Помощь в написании студенческих работ
Антистрессовый сервис

Моноклональные антитела к нейроспецифическим белкам (НСБ). Получение, иммунохимический анализ, исследование гематоэнцефалического барьера

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Разработка способа получения моноклональных антител для каждого из НСБ, по сути дела, в каждом случае является самостоятельной научной проблемой, напрямую зависящей от природы антигена, его физико-химических свойств, клеточной локализации. Невозможно использовать ранее известные методические подходы, применяемые для получения гомогенных препаратов одного НСБ, для выделения других НСБ… Читать ещё >

Моноклональные антитела к нейроспецифическим белкам (НСБ). Получение, иммунохимический анализ, исследование гематоэнцефалического барьера (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
  • МОНОКЛОНАЛЬНЫЕ АНТИТЕЛА В ИММУНОХИМИЧЕСКОМ АНАЛИ- 12 ЗЕ НЕЙРОСПЕЦИФИЧЕСКИХ БЕЛКОВ
    • I. Нейроспецифические белки
  • Глиофибриллярный кислый протеин (ОБАР)
  • Нейроспецифическая еиолаза (ИЗЕ), или антиген
  • Основной белок миелина (МВР)
    • II. Моноклональные антитела к нейроспсцифическим белкам и их клини-ко-лабораторное применение
  • Современные представления о моноклональных антителах и способах их получения
    • 2. 7. Приготовление ПЭГилированных липосом, конъюгированных с анти-НСБ-антителами
  • Моноклональные анти-ОРАР-АТ и их клинико-лабораторное применение
  • Моноклональные анти-МБЕ-АТ и их клинико-лабораторное применение
  • Моноклональные анти-МВР-АТ и их клинико-лабораторное применение
    • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Характеристика исследуемого материала
    • 2. 2. Общие методы, применяемые при очистке нейроспецифических антигенов
    • 2. 3. Получение антисывороток к нейроспецифическим белкам, их анализ и стандартизация
    • 2. 4. Получение моноклональных антител к нейроспецифическим белкам и их характеристика
    • 2. 5. Методы иммунохимическиго анализа
    • 2. 6. Методы количественного определения белка
    • 2. 8. Статистическая обработка полученпых результатов
  • РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ
    • ГЛАВА 3. Разработка способов получения нейроспецифических белков (GFAP,
  • NSE и МВР) высокой степени чистоты
    • ГЛАВА 4. Получение моноклональных антител к нейроспецифическим белкам анти-GFAP-, анти-NSE- и анти-МВР-антител)
  • ГЛАВА 5. Разработка тест-систем иммуноферментного определения нейроспецифических антигенов и антител к ним в биологических жидкостях на основе моно- 190 клональных антител

ГЛАВА 6. Комплексный иммуноферментный анализ нейроспецифических белков (GFAP, NSE, МВР) и антител к ним в биологических жидкостях больных, с забо- 201 леваниями, сопровождающимися нарушением проницаемости ГЭБ.

ГЛАВА 7. Исследование резистентности ГЭБ для анти-КБЕ-антител в эксперименте

ГЛАВА 8. Исследование перспектив направленного транспорта ПЭГилированных иммунолипосом на основе моноклональных анти-GFАР-антител к клеткам- 236 мишеням нервной ткани.

АКТУАЛЬНОСТЬ ТЕМЫ

.

Хорошо известно, что специфические свойства клеток нервной ткани в известной мере определяются структурой и функциями нейроспецифических белков (НСБ), посредством которых генетическая информация получает свое реальное воплощение [6, 24, 175, 187, 359]. Несмотря на то, что за 40-летний период, появились сообщения о более чем 65 НСБ, научное направление, связанное с их изучением, продолжает активно развиваться как в фундаментальном, так и в прикладном аспектах [118, 187, 246, 267, 282, 297, 320, 332,411, 414,461,476, 518, 538].

Основными методами идентификации НСБ, а также их качественного и количественного определения в биологических жидкостях и тканях являются методы иммунохимического анализа [15, 29, 187, 386, 391, 410,438, 440, 441].

