ΠΠ²Π°Π·ΠΈΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΠΆΠΈΠΌΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΈ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π»Π°Π·Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Ρ Π·Π°ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΠΎΠΉ
Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΌΠΎΠ½ΠΎΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΡΠΊΠΎΠ² ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΡ Π»Π΅Π³ΠΊΠΈΡ ΠΈΠΎΠ½ΠΎΠ². ΠΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠΎΠΊΠΎ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ ΠΈ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡ Π΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ ΠΏΡΡΠΊΠΎΠ². Π§Π°ΡΡΡ ΡΡΠΈΡ ΡΡ Π΅ΠΌ Π±ΡΠ»Π° ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅. ΠΡΠΎΠ±ΡΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π² ΡΠ²ΡΠ·ΠΈ Ρ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΈΠΎΠ½Π½ΡΡ ΠΏΡΡΠΊΠΎΠ² ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ Π²Π°ΠΆΠ½ΠΎ Π΄Π»Ρ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Strickland, D., MourouG. Compression of amplified chirped optical pulses // Optics Communications 1985. T. 56. Π*3. Π‘. 219 — 221.
- Perry M. D., Pennington D., Stuart Π. C., TietbohlG., Britten J. A., Brown C., HermanS., GolickB., KartzM., Miller J., PowellH. Π’., Vergino M., Yanovsky V. Petawatt laser pulses // Opt. Lett. 1999. T. 24, № 3. C. 160−162.
- Π₯Π°Π·Π°Π½ΠΎΠ²Π. Π., Π‘Π΅ΡΠ³Π΅Π΅Π² A. M. ΠΠ΅ΡΠ°Π²Π°ΡΡΠ½ΡΠ΅ Π»Π°Π·Π΅ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠΈΠ»ΠΈΡΠ΅Π»Π΅ΠΉ: ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ // Π£ΡΠΏΠ΅Ρ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ 2008. Π’. 178, jYa 9. Π‘. 1006.
- BahkS.-W., Rousseau P., PlanchonT. A., Chvykov V., Kalintchenko G., MaksimchukA., Mourou G. A., Yanovsky V. Generation and characterization of the highest laser intensities (1022 W/cm2) // Opt. Lett. 2004. T. 29, .№ 24. C. 2837−2839.
- Yanovsky V., Chvykov V., Kalinchenko G., Rousseau P., PlanchonT., MatsuokaT., MaksimchukA., NeesJ., CheriauxG., Mourou G., KrushelnickK. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate // Opt. Express 2008. T. 16, № 3. C. 2109−2114.
- MourouG. A., TajimaT., BulanovS. V. Optics in the relativistic regime // Rev. Mod. Phys. 2006. T. 78, № 2. C. 309−371.
- NorreysP. A., Beg F. N., SentokuY., SilvaL. O., Smith R. A., TrinesR. M. G. M. Intense laser-plasma interactions: New frontiers in high energy density physics // Physics of Plasmas 2009. T. 16, № 4. C. 41 002.
- JoshiC., MalkaV. Focus on Laser- and Beam-Driven Plasma Accelerators // New Journal of Physics 2010. T. 12, № 4. C. 45 003.
- EsareyE., Schroeder Π‘. Π., Leemans W. P. Physics of laser-driven plasma-based electron accelerators // Rev. Mod. Phys. 2009. T.81, № 3. C. 1229−1285.
- KrushelnickK., MalkaV. Laser wakefield plasma accelerators // Laser & Photonics Reviews 2010. T.4, Π‘. 42−52.I
- MacchiA. A femtosecond neutron source // Applied Physics B: Lasers and Optics 2006. T. 82, № 3. C. 337−340.
- Teubner U., Gibbon P. High-order harmonics from laser-irradiated plasma surfaces // Rev. Mod. Phys. 2009. T.81, >2. C. 445−479.
- WinterfeldtC., Spielmann C., GerberG. Colloquium: Optimal control of high-harmonic generation // Rev. Mod. Phys. 2008. T. 80, № 1. C. 117−140.
