.Sci. USA. 2003. V.100. P.13 280−13 285.
88. Herges T, Wenzel W. In silico folding of a three helix protein and characterization of its free-energy landscape in an all-atom force field. //Phys.Rev.Lett. 2005. V.94. P.18 101.
89. Levy Y, Onuchic J.N. Water mediation in protein folding and molecular recognition. // Annu.Rev.Biophys.Biomol.Struct. 2006. V.35. P.389−415.
90. Sasaki S., Noda Y. Aquaporin-2 protein dynamics within the cell. // Curr.Opin.Nephrol.Hypertens. 2007. V.16. P.348−352.
91. Snow C. D, Sorin E.J., Rhee Y.M., and Pande V.S. How well can simulation predict protein folding kinetics and thermodynamics? // Annual Review of Biophysics and Biomolecular Structure. 2005. V.34. P.43−69.
92. Scheraga H. A, Khalili M., Liwo A. Protein-folding dynamics: overview of molecular simulation techniques. // Annu.Rev.Phys.Chem. 2007. V.58. P.57−83.
93. Π¨Π°ΠΉΡΠ°Π½ K.B., Π’Π΅ΡΡΡΠΊΠΈΠ½Π° Π. Π. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π±Π΅Π»ΠΊΠΎΠ² ΠΈ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ². ΠΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΠΎΡΠΎΠ±ΠΈΠ΅. Π: ΠΠΠ£, 2004.
94. ΠΠΈΡ Π°ΠΉΠ»ΡΠΊ ΠΠ°ΠΊΡΠΈΠΌ ΠΡΠΈΠ³ΠΎΡΡΠ΅Π²ΠΈΡ. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π²ΡΠΎΡΠΈΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π°ΡΠΎΠΌΠ½ΡΡ Π³ΡΡΠΏΠΏ Π² Π±Π΅Π»ΠΊΠ°Ρ . ΠΠΈΡΡ. Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡΡΠ΅Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΊΠ°Π½Π΄. ΡΠΈΠ·-ΠΌΠ°Ρ. Π½Π°ΡΠΊ. ΠΠΎΡΠΊΠ²Π°. 2003.
95. Forcellino F., Derreumaux P. Computer simulations aimed at structure prediction of supersecondaiy motifs in proteins. //Proteins. 2001. V.45. P.159−166.
96. Gumbart J., Wang Y., Aksimentiev A., Tajkhorshid E., Schulten K. Molecular dynamics simulations of proteins in lipid bilayers. // Curr.Opin.Struct.Biol. 2005. V.15. P.423−431.
97. Karplus M., Kuriyan J. Molecular dynamics and protein function. // Proc.Natl.Acad.Sci.USA. 2005. V.102. P.6679−6685.
98. Richardson J.M., Lopez M.M., Makhatadze G.I. Enthalpy of helix-coil transition: missing link in rationalizing the thermodynamics of helix-forming propensities of the amino acid residues. //Proc.Natl.Acad.Sci.USA. 2005. V.102. P.1413−1418.
99. Marqusee S., Robbins V.H., Baldwin R.L. Unusually stable helix formation in short alanine-based peptides. // Proc.Natl.Acad.Sci.USA. 1989. V.86. P.5286−90.
100. Karpen M.E., Tobias D.J., Brooks C.L.3rd. Statistical clustering techniques for the analysis of long molecular dynamics trajectories: analysis of2.2-ns trajectories ofYPGDV. // Biochemistry. 1993. V.32. P.412−420.
101. Baldwin R.L. Alpha-helix formation by peptides of defined sequence. // Biophys.Chem. 1995. V.55. P. l27−35.
102. Takano M., Yamato Π’., Higo J., Suyama A., and Nagayama K. Molecular dynamics of a 15-residue poly (L-alanine) in water: Helix formation and energetics. // J.Am.Chem.Soc. 1999. V.121.P. 605−612.
103. Daura X., Gademann Π., Jaun Π., Seebach D., van Gunsteren F., and Mark A.E. Peptide Folding: When Simulation Meets Experiment. // Angew.Chem.Int.Ed. 1999. V.38. P.236−240.
104. Hummer G., Garcia A.E., Garde S. Helix nucleation kinetics from molecular simulations in explicit solvent. //Proteins. 2001. V.42. P.77−84.