В этом аспекте, признавая роль поликлональных антител, как инструмента обеспечившего и значительно расширившего концептуальное понимание механизмов функционирования клеток нервной ткани и нервной системы в целом, стало очевидным, что эффективность дальнейшего применения поликлональных антител ограничивается рядом недостатков, которых практически невозможно избежать как при исследовании спектра антигенов нервной ткани, так и при разработке методов диагностики и лечения. Даже иммунизация высокоочищенными> препаратами НСБ не может исключить присутствие в антисыворотках антител к антигенам, содержащихся в основном препарате в виде минорных примесей, не говоря об антителах к различным эпитопам антигена [118, 167, 187, 230, 234, 410, 440, 441 480, 484].

Открытие в 1975 Kohler G. и Milstein С. [288] способа длительного культивирования Ig-секретируюших клеток, привело к созданию технологии получения гибридом, способных продуцировать моноклональные антитела, специфичные к одной антигенной детерминанте в неограниченных количествах. Благодаря тщательному скринингу и отбору гибридомных клонов, участие моноклональных антител в перекрестных реакциях практически исключено, что объясняет высокую специфичность диагностических тест-систем на их основе, а также возможность их полноценной стандартизации.

Преимущества препаратов моноклональных антител перед поликлональны-ми обусловлены, прежде всего, их уникальной гомогенностью и специфичностью. 5.

Продуцируясь одним клоном гибридных клеток моноклональные антитела абсолютно идентичны между собой и обладают способностью связывать только один эпитоп молекулы антиген, выявляя его в пикограммовых количествах [376, 394, 487, 502]. Очевидно, что эти свойства моноклональных антител окрывают новые перспективы не только в исследовании субмолекулярной структуры антигенов и эпитопов в частности, но и в разработке диагностических тест-систем [82, 303, 415], а также в создании диагностических и лекарственных препаратов направленного типа действия [109, 121, 190, 260, 270, 425, 441, 442, 506, 508, 522, 523].

Разработка способа получения моноклональных антител для каждого из НСБ, по сути дела, в каждом случае является самостоятельной научной проблемой, напрямую зависящей от природы антигена, его физико-химических свойств, клеточной локализации [49, 234, 441, 484]. Невозможно использовать ранее известные методические подходы, применяемые для получения гомогенных препаратов одного НСБ, для выделения других НСБ, различающихся по химической структуре и свойствам [187, 246, 267, 297, 411, 518, 538]. Очевидно, что при видимом однообразии методических приемов получения гибридных клеток К (ТОму и или иному антигену, получение моноклональных антител к конкретному НСБ является самостоятельной научной и технологической задачей.

С другой стороны, получение моноклональных антител к нейроспецифиче-скому белку по-новому формирует стратегии повышения его гомогенности путем очистки методами иммуноафинной хроматографии, анализа в биологических жидкостях, фундаментального и прикладного исследования субмолекулярной структуры и функций НСБ. Особый фундаментальный интерес представляет собой возможность создания банка моноклональных антител для идентификации, биологического сравнения НСБ и стандартизации методов их детекции.

Очевидно, что разработка иммунохимических тест-систем анализа НСБ на основе соответствующих моноклональных антител открывает перспективы изучения метаболизма НСБ в норме и при патологии, анализа функций гематоэнцефа-лического барьера ГЭБ при заболеваниях, сопровождающихся нарушением его резистентности, а также роли анти-НСБ-антител в патогенезе нервно-психических заболеваний.

Самостоятельное значение могут иметь научные направления, исследующие возможности применения моноклональных анти-НСБ-антител как транспорти6 рующих векторов для доставки диагностических и лекарственных препаратов к клеткам-мишеням нервной ткани.

ЦЕЛЬ РАБОТЫ:

Получить моноклональные анти-НСБ-антитела, исследовать функции гема-тоэнцефалического барьера с помощью иммунохимических тест-систем, разработанных на их основе, и оценить перспективы создания иммунолипосомальных систем транспорта к клеткам-мишеням нервной ткани.