- BulanovS. V., EsirkepovT. Z., KhoroshkovV. S., Kuznetsov A. V., Pegoraro F. Oncological hadrontherapy with laser ion accelerators // Physics Letters A 2002. T. 299, № 2−3. C. 240 247.
- HentschelM., KienbergerR., Spielmann C., ReiderG. A., MilosevicN., BrabecT., CorkumP., Heinzmann U., Drescher M., KrauszF. Attosecond metrology // Nature 2001. T. 414. C. 509−513.
- Ichimaru S. Nuclear fusion in dense plasmas // Rev, Mod. Phys. 1993. T. 65, № 2. C. 255 299.
- LabauneC. Laser-driven fusion: Incoherent light on the road to ignition // Nature Physics 2007. T. 3. C. 680−682.
- TabakM., Hammer J., GlinskyM. E., KruerW. L., WilksS. C., WoodworthJ., Campbell E. M., Perry M. D., Mason R. J. Ignition and high gain with ultrapowerful lasers 11 Physics of Plasmas. 1994. Π’. 1, № 5. C. 1626−1634.
- Roth M. Review on the current status and prospects of fast ignition in fusion targets driven by intense, laser generated proton beams // Plasma Physics and Controlled Fusion 2009. T. 51, № 1. C. 14 004.
- Maine P., Mourou G. Amplification of 1-nsec pulses in Nd: glass followed by compression to 1 psec // Opt. Lett. 1988. T. 13, № 6. C. 467−469.
- Mocker Ii. W. Collins R. J. Mode Competition and Self-Locking Effects in a Q-switched Ruby Laser // Applied Physics Letters 1965. T. 7, № 10. C. 270−273.
- KhazcmovE. A., SergeevA. M. Concept study of a 100-PW femtosecond laser based on laser ceramics doped witlrchromium ions // Laser Physics 2007. T. 17, № 12. C. 1398−1403.
- Hugonnot E., DeschaseauxG., Hartmann 0., Coicli. Design of PETAL multipetawatt high-energy laser front end based on optical parametric chirped pulse amplification // Appl. Opt. 2007. T. 46, № 33. C. 8181−8187.
- ΠΠΈΡΠΊΠ°ΡΡΠΊΠ°ΡΠ., Π‘ΡΠ°Π±ΠΈΠΏΠΈΡΠ., Π―ΠΏΠΊΠ°ΡΡΠΊΠ°ΡΠ. Π€Π°Π·ΠΎΠ²ΡΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ Π² ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠΈΠ»ΠΈΡΠ΅Π»ΡΡ ΠΈ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ°Ρ ΡΠ²Π΅ΡΡ ΠΊΠΎΡΠΎΡΠΊΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΡΠ²Π΅ΡΠ° // Π£Π€Π 1986. Π’. 150. Π‘. 127 143.
- ΠΠ΅ΡΠΏΠ°Π»ΠΎΠ² Π. Π., ΠΡΠ΅Π΄ΠΈΡ ΠΈΠ½ Π. Π., ΠΡΡΠΎΠ² Π. Π1., ΠΠ°ΡΠΌΠ°Π½Π. Π., ΠΠ°Π²ΡΠΎΠ² Π. Π. Π‘ΠΊΠΎΡΠΎΡΡΠ½ΠΎΠ΅ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ΄ΠΎΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠ² ΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π±ΠΎΠ»ΡΠΏΠ΅-Π°ΠΈΠ΅ΡΡΡΡΠΈΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ ΡΠ°ΡΡΠΎΡΡ ΡΠ²Π΅ΡΠ° // ΠΠ·Π². ΠΠ Π‘Π‘Π‘Π , ΡΠ΅ΡΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ 1987. Π’. 51. Π‘. 1354−1360.
- ΠΠΈΡΠ²Π°ΠΊΠ. Π. Π Π΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠ°Ρ ΡΠ°ΠΌΠΎΡΠΎΠΊΡΡΠΈΡΠΎΠ²ΠΊΠ° // ΠΠΠ’Π€ 1968. Π’. 57. Π‘. 629.
- ΠΠ°Ρ Π‘. Π., AronsJ., Langdon Π. Π. Self-Modulation and Self-Focusing of Electromagnetic Waves in Plasmas // Phys. Rev. Lett. 1974. T. 33, № 4. C. 209−212.