105. Hiltpold A., Ferrara P., Gsponer J., and Caflisch A. Free Energy Surface of the Helical Peptide Y (MEARA)6 // J.Phys.Chem.B. 2000. V.104. P.10 080−10 086.
106. Vila J.A., Ripoll D.R., Scheraga H.A. Physical reasons for the unusual alpha-helix stabilization afforded by charged or neutral polar residues in alanine-rich peptides. // Proc.Natl.Acad.Sci.USA. 2002. V.97. P.13 075−13 079.
107. Gnanakaran S., Nymeyer H., Portman J., Sanbonmatsu K.Y., Garcia A.E. Peptide folding simulations. // Curr.Opin.Struct.Biol. 2003. V.13. P. 168−174.
108. Garcia A. E, Sanbonmatsu K.Y. a-Helical stabilization by side chain shielding of backbone hydrogen bonds. // Proc.Natl.Acad.Sci.USA. 2002. V.99. P.2782−2787.
109. Ramajo A.P., Petty S.A., Starzyk A., Decatur S.M., and Volk M. The alpha-Helix Folds More Rapidly at the C-Terminus Than at the N-Terminus. // J.Am.Chem.Soc. 2005. V.127. P.13 784−13 785.
110. Foresman J.B., Frisch /Eleen «Exploring Chemistry with Electronic Structure Methods», Second Edition. //Pittsburgh: Gaussian Inc. 1996.
111. ΠΠ»Π°ΡΠΊ Π’. «ΠΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ Ρ ΠΈΠΌΠΈΡ»: ΠΏΠ΅Ρ. Ρ Π°Π½Π³Π». // ΠΠΎΡΠΊΠ²Π°: ΠΠΈΡ — 1990.
112. Weiner S J., Kollman Π .Π., Nguyen D.T., and Case D.A. An all-atom force field for simulations of proteins and nucleic acids. // J.Comp.Chem. 1986. V.7. P.230−252.
113. Hartree D.R. «The wave-mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods» // Proc.Camb.Phil.Soc. 1928. V.24. P.89−132.
114. Moller C., Plesset M.S. Moller-Plesset perturbation theory of order n for electron correlation. //Phys.Rev. 1934. V.46. P.618−624.
115. Pople J., Beveridge D.L. (Approximate Molecular Orbital Theory" // McGraw-Hill, New York-1970.
116. Dewar M.J. «The Molecular Theory of Organic Chemistry» // McGraw-Hill, New York 1969.
117. Dewar M.J., Thiel W. Ground States of Molecules. The MNDO Method. Approximations and Parameters. //JAm.Chem.Soc. 1977. V.99. P.4899−4912.
118. Dewar M.J., Zoebisch E.G., Healy E.F., Stewart J.P. AMI: A New General Purpose Quantum Mechanical Molecular Model. // J.Am.Chem.Soc. 1985. V.107. P.3902−3909.
119. Stewart J.J.P. Optimization of Parameters for Semiempirical Methods. I. Method. // J.Comput.Chem. 1989. V.10. P.209−220.
120. Stewart J.J.P. Optimization of Parameters for Semiempirical Methods. II. Applications. //J.Comput.Chem. 1989. V. 10. P.221−264.
121. Stewart J.J.P. Optimization of Parameters for Semiempirical Methods. Π¨. Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Π’Π΅, Hg, Tl, Pb, and Bi. // J.Comput.Chem. 1991. V.12. P.320−341.
122. Stewart J.J.P. MOPAC: A General Molecular Orbital Package. // Quant.Chem.Prog.Exch. 1990. V.10. P.86−97.
123. Stewart J.J.P. Application of Localized Molecular Orbitals to the Solution of Semiempirical Self-Consistent Field Equations. // Int.J.Quant.Chem. 1996. V.58. P.133−146.
124. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. // J.Chem.Phys. 1993. V.98. P.5648−5652.
125. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. // Phys.Rev.B. 1988. V.37. P.785.
126. Miehlich Π., Savin A., Stoll H., Preuss H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. // Chem.Phys.Lett. 1989. V.157. P.200−211.
127. Weiner S.J., Kollman P.A., Case D.A., Chandra Singh U., Ghio C., Alagona G., Profeta S., Weiner P. A new force field for molecular mechanical simulation of nucleic acids and proteins. // J.Am.Chem.Soc. 1984. V.106. P.765−784.
128. Weiner S.J., Kollman P.A., Nguyen D.T., Case D.A. An all-atom force field for simulations of proteins and nucleic acids. //J.Comp.Chem. 1986. V.7. P. 230−252.