В связи с этим были поставлены следующие ЗАДАЧИ:

1. Разработать способы получения препаратов СБ АР,Е и МБР, степень гомогенности которых удовлетворяет критериям чистоты белковых препаратов, необходимых для получения моноклональных антител и создания иммунофермент-ных систем анализа;

2. Разработать способы получения моноклональных антител к СБ АР,Е и МБР;

3. Разработать и апробировать в клинико-лабораторной практике иммунофер-ментные тест-системы анализа СБ АР, ШЕ и МБР в биологических жидкостях на • основе моноклональных антител, пригодные для практического здравоохранения;

4. Провести иммуноферментный скрининг ОБ АР, ШЕ и МБР в биологических жидкостях больных нервно-психическими, нейроонкологическими и соматическими заболеваниями, сопровождающимися нарушением проницаемости ГЭБ;

5. Провести сравнительный анализ иммуноферментных тест-систем определения исследуемых НСБ на основе поликлональных и моноклональных антител;

6. Изучить клеточную специфичность СБ АР,Е и МБР на срезах препаратов нервной ткани и культурах нейронов, астроцитов и олигодендроглиоцитов;

7. Исследовать проницаемость ГЭБ в направлении кровь-мозг для меченных I125 моноклональных анти-НСБ-антител в норме и при экспериментальной ишемии головного мозга крыс.

8. Исследовать перспективы применения моноклональных анти-НСБ-антител как векторов для направленного транспорта лекарственных и диагностических препаратов к клеткам-мишеням нервной ткани.

НАУЧНАЯ НОВИЗНА.

Разработанные способы получения препаратов нейроспецифических белков (ОБАР, №Е, МВР), позволили получить моноклональные антитела и создать им-муноферментные и иммуногистохимические системы анализа НСБ в биологических жидкостях человека и животных.

Модифицированная технология получения гибридных клеток на основе В-лимфоцитов селезенки мышей, предварительно иммунизированных очищенными препаратами НСБ (ОБАР,Е, МВР) и клетками миеломной линии 8р2/0 позволила получить моноклональные антитела к этим антигенам.

Впервые создан отечественный банк гомогенных препаратов нейроспецифических антигенов (ОБАР, ИБЕ, МВР) и моноклональных антител к ним, а также разработана стратегия их стандартизации.

Впервые разработаны иммуноферментные тест-системы анализа СБАР, КБЕ, МВР в биологических жидкостях и тканевых экстрактах на основе моноклональных антител и проведена их стандартизация.

Впервые разработаны иммуногистохимические тест-системы, позволяющие? высокоселективно визуализировать клетки нервной ткани, синтезирующие НСБ (ОРАР, ШЕ, МВР).

Впервые осуществлена клинико-лабораторная апробация разработанных иммуноферментных тест-систем анализа НСБ на основе моноклональных анти-НСБ-антител в биологическом материале больных, в патогенезе заболеваний которых имеет место нарушение функций ГЭБ, а также проведен сравнительный анализ эффективности применения диагностических тест-систем на основе поликло-нальных и моноклональных антител.

Впервые в эксперименте выявлен феномен прорыва через ГЭБ и селективного накопления в ткани мозга меченных I125 анти-НСБ-антител после их внутривенного введения при индуцированном гипоксически-ишемическом поражении головного мозга крыс. Подобный феномен не наблюдался в случае инъекции соответствующих препаратов животным с нормальным ГЭБ.

Впервые разработана технология создания ПЭГилированных иммунолипо-сомальных контейнеров направленного типа действия на основе моноклональных антител к ОБ АР, ЫБЕ и МВР, способных селективно захватываться лишь экспонированными на мембране антигенами соответствующих клеток-мишеней.

ПРАКТИЧЕСКАЯ ЦЕННОСТЬ.