- ΠΡ ΠΈΠ΅Π·Π΅ΡΠ. Π., ΠΠΎΠ»ΠΎΠ²ΠΈΠ½ P. Π. Π’Π΅ΠΎΡΠΈΡ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ // ΠΠΠ’Π€. 1956. Π’. 30. Π‘. 915.
- KawP., Dawson J. Relativistic Nonlinear Propagation of Laser Beams in Cold Overdense Plasmas 11 Physics of Fluids. 1970. T. 13, № 2. C. 472−481.
- ΠΠ°ΠΏΠΎΠΏΠΎΠ²Π. Π., ΠΠΈΠ»Π»Π΅Ρ M. Π. Π ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΌΠ°Ρ Π΄Π»Ρ Π·Π°ΡΡΠΆΠ΅Π½Π½ΡΡ ΡΠ°ΡΡΠΈΡ Π² Π²ΡΡΠΎΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΡΡ ΠΏΠΎΠ»ΡΡ // ΠΠΠ’Π€ 1958. Π’. 34, № 2. Π‘. 242−243.
- ΠΠΎΠ·Π»ΠΎΠ² Π. Π., ΠΠΈΡΠ²Π°ΠΊΠ. Π., Π‘ΡΠ²ΠΎΡΠΎΠ² Π. Π. ΠΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Π»Π΅Π½Π³ΠΌΡΡΠΎΠ²ΡΠΊΠΈΡ Π²ΠΎΠ»Π½ Π»Π°Π·Π΅ΡΠ½ΡΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠΌ // ΠΠΠ’Π€ 1979. Π’. 76. Π‘. 148.
- TajimaT., Dawson J. M. Laser Electron Accelerator // Phys. Rev. Lett. 1979. T.43, № 4. C. 267−270.
- Farina D., BulanovS. V. Relativistic Electromagnetic Solitons in the Electron-Ion Plasma // Phys. Rev. Lett. 2001. T. 86, № 23. C. 5289−5292.
- Petrov G. M., Davis J. Neutron production from interactions of high-intensity ultrashort pulse laser with a planar deuterated polyethylene target // Physics of Plasmas 2008. T. 15, № 7. C. 73 109.
- NilsonP. M., Theobald W., Myatt.J. F., StoecklC., Storm M., ZuegelJ. D., BettiR., Meyerhofer D. D., SangsterT. C. Bulk heating of β’ solid-density plasmas during high-intensity-laser plasma interactions // Phys. Rev. E 2009. T. 79, C. 16 406.
- Leemans W. P., NaglerB., Gonsalves A. J., TothC., NakamuraK., R. C. G., EsareyE., Schroeder C. B., HookerS. M. GeV electron beams from a centimetre-scale accelerator // Nature Physics 2006. T. 2. C. 696−699.
- NakamuraK., NaglerB., TothC., Geddes C. G. R., SchroederC. B., EsareyE., Leemans W. P., Gonsalves A. J., HookerS. M. GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator // Physics of Plasmas 2007. T. 14, № 5. C.56 708.
- ShadwickB., Tarkenton G., EsareyE., Leemans W. Nonlinear interaction of intense laser pulses in plasmas // IEEE Trans. Plasma Sci. 2002. T. 30. G. 38−39.
- Esarey E., PilloffM. Trapping and acceleration in nonlinear plasma waves // Physics of Plasmas 1995. T.2, № 5. C. 1432−1436.
- Schroeder C. B., EsareyE., ShadwickB. A. Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities // Phys. Rev. E 2005. T. 72, № 5. C. 55 401.
- PukhovA., terVehnJ. M. Laser wake field acceleration: the highly non-linear broken-wave regime // Appl. Phys. B 2002. T. 74, № 4−5. C. 355−361.
- LuW.,. Huang G., ZhouM., TzoujrasM., TsungF. S., MoriW. B., Katsouleas T. A nonlinear theory for multidimensional relativistic plasma wave wakefields // Physics of Plasmas 2006. T.13, № 5. C. 56 709.