129. McCammon J.A., Gelin B.R., Karplus M. Dynamics of folded proteins. // Nature. 1977. V.267. P.585−590.
130. ΠΠΈΠ½ΠΊΠΈΠ½ Π. Π., Π‘ΠΈΠΌΠΊΠΈΠ½ Π .Π―., ΠΠΈΠ½ΡΠ΅Π² P.M., «Π’Π΅ΠΎΡΠΈΡ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»». Π., ΠΠ°ΡΠΊΠ°, 1997.
131. ΠΠ΅ΠΌΡΡ ΠΈΠ½ Π. Π., ΠΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π² Ρ ΠΈΠΌΠΈΠΈ. // Π‘ΠΎΡΠΎΡΠΎΠ²ΡΠΊΠΈΠΉ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π». № 26, 1998, ΡΡΡ. 48−54.
132. Π‘ΡΠ΅ΠΏΠ°Π½ΠΎΠ² Π. Π€., ΠΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΠΈ Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ. // Π‘ΠΎΡΠΎΡΠΎΠ²ΡΠΊΠΈΠΉ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΆΡΡΠ½Π°Π». № 10, 1996, ΡΡΡ. 33−38.
133. David Π‘. Young Computational Chemistry. Willey & Sons Publication, Inc. 2001.
134. Dos Santos H., De Almeida W.B. MNDO/AM1/PM3 quantum mechanical semiempirical and molecular mechanics barriers to inertial rotation: a comparative study. // J.Mol.Struct (THEOCHEM). 1995. V.335. P.129−139.
135. Wang J., Cieplak P. and Kollman P.A. How well does a Restrained Electrostatic Potential (RESP) model perform in calculating conformational energies of organic and biological molecules?//J.Comput.Chem. 2000. V.21. P.1049−1074.
136. Sellers H.L., Schafer L. Investigations Concerning the Apparent Contradiction between the Microwave Structure and the ab Initio Calculations of Glycine // J.Am.Chem.Soc. 1978. V.100. P.7728−7729.
137. Cox J. and Pilcher G. Thermochemistry of Organic and Organometallic Compounds. // Academic Press New York, NY, 1970.
138. Ngauv S., Sabbah.R., Laffitte.M. Thermodynamique de composes azotes. III. Etude thermochimique de la glycine et de la L-a-alanine // Thermochim.Acta. 1977. V.20. P.371−380.
139. Sabbah R., Laffitte M. Thermodynamique de composes azotes. IV. Etude thermochimique de la sarcosine et de la L-proline //Bull.Soc.Chim.Fr. 1978 V.l. P.50−52.
140. Sabbah R., Laffitte M. Enthalpy of formation of solid L-proline // J.Chem.Thermodyn. 1978. V.10. P.100−102.
141. Sabbah R., Minadakis C. Thermodynamique de substances soufrees. II. Etude thermochimique de la L-cysteine et de la L-methionine // Thermochim. Acta. 1981. V.43. P.269−277.
142. ΠΠ΅ΡΡΠ±Π΅ΡΠ³ Π. ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΡ ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠ°ΡΠΎΠΌΠ½ΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ». ΠΠ΅Ρ. Ρ Π°Π½Π³Π».-Π.: ΠΠΈΡ, 1969.
143. ΠΡΡΡΠΊΠ°Ρ Π. Π. Π‘ΡΡΡΠΊΡΡΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ. — Π.: ΠΠ°ΡΠΊΠ°, 1966.
144. Wright L.R., Borkman R.F. Ab Initio Self-Consistent Field Calculations on Some Small Amino Acids // J.Am.Chem.Soc. 1980. V.102. P.6207−6210.
145. Csaszar A.G. Conformers of gaseous glycine. // J.Am.Chem.Soc. 1992. V.114. P.9568−9575.
146. ΠΠΎΠΏΠΎΠ² E.M. ΠΡΠΎΠ±Π»Π΅ΠΌΠ° Π±Π΅Π»ΠΊΠ°. Π’. Π. Π‘ΡΡΡΠΊΡΡΡΠ½Π°Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ Π±Π΅Π»ΠΊΠ°. Π.: ΠΠ°ΡΠΊΠ°, 1997. 604 Ρ.
147. Ramachandran G.N., Ramakrishnan Π‘. and Sasisekharan V. Stereochemistry of polypeptide chain configurations. // J.Mol.Biol. 1963. V.7. P.95−99.