1. Создан отечественный банк стандартных гомогенных препаратов ОБ АР,Е и МВР, степень гомогенности которых позволяет получать гибридные клетки, продуцирующие моноклональные антитела к этим НСБ.

2. Разработана технология получения гибридных клеток, продуцирующих моноклональные антитела к ОБ АР, ЫБЕ и МВРпроведена их стандартизация и создан отечественный банк гибридом, продуцирующих вышеуказанные моноклональные антитела.

3. Разработаны и внедрены в клинико-лабораторную' практику иммуно-ферментные тест-системы анализа ОБ АР, ЫБЕ и МВР на основе моноклональных антител к ним. Проведена апробация этих тест-систем в клинико-лабораторной практике для комплексного обследования больных, в патогенезе заболеваний которых имеет место нарушение функций ГЭБВыработаны рекомендации по применению диагностических тест-систем анализа нейроспецифических антигенов на основе моноклональных антител в клинико-лабораторной практике. I.

4. Разработана технология получения ПЭГилированных иммунолипосо-мальных контейнеров на основе моноклональных анти-НСБ-антител направленных к клеткам мишеням нервной ткани.

ОСНОВНЫЕ ПОЛОЖЕНИЯ. ВЫНОСИМЫЕ НА ЗАЩИТУ:

1 .Разработанные способы очистки препаратов нейроспецифических белков (вРАР, ЫБЕ и МВР), позволяют применять их для получения гибридных клеток продуцирующих соответствующие моноклональные антитела.

2.Модифицированная технология создания гибридных клеток на основе В-лимфоцитов селезенки мышей, предварительно иммунизированных очищенными препаратами НСБ (ОБАР,Е, МВР) и клеток миеломной линии 8р2/0, позволяет получать моноклональные антитела к этим антигенам.

3.Полученные препараты НСБ (ОБАР, ЫБЕ, МВР) и соответствующих моноклональных антител дают возможность разработать на их основе иммунофер-ментные и иммуногистохимические тест-системы анализа ОБ АР, ЫБЕ и МВР, характеризующиеся общепринятыми стандартами параметров точности, воспроизводимости и надежности.

4.Иммуноферментный анализ НСБ на основе моноклональных антител в сыворотке крови и ликворе, может быть применен для диагностики, мониторинга и контроля эффективности проводимой терапии больных нервными, психическими, онкологическими, инфекционными и соматическими заболеваниями, сопровождающимися нарушением функций ГЭБ.

5.Дефинитивный гематоэнцефалический барьер непроницаем для препара.

125 тов меченных I анти-НСБ-антител, введеных в кровоток. Гипокси-ишемическое поражение головного мозга, индуцированное путем окклюзии ветви средней мозговой артерии, приводит к нарушению резистентности ГЭБ, сопровождающемуся.

1 9 ^ феноменом прорыва и накопления в ткани мозга препаратов меченных I анти-НСБ-антител, введеных в кровоток.

6.Разработанная технология получения ПЭГилированных иммунолипосом на основе моноклональных анти-НСБ-антител позволяет создавать микроконтейнеры направленного типа действия, способные селективно захватываться соответствующими антигенами мембран клеток-мишеней.

АПРОБАЦИЯ. ВНЕДРЕНИЕ. ПУБЛИКАЦИИ.

Результаты диссертационной работы используются в клинике нервных болезней Российского государственного медицинского университета и НИИ неврологии РАМН. Различные аспекты диссертационной работы явились основанием для планирования новых научных тем, продолжающих данное научное направление.