- KostyukovI., NerushE., PukhovA., SeredovV. A multidimensional theory for electron trapping by a plasma wake generated in the bubble regime // New Journal of Physics 2010. T. 12, № 4. C. 45 009.
- GeddesC. G. R., TothC., vanTilborgJ., EsareyE., SchroederC. B., BruhwilerD., NieterC., Gary J., LeemansW. P. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding // Nature 2004. T. 431. C. 538−541.
- FaureJ., GlinecY., PukhovA., KiselevS., GordienkoS., LefebvreE., Rousseau J.-P., BurgyF., Malka V. A laser-plasma accelerator producing monoenergetic electron beams // Nature 2004. T.431. C. 541−544.
- KrallJ., Ting A., EsareyE., Sprangle P. Enhanced acceleration in a self-modulated-laser wake-field accelerator // Phys. Rev. E 1993. T. 48, № 3. C. 2157−2161.
- BulanovS. V., PegoraroF., PukhovA. M. Two-Dimensional Regimes of Self-Focusing, Wake Field Generation, and Induced Focusing of a Short Intense Laser Pulse in an Underdense Plasma // Phys. Rev. Lett. 1995. T. 74, № 5. C. 710−713.
- Rosenbluth M. N., Liu G. S. Excitation of Plasma Waves by Two Laser Beams 11 Phys. Rev. Lett. 1972. T. 29, № 11. C. 701−705.
- KitagawaY., MatsumotoT., Minamihata T., SawaiK., MatsuoK., MimaK., NishiharaK., AzechiH., TanakaK. A., TakabeH., NakaiS. Beat-wave excitation of plasma wave and observation of accelerated electrons // Phys. Rev. Lett. 1992. T. 68, № 1. C. 48−51.
- PukhovA., ShengZ.-M., terVehnJ. M. Particle acceleration in relativistic laser channels // Physics of Plasmas 1999. T. 6, № 7. C. 2847−2854.
- Bidding B., KonigsLeinT., OsterholzJ., KarschS., Willi 0., PretzlerG. Monoenergetic
- Energy Doubling in a Hybrid Laser-Plasma Wakefield Accelerator // Phys. Rev. Lett. 2010. T. 104, № 19. C. 195 002.
- RosenzweigJ. B., BreizmanB., Katsouleas T., SuJ. J. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields 11 Phys. Rev. A 1991. T. 44, № 10. C. R6189-R6192.
- WilksS. C., LangdonA. B., Cowan T. E., RothM., SinghM., HatchettS., KeyM. II., Pennington D., MacKinnon A., Snavely R. A. Energetic proton generation in ultra-intense laser-solid interactions // Physics of Plasmas 2001. T. 8, № 2. C. 542−549.
- Passoni M., Bertagna L., ZaniA. Target normal sheath acceleration: theory, comparison with experiments and future perspectives // New Journal of Physics 2010. T. 12, № 4. C. 45 012.
- HcgelichB. M., AlbrightB. J., CobbleJ., FlippoK., LetzringS., PaffettM., RuhlH., Schreiber J., SchulzeR. K., Fernandez J. C. Laser acceleration of quasi-monoenergetic MeV ion beams // Nature 2006. T. 439. C. 441−444.
- Schwoerer H., Pfotenhauer S., Jacket O., Amthor K.-ULiesfeldB., ZieglerW., Sauerbrey R., LedinghamK. W. D., EsirkepovT. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets // Nature 2006. T. 439. C. 445−448.
- WangF., ShenB., ZhangX., JinZ., WenM., JiL., Wang W., XuJ., YuM. Y, CaryJ. High-energy monoenergetic proton bunch from laser interaction with a complex target // Physics of Plasmas 2009. T. 16, № 9. C. 93 112.
- PaeK. H., Choil. W., IlahnS. J., CaryJ. R., Lee J. Proposed hole-target for improving maximum proton energy driven by a short intense laser pulse // Physics of Plasmas 2009. T. 16, № 7. C. 73 106.
- EsirkepovT., BorghesiM., BulanovS. V., MourouG., TajimaT. Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime // Phys. Rev. Lett. 2004. T. 92, № 17. C. 175 003.