148. Ramachandran G.N., and Sasisekharan V. Conformation of polypeptides and proteins. // Adv. Protein Chem. 1968. V.23. P.283−437.
149. Leach S., Nemethy G. and Scheraga H.A. Computation of the sterically allowed conformations of peptides. // Biopolymers. 1966. V.4. P.369−407.
150. Scott R.A. and Scheraga H.A. Conformational analysis of macromolecules. Π¨. Helical structures of polyglycine and poly-L-alanine. // J.Chem.Phys. 1966. V.45. P.2091;2101.
151. Bohm H-J. and Brode S. Ab Initio SCF calculations on low-energy conformers of N-Acetyl-N-methylalaninamide and N-Acetyl-N-methylglycinamide. // J.Am.Chem.Soc. 1991. V. l 13. P.7129−7135.
152. Frey R.F., Coffin J., Newton S.Q., Ramek M., Cheng V.K.W., Momany F.A. and Schaefer L. Importance of correlation-gradient geometry optimization for molecular conformational analysis. // J.Am.Chem.Soc. 1992. V. l 14. P.5369−5377.
153. Shang H.S. and Head-Gordon T. Stabilization of helices in glycine and alanine dipeptides in a reaction field model of solvent. // J.Am.Chem.Soc. 1994. V. l 16. P.1528−1532.
154. Bisetty K., Catalan J.G., Kruger H.G. and Perez J.J. Conformational analysis of small peptides of the type Ac-X-NHMe, where X=Gly, Ala, Aib and Cage. // J.Mol.Struct.(THEOCHEM). 2005. V.731. P.127−137.
155. Stepanian S.G., Reva I.D., Radchenko E.D. and Adamowicz L. Conformers on nonionized proline. Matrix-isolation infrared and post-Hartree-Fock ab initio study. // J.Phys.Chem. 2001. V.105. P.10 664−10 672.
156. Mohle K. and Hofmann H-J. Stability order of basic peptide conformations reflected by density functional theory // J.Mol.Model. 1998. V.4. P.53−60.
157. ΠΠΎΠ½Π΄ΡΠ°ΡΡΠ΅Π² M.C., Π‘Π°ΠΌΡΠ΅Π½ΠΊΠΎ A.A., ΠΠΎΠΌΠ°ΡΠΎΠ² B.M., ΠΠ°Π±Π°Π½ΠΎΠ² Π. Π. ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΡΡΡΡΠΊΡΡΡΡ ΠΈ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π»Π°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ L-Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ ΠΎΠ»ΠΈΠ³ΠΎΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ². // «ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°. ΠΠΎΠΌΠΏΡΡΡΠ΅Ρ. ΠΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅». 2005. Π’ΠΎΠΌ 12. Π‘ΡΡ.899−916.
158. ΠΠΎΠ½Π΄ΡΠ°ΡΡΠ΅Π² Π. Π‘., Π‘Π°ΠΌΡΠ΅Π½ΠΊΠΎ Π. Π., ΠΠΎΠΌΠ°ΡΠΎΠ² Π. Π., ΠΠ°Π±Π°Π½ΠΎΠ² Π. Π. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΠΈΠ·ΠΎΠΌΠ΅ΡΠ½ΡΡ ΡΠΎΡΠΌ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ ΠΌΠ΅ΡΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎΠ² N-Π°ΡΠ΅ΡΠΈΠ»-Π°Π»ΡΡΠ°-Π¬-Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ. // «ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°. ΠΠΎΠΌΠΏΡΡΡΠ΅Ρ. ΠΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅». 2006. Π’ΠΎΠΌ 13. Π‘ΡΡ.443−452.
159. ΠΠΎΠ½Π΄ΡΠ°ΡΡΠ΅Π² Π. Π‘., ΠΠ°Π±Π°Π½ΠΎΠ² Π. Π., ΠΠΎΠΌΠ°ΡΠΎΠ² Π. Π. «Π‘ΠΏΠΈΡΠ°Π»Π΅ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅» ΠΊΠΎΠ½ΡΠΎΡΠΌΠ΅ΡΡ Π² ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΡΠΈΠ»Π°ΠΌΠΈΠ΄ΠΎΠ² Π-Π°ΡΠ΅ΡΠΈΠ»-Π°Π»ΡΡΠ°-Π¬-Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ. ΠΠ²Π°Π½ΡΠΎΠ²ΠΎ-Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π ΠΠ Π°Π½Π°Π»ΠΈΠ·. // ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°. 2007. Π’.52. № 3. Π‘ΡΡ.401−408.