Основные положения были представлены и обсуждены на VIII International Symposium on Recent Advances in Drug Delivery Systems, Salt Lake City, Utah, February 1997; III rd European Meeting on glial cell function in health and disease, Greece, May 1998; 5 IBRO WORDL CONGRESS OF NEUROSCIENCE, Jerusalem, Israel, 1999; IV European meeting on glial cell function in health and disease, Barcelona, may 2000; в материалах II Российского Конгресса по патофизиологии, Москва, 2000; XXII C.I.N.P. Congress, Brussels, Belgium, July 2000; 3-rd International conference «Biological basis of individual sensitivity to psychotropic drugs», Suzdal, May 2001; I Neurotoxicity meeting: mechanisms for neurodegenerative disorders, March 2001, Pucon, ChileInternational Conference of Neurochemistry, September 2001, Yerevan-, FIFTH EUROPEAN MEETING ON GLIAL CELL FUNCTION IN HEALTH AND DISEASE Rome, Italy, May 2002; II Российской конференции «Нейроиммуно-патология», Москва, май 2002 г. на семинаре «Актуальные проблемы современной.

10 психиатрии", Томск, декабрь 2002 г., на заседаниях Проблемного Совета по биологическим основам психиатрии ГНЦ ССП им. В. П. Сербского, 2000;2003; SIXTH IBRO WORLD CONGRESS OF NEUROSCIENCE, July 10 — 15, 2003, Prague, Czech Republic, VI European Meeting on Glial Cell Function in Health and Disease Germany, Berlin, 2003.

По теме диссертации опубликовано 46 печатных работ, результаты диссертации включены в монографию «Иммунохимический анализ нейроспецифических антигенов» Москва, Медицина, 2003.

ОБЪЕМ И СТРУКТУРА ДИССЕРТАЦИИ.

Диссертация изложена на 319 машинописных страницахсостоит из введения, 9 глав, выводов, практических рекомендаций, библиографического указателя. В основных главах работы приведены данные обзора литературы, характеристика объекта, методов исследования, а также используемого материала, результаты собственных исследований и их обсуждение.

выводы.

1. Способы очистки GFAP, NSE и МВР на основе комбинации солевого фракционирования, ионообменной, гидрофобной и иммуноаффинной хроматографии, гель-фильтрации и препаративного диск-электрофореза позволяют выделять высокоочищенные препараты этих НСБ. Полученные препараты GFAP, NSE и МВР могут быть использованы для получения моноклональных антител и разработки иммуноферментных тест-систем их количественного определения.

2. Модифицированный способ иммунизации мышей высокоочищенными препаратами GFAP, NSE и МВР позволяет получать B-лимфоциты селезенки, способные при конъюгировании с клетками миеломы Sp2/0 образовывать гибридные клетки, продуцирующие моноклональные анти-GFAP-, анти-NSEи анти-МВР-антитела класса IgG. Полученные препараты моноклональных анти-НСБ-антител могут применяться для разработки иммуноферментных и иммуногистологических тест-систем количественного анализа НСБ.

3. Разработанные и апробированные в эксперименте и клинической практике тест-системы количественного иммуноферментного анализа GFAP, NSE и МВР на основе соответствующих моноклональных антител позволяют специфично, надежно, воспроизводимо и достоверно определять эти антигены в сыворотке крови и ликворе человека и животных.

4. Иммуноферментный анализ GFAP, NSE и МВР на основе соответствующих моноклональных антител в сыворотке крови и ликворе, может быть применен для диагностики, мониторинга и контроля эффективности проводимой терапии больных нервными, психическими, онкологическими, инфекционными и соматическими заболеваниями, сопровождающимися нарушением функций ГЭБ.

5. Сравнительный анализ результатов иммуноферментного скрининга GFAP, NSE и МВР в сыворотке крови доноров и больных с заболеваниями, сопровождающимися нарушением резистентности ГЭБ, выполненного с помощью тест-систем на основе моноклональных и поликлональных антител, позволил выявить более высокую диагностическую эффективность для тест-систем на основе моноклональных антител. Процент ложноположительных результатов выявления НСБ при использовании тест-систем на основе поликлональных антител составлял от 3,2% до 3,9%, в то время как применение иммуноферментных тест-систем на основе моноклональных антител не выявило ложноположительных результатов.

6. Иммуногистохимический анализ вРАР,Е и МВР на основе соответствующих моноклональных антител позволяет специфически локализовать их в клетках нервной ткани. При этом ОРАР специфически локализуется в астроцитах нервной ткани,Е — в нейронах, а МВР — в олигодендроцитах, астроцитах и шванновских клетках.