- LebedewP. Untcrsuchungen uMber die Druckkra"fte des Lichtes // Annalen der Physik 1901. T.311. C. 433−458.
- MacchiA., CattaniF., Liseykina Π’. V., CornoltiF. Laser Acceleration of Ion Bunches at the Front Surface of Overdense Plasmas // Phys. Rev. Lett. 2005. T. 94, № 16. C. 165 003.
- HeF., XuH., Tian Y., Yu W., LuP., LiR. Ion cascade acceleration from the interaction of a relativistic femtosecond laser pulse with a narrow thin target // Physics of Plasmas 2006. T. 13, № 7. C. 73 102.
- Holkundkar A. R., Gupta N. K. Effect of initial plasma density on laser induced ion acceleration // Physics of Plasmas 2008. T. 15, № 12. C. 123 104.
- ZhangX., ShenB., Π«Π₯., JinZ., WangF. Multistaged acceleration of ions by circularly polarized laser pulse: Monoenergetic ion beam generation // Physics of Plasmas 2007. T. 14, № 7. C. 73 101.
- Zhang X., ShenB., LiX., JinZ., WangF., WenM. Efficient GeV ion generation by ultraintense circularly polarized laser pulse // Physics of Plasmas 2007. T. 14, № 12. C. 123 108.
- LiseikinaT. V., MacchiA. Features of ion acceleration by circularly polarized laser pulses // Applied Physics Letters 2007. T.91, № 17. C. 171 502.
- MacchiA., VeghiniS., Pegora. ro F. «Light Sail» Acceleration Reexamined // Phys. Rev. Lett. 2009. T. 103, № 8. C. 85 003.
- MacchiA., VeghiniS., LiseykinaT. V., Pegoraro F. Radiation pressure acceleration of ultrathin foils j j New Journal of Physics 2010. T. 12, № 4. C. 45 013.
- Pegoraro F., BulanovS. V. Photon Bubbles and Ion Acceleration in a Plasma Dominated by the Radiation Pressure of an Electromagnetic Pulse // Phys. Rev. Lett. 2007. T. 99, № 6. C. 65 002.
- Robinson A. P. L., ZepfM., KarS., Evans R. G., BelleiC. Radiation pressure acceleration of thin foils with circularly polarized laser pulses // New Journal of Physics 2008. T. 10, № 1. C. 13 021.
- KlimoO., PsikalJ., LimpouchJ., TikhonchukV. T. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses // Phys. Rev. ST Accel. Beams 2008. T. 11, № 3. C. 31 301.
- Pegoraro F., BulanovS. V. Stability of a plasma foil in the radiation pressure dominated regime // Eur. Phys. J. D 2009. T. 55, № 2. C. 399−405.
- ChenM., PukhovA., ShengZ. M., YanX. Q. Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets // Physics of Plasmas 2008. T. 15, № 11. C. 113 103.
- ChenM., PukhovAYuT. P., ShengZ. M. Enhanced Collimated GeV Monoenergetic Ion Acceleration from a Shaped Foil Target Irradiated by a Circularly Polarized Laser Pulse // Phys. Rev. Lett. 2009. T. 103, № 2. C. 24 801.
- YanX. Q., WuH. C., ShengZ. M., ChenJ. E., Meyer-terVehnJ. Self-Organizing GeV, Nanocoulomb, Collimated Proton Beam from Laser Foil Interaction at 7×1021 W/cm2 11 Phys. Rev. Lett. 2009. T. 103, № 13. C. 135 001.
- Qiao D., ZepfM., Borghesi M., GeisslerM. Stable GeV Ion-Beam Acceleration from Thin Foils by Circularly Polarized Laser Pulses // Phys. Rev. Lett. 2009. T. 102, № 14. C. 145 002.
- KarS., Borghesi M., BulanovS. V., Key M. H., LiseykinaT. V., MacchiA., Mackinnon A. J., PatelP. K., RomagnaniL., SchiaviA., Willi O. Plasma Jets Driven by Ultraintense-Laser Interaction with Thin Foils // Phys. Rev. Lett. 2008. T. 100, № 22. C. 225 004.