160. ΠΡΠΈΡΡΠ½ Π. Π. Π‘ΡΠ°Π΄ΠΈΠΉΠ½ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΡΠ°ΠΌΠΎΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ». // ΠΠΎΠΊΠ». ΠΠ Π‘Π‘Π‘Π . 1973. Π’.210, Π‘ΡΡ.1213−1215.
161. Zagrovic Π., Snow C.D., Shirts M.R. and Pande V.S. Simulation of Folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing // J.Mol.Biol. 2002. V.323. P.927−937.
162. Ananda K, Vasudev P.G., Sengupta A., Raja K.M.P., Shamala N., Balaram P. Polypeptide helices in hybrid peptide sequences. // J.Am.Chem.Soc. 2005. V.127. P.16 668−16 674.
163. Leach S., Nemethy G. and Scheraga H.A. Computation of the sterically allowed conformations of peptides. // Biopolymers. 1966. V.4. P.369−407.
164. Scott R.A. and Scheraga H.A. Conformational analysis of macromolecules.III. Helical structures of polyglycine and poly-L-alanine. // J.Chem.Phys. 1966. V.45. P.2091.
165. Bloom S.M., Fasman G.D., de Loze Π‘., and Blout E.R. The Effect of Amino Acid Composition on the Conformations of Synthetic Polypeptides, Polymers and Copolymers of L-Methionine S-Methyl-L-cysteine and L-Valine. // J.Am.Chem.Soc. 1962.V.84, P.458−463.
166. Kotelchuk D., Scheraga H.A. The Influence of Short-Range Interactions on Protein Conformation, I. Side Chain-Backbone Interactions within a Single Peptide Unit. // Proc.Natl.Acad.Sci.USA. 1968. V.61. P. l 163−1170.
167. Cook D.A. The relation between amino acid sequence and protein conformation. // J.MoI.BioI. 1967. V.29. P.167−171.
168. Cochran D.A., Penel S. and Doig AJ. Effect of the N1 residue on the stability of the a-helix for all 20 amino acids. //Protein Science. 2001. V. 10. P.463−470.
169. Iqbalsyah T.M. and Doig AJ. Effect of the N3 residue on the stability of the a-helix. //Protein Science. 2004. V.3. P.32−39.
170. HyperChem™ Professional 7.51, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32 601, USA.
171. Ren P. and Ponder J.W. Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation. //J.Phys.Chem.B. 2003. V.107. P.5933−5947.
172. ΠΠ΅ΡΠΌΡΠΊΠΎΠ² C.E., ΠΠ΅ΡΠΌΡΠΊΠΎΠ² E.A. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠΈΠΈ Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ°Π»ΡΡΠΈΠΉΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ². // ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°. 2000. Π’.45. № 6. Π‘.990−1006.
173. Kondratyev M.S., Kabanov A.V., Samchenko A.A., Komarov V.M. Aspartic and Glutamic acids are important for alpha-helix folding. // JBSD. 2007. V.24. P.756.
174. Jeffrey G.A., Saenger W. «Hydrogen bonding in biological structures» // SpringerVerlag — 1991 569 P.
175. Papoian G.A., Ulander J., and Wolynes P.G. Role of Water Mediated Interactions in Protein-Protein Recognition Landscapes. // J.Am.Chem.Soc. 2003. V.125. P.9170−9178.
176. Papoian G.A., Ulander J., Eastwood M.P., Luthey-Schulten Z., and Wolynes P.G. Water in protein structure prediction. //Proc.Nat.Acad.Sci.USA. 2004. V.101. P.3352−3357.
177. Levy Y. and Onuchic J.N. Water and proteins: a love-hate relationship. // Proc.Nat.Acad.Sci.USA. 2004. V.101. P.3325−3326.
178. Yao S., Torres A.M., Azad A.A., Macreadie I.G., Norton R.S. Solution structure of peptides from HIV-l Vpr protein that cause membrane permeabilization and growth arrest. // J.Pept.Sci. 1998. V.4. P.426−435.
179. Takemura K., Kitao A. Effects of water model and simulation box size on protein diffusional motions. // J.Phys.Chem.B. 2007. V. l8. P. l 1870−11 872.2101.