7. Дефинитивный гематоэнцефалический барьер непроницаем для препа.

1 91 ратов меченных I анти-НСБ-антител, введеных в кровоток. Гипокси-ишемическое поражение головного мозга, индуцированное путем окклюзии ветви средней мозговой артерии, приводит к нарушению резистентности ГЭБ, сопровождающемуся феноменом прорыва и накопления в ткани мозга препаратов мечен.

19 Я ных I анти-НСБ-антител, введеных в кровоток.

8. Технология получения ПЭГилированных иммунолипосом, базирующаяся на конъюгации тиолированных 2-иминотиоланом анти-ОРАР-антител с ПЭГи-лированными липосомами позволять создавать микроконтейнеры направленного типа действия, способные селективно захватываться астроцитами нервной ткани.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ.

Разработанные способы получения гомогенных препаратов ОБ АР, ИБЕ и МБР на основе комбинации солевого фракционирования, ионообменной, гидрофобной и иммуноаффинной хроматографии, гель-фильтрации и препаративного диск-электрофореза могут быть рекомендованы для создания иммуноферментных тест-систем их количественного определения.

Полученные на основе модифицированного способа иммунизации высоко-очищенными препаратами НСБ моноклональные анти-НСБ-АТ могут быть рекомендованы для разработки иммуноферментных и иммуноцитологических тест-систем количественного анализа НСБ.

Иммуноферментный мониторинг ОБ АР, ЫЯЕ и МБР на основе соответствующих моноклональных АТ в сыворотке крови и ликворе целесообразно применять для диагностики и контроля эффективности проводимой терапии больных нервными, психическими, онкологическими, инфекционными и соматическими-заболеваниями, сопровождающимися нарушением функций ГЭБ.

Иммуноферментный анализ анти-НСБ-АТ в сыворотке крови может быть рекомендован для определения степени сенсибилизации организма по отношению' к индивидуальным НСБ.

Технология получения ПЭГилированных иммунолипосом, базирующаяся на конъюгации тиолированных 2-иминотиоланом анти-НСБ-АТ с ПЭГилированными липосомами может применяться для создания микроконтейнеров направленного типа действия, способных селективно захватываться клетками-мишенями нервной ткани.