- ShenB., Li Y., YuM. Y., CaryJ. Bubble regime for ion acceleration in a laser-driven plasma // Phys. Rev. E 2007. T.76, № 5. C. 55 402.
- ShenB., ZhangX., ShengZ., YuM. Y., CaryJ. High-quality monoenergetic proton generation by sequential radiation pressure and bubble acceleration // Phys. Rev. ST Accel. Beams 2009. T. 12, № 12. C. 121 301.
- YinL., Albright B. J., HegelichB. M., BowersK. JFlippoK. A., KwanT. J. T., Fernandez J. C. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets // Physics of Plasmas 2007. T. 14, № 5. C. 56 706.
- Buneman O. Instability, Turbulence, and Conductivity in Current-Carrying Plasma // Phys. Rev. Lett. 1958. T. 1, № 1. C.8−9.
- AlbrightB. J., YinL., BowersK. JHegelichB. M., FlippoK. A., KwanT. J. T., Fernandez J. C. Relativistic Buneman instability in the laser breakout afterburner // Physics of Plasmas 2007. T. 14, № 9. C. 94 502.
- Carman R. L., ForslundD. W., KindelJ. M. Visible Harmonic Emission as a Way of Measuring Profile Steepening // Phys. Rev. Lett. 1981. T.46, № 1. C. 29−32.
- Bezzerides B., Jones R. D., ForslundD. W. Plasma Mechanism for Ultraviolet Harmonic Radiation Due to Intense C02 Light //' Phys. Rev. Lett. 1982. T.49, № 3. C.202−205.
- BulanovS. V., NaumovaN. M., Pegoraro F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma // Physics of Plasmas 1994. T. 1, № 3. C. 745 757.
- LichtersR., terVehnJ. M., PukhovA. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity // Physics of Plasmas 1996. T. 3, № 9. C. 3425−3437.
- Gibbon P. Harmonic Generation by Femtosecond Laser-Solid Interaction: A Coherent «Water-Window» Light Source? // Phys. Rev. Lett. 1996. T. 76, № 1. C. 50−53.
- Gordienko S., PukhovA., Shorokhov O., Baeva T. Relativistic Doppler Effect: Universal Spectra and Zeptosecond Pulses // Phys. Rev. Lett. 2004. T. 93, № 11. C. 115 002.
- Gordienko S., PukhovA., Shorokhov O., BaevaT. Coherent Focusing of High Harmonics: A New Way Towards the Extreme Intensities // Phys. Rev. Lett. 2005. T. 94, № 10. C. 103 903.
- BaevaTGordienko S., PukhovA. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma // Phys. Rev. E 2006. T- 74, № 4. C.46 404.
- DrorneyB., ZepfM., GopalA., LancasterK., WeiM. S., KrushelnickK., TatarakisM., VakakisN., Moustaizis S., KodamaR., TampoM., StoecklC., Clarke R., HabaraH.,
- NcelyD., KarschS., NorreysandP. High harmonic generation in the relativistic limit // Nature Physics 2006. T. 2. C. 456−459.
- QuereF., ThauryC., MonotP., DoboszS., MartinP., Geindre J.-P., AudebertP. Coherent Wake Emission of High-Order Harmonics from Overdense Plasmas // Phys. Rev. Lett. 2006. T. 96, № 12. C. 125 004.
- BrunelF. Not-so-resonant, resonant absorption 11 Phys. Rev. Lett. 1987. T. 59, № 1. C. 52−55.
- ThauryC., QuereF., Geindre J.-P., Levy A., CeccottiT., MonotP., BougeardM.,
- ReduF., d’OliveiraP., AudebertP., MarjoribanksR., MartinP. Plasma mirrors for ultrahigh-intensity optics // Nature Physics 2007. T. 2. C. 424−429.
- ThauryC., George H., QuereF., LochR., Geindre J.-P., MonotP., MartinP. Coherent dynamics of plasma mirrors // Nature Physics 2008. T. 4. C. 631−634.
- PlajaL., RosoL., Rzazewski K., LewensteinM. Generation of attosecond pulse trains during the reflection of a very intense laser on a solid surface //J. Opt. Soc. Am. B 1998. T. 15, № 7. C. 1904−1911.
- PirozhkovA. S., BulanovS. V., EsirkepovT. Z., MoriM., SagisakaA., DaidoH. Attosecond pulse generation in the relativistic regime of the laser-foil interaction: The sliding mirror model // Physics of Plasmas 2006. T. 13, № 1. C. 13 107.
- Tsakiris G. D., EidmannK., terVehnJ. M., KrauszF. Route to intense single attosecond pulses // New Journal of Physics 2006. T. 8, jTs 1. C. 19.
- Geissler M., RykovanovS., Schreiber J., terVehnJ. M., TsakirisG. D. 3D simulations of surface harmonic generation with few-cycle laser pulses // New Journal of Physics 2007. T. 9, № 7. C. 218.
- NaumovaN. M., NeesJ. A., Sokolovl. V., HouB., MourouG. A. Relativistic Generation of Isolated Attosecond Pulses in a A3 Focal Volume // Phys. Rev. Lett. 2004. T. 92, № 6. C. 63 902.
- RykovanovS. G., GeisslerM., terVehnJ. M., TsakirisG. D. Intense single attosecond pulses from surface harmonics using the polarization gating technique // New Journal of Physics 2008. T.10,2. C. 25 025.
- Sauerbrey R., FureJ., BlancS. P. L., vanWonterghemB., TeubnerU., Schafer F. P. Reflectivity of laser-produced plasmas generated by a high intensity ultrashort pulse@f| // Physics of Plasmas 1994. T. 1, № 5. C. 1635−1642.
- CerchezM., Jung R., Osterholz J., ToncianT., Willi O., Mulser P., RuhlH. Absorption of Ultrashort Laser Pulses in Strongly Overdense Targets // Phys. Rev. Lett. 2008. T. 100, jYs 24. C. 245 001.
- NakatsutsumiM., KodarnaR., AglitskiyY., AkliK. U., BataniD., BatonS. D., BegF. N., Benuzzi-MounaixA., ChenS. N., ClarkD., DaviesJ. R., FreemanR. R.,
- Gibbon P., Bell A. R. Collisionless absorption in sharp-edged plasmas // Phys. Rev. Lett. 1992. T. 68, № 10. C. 1535−1538.
- Gibbon P. Efficient production of fast electrons from femtosecond laser interaction with solid targets // Phys. Rev. Lett. 1994. T. 73, № 5. C. 664−667.
- WilksS. C., KruerW. L., TabakM., Langdon A. B. Absorption of ultra-intense laser pulses // Phys. Rev. Lett. 1992. T. 69, № 9. C. 1383−1386.
- DenavitJ. Absorption of high-intensity subpicosecond lasers on solid density targets // Phys. Rev. Lett. 1992. T. 69, № 21. C. 3052−3055.
- RuhlH., MacchiA., MulserP., CornoltiF., HainS. Collective Dynamics and Enhancement of Absorption in Deformed Targets // Phys. Rev. Lett. 1999. T. 82, № 10.1. C.2095−2098.
- MulserP., BauerD., RuhlH. Collisionless Laser-Energy Conversion by Anharmonic Resonance // Phys. Rev. Lett. 2008. T. 101, № 22. C. 225 002.
- Max C., Perkins F. Strong Electromagnetic Waves in Overdense Plasmas // Phys. Rev. Lett. 1971. T. 27, № 20. C. 1342−1345.
- FuchsJ., AdarnJ. C., ArniranoffF., BatonS. D., GallantP., GremilletL., HeronA., KiefferJ. C., Laval G., MalkaG., MiquelJ. L., MoraP., PepinH., RousseauxG.
- Transmission through Highly Ovcrdense Plasma Slabs with a Subpicosecond Relativistic Laser Pulse // Phys. Rev. Lett. 1998. T.80, № 11. C. 2326−2329.
- CattaniF., Kim A., AndersonD., LisakM. Threshold of induced transparency in the relativistic interaction of an electromagnetic wave with overdense plasmas // Phys. Rev. Π. 2000. T. 62, № 1. C. 1234−1237.