Показать весь текст

Список литературы

  1. ОМ. Нейроспецифическая енолаза и ее роль в механизмах антительной агрессии в мозг: Дис.. канд. мед. наук. —М., 1997.
  2. Г. И. Моноююнальные антитела // Соросовский образовательный журнал- 1998-№ 1 с. 16−20
  3. И.П., Стукалова В. В. Нейрохимия. М.: 1996. С. 207−245.
  4. Л.О., Чехонин В. П., Бембеева Р. Ц. Специфические белки нервной ткани в оценке проницаемости гематоэнцефалического барьера при коматозных состояниях у детей // Журн. невропатол. и психиатр. — 1997. — Т. 97., № 1. — С. 461 466.
  5. И.А. Нейроспецифические белки в крови и ликворе при клещевой нейроинфекции (клинико-диагностические и прогностические аспекты) // Дис.. канд. мед. наук. — М., 1995.
  6. В.А., БеликЯ.В. Специфические белки нервной ткани. — Киев: Науко-ва думка, 1990. — 264 с.
  7. Т.Т., Яглова Н. В., Дмитриева Т. Б. и др. Направленный транспорт лекарственных средств с помощью липосом // Вестник Российской Академии медицинских наук 2004 — №. 5 — с. 42−47
  8. Р.Г. Роль комплексного иммуноферментного определения ней-роспецифических белков в диагностике опухолей головного мозга: Автореф. дис.. канд. мед. наук. — М., 1993.
  9. М. Концепция гематоэнцефалического барьера. — М.: Мир, 1983.
  10. Г. Ш. Физиологически активные белки мозга как возможные маркеры психиатрических заболеваний // Вестник РАМН, — 1992. — № 7. — С. 51 54.
  11. В.В. Раково-эмбриональные белки человека: Дис.. д-ра. мед. наук. — М&bdquo- 1986.
  12. Мак-Кей Р., Рэфф М., Рейхардт JI. Моноююнальные антитела к антигенам нервной ткани. — М.: Мир, 1984.
  13. A.B. Основной белок миелина (получение моноклональных антител, разработка иммуноферментного анализа и клинико-лабораторное применение): Дис.. канд. мед. наук. — М., 2002.
  14. В.П. Специфические белки нервной ткани человека и животных (идентификация, выделение, физико-химическая характеристика и клинико274лабораторные исследования): Дис.. д-ра мед. наук. — М., 1989.
  15. В.П., Дмитриева Т. Е., Жирков Ю. А. Иммунохимический анализ ней-роспецифических антигенов.- 2000 М.: Медицина — 416 с.
  16. В.П., Турина О. И., Портная Т. С. и др. Моноклональные анти-NSE-антитела: получение, характеристика и иммуноферментный анализ. // Вопросы медицинской химии 2002 — вып. 5 — т. 48 — с. 477−484.
  17. В.П., Рябухин И. А., Кашпаров H.A., Жирков Ю. А. Направленный транспорт психотропных средств через гематоэнцефалический барьер — В сб.: Социальная и судебная психиатрия: история и современность. — М.: РИО ГНЦССП им. В. П. Сербского, 1996.
  18. В.П., Турина О. И., Семенова A.B. и др. Основной белок миелина. Строение, свойства, функции, роль в диагностике демиелинизирующих заболеваний. // Вопросы медицинской химии 2000 — Т. 46 — № 6 — с. 549−563.
  19. В.П., Преображенская И. С., Яхно H.H. Проницаемость гематоэнце-' фалического барьера при болезни Альцгеймера и паркинсонизме с когнитивными нарушениями. // Ж. невр. и психиат. им. С. С. Корсакова 2001 — № 5 — с. 30−33
  20. В.П., Турина О. И., Дмитриева Т. Е. и др. Моноклональные анти-GFAP антитела: получение характеристика и иммуноферментный анализ. // БЭБМ 2001- № 8 — с. 188−191
  21. В.П., Семенова A.B., Турина О. И. и др. Моноклональные антитела к основному белку миелина. // Нейрохимия 2001 — Т. 18 -№ 4 — с. 310−314
  22. В.П., Жирков Ю. А., Турина О. И. и др. ПЭГилированные иммунолипо-сомы, специфичные к астроцитам // Доклады РАН. Серия: Биофизика и биохимия 2003 -№ 391 — с. 236−239
  23. М.Б. Мозгоспецифические белки (антигены) и функция нейрона. — М.: Медицина, 1985.
  24. Abe M., Goto Т., Wolfenbarger D. et al. Novel immunization protocol and ELISA screening methods used to obtain and characterize monoclonal antibodies specific for humanlight chain variable-region subgroups. // Hybridoma. 1993 — V. 12(4) — P. 475−483.
  25. Ahlsen G., Rosengren L., Belfrage M" et al. Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders // Biol. Psychiatry. — 1993. — V. 33. — P. 734−743.
  26. Ainger K., Avossa D., Diana A.S. et al. Transport and localization elements in myelin basic protein mRNA. // J. Cell. Biol. 1997 -V. 138 — P. 1077−1087.
  27. Aksamit A.J. Jr., Preissner C.M., Homburger H.A. Quantitation of 14−3-3 and neuron-specific enolase proteins in CSF in Creutzfcldt-Jakob disease. // Neurology. 2001 -V. 28 -№ 57 — P. 728−730.
  28. Albrechtsen M., Bock E. Quantification of glial fibrillary acidic protein (GFAP) in human body fluids by means of ELISA employing a monoclonal antibody // J. Neuroimmunol.1985.—-V. 8, —P. 301