- Kim A., CattaniF., Anderson D., LisakM. New regime of anomalous penetration of relativistically strong laser radiation into an overdense plasma // JETP Letters. 2000. T. 72, № 5. C. 241−244.
- Tushentsov M., Kim A., CattaniF., Anderson D., LisakM. Electromagnetic Energy Penetration in the Self-Induced Transparency Regime of Relativistic Laser-Plasma Interactions // Phys. Rev. Lett. 2001. T.87, № 27. C. 275 002:
- GhizzoA., Johnston T. W., Reveille T., Bertrand P., Albrecht-Marc M. Stimulated-Raman-scatter behavior in a relativistically hot plasma slab and an electromagnetic low-order pseudocavity // Phys. Rev. E 2006. T. 74, № 4. C. 46 407.
- GhizzoA., DelSarto D., Reveille T., BesseN., KleinR. Self-induced transparency scenario revisited via beat-wave heating induced by Doppler shift in overdense plasma layer // Physics of Plasmas 2007. T. 14, № 6. C. 62 702.
- Marburger J. H., TooperR. F. Nonlinear Optical Standing Waves in Overdense Plasmas // Phys. Rev. Lett. 1975. T. 35, № 15. C. 1001−1004.
- FelberF. S., Marburger J. H. Nonlinear Optical Reflection and Transmission in Overdense Plasmas // Phys. Rev. Lett. 1976. T. 36, № 20. C. 1176−1180.
- CatLaniF., Kim A., Anderson D., LisakM. Multifilament structures in relativistic self-focusing // Phys. Rev. E. 2001. T.64, № 1. C. 16 412.
- ΠΡΠ»Π°Π½ΠΎΠ² Π‘. Π., ΠΠΈΡΡΠ°Π½ΠΎΠ² Π. Π., Π‘Π°Ρ Π°ΡΠΎΠ² Π. Π‘. ΠΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ»ΡΡΡΠ°ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΈΡ Π»Π΅Π½Π³ΠΌΡΡΠΎΠ²ΡΠΊΠΈΡ Π²ΠΎΠ»Π½ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ // ΠΠΈΡΡΠΌΠ° Π² ΠΠΠ’Π€ 1989. Π’. 50. Π‘. 176−178.
- ΠΠΎΡΡ1ΡΠΈΠΌΠ°ΠΏΠΎΠ² Π. Π., ΠΡΠ΅ΠΌΠΈΠ½ Π. Π., ΠΠΈΠΌ Π. Π., Π’ΡΡΠ΅Π½ΡΠΎΠ²Π. Π . Π Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΈ ΡΠΈΠ»ΡΠ½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ Π²ΠΎΠ»Π½ ΡΠΎ ΡΠ»ΠΎΠ΅ΠΌ Π·Π°ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ // ΠΠΠ’Π€. 2007. Π’. 132, № 4. Π‘. 771−784.
- KorzhimanovA. V., KirnA. V. Plasma-field structures during relativistic laser interaction with overdense plasmas at finite electron temperatures // Eur. Phys. J. D. 2009. T. 55, № 2. C. 287−292.
- GonoskovA. A., KorzhimanovA. V., EreminV. I., KimA. V., SergeevA. M. Multicaseade Proton Acceleration by a Superintense Laser Pulse in the Regime of Relativistically Induced Slab Transparency // Phys. Rev. Lett. 2009. T. 102, № 18. C.184 801.
- Yee K. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media // IEEE Trans. Ant. Prop. 1966. T. 14, № 5. C. 302−307.
- Berenger J.-P. A perfectly matched layer for the absorption of electromagnetic waves // Journal of Computational Physics 1994. T. 114, № 2. C. 185 200.
- FilbetF., Sonnendrocker E.} Bertrand P. Conservative Numerical Schemes for the Vlasov Equation // Journal of Computational Physics 2001. T. 172, № 1. C. 166 187.
- Mangeney A., Califano F., Cavazzoni C., TravnicekP. A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations // Journal of Computational Physics 2002. T. 179, № 2. C.495 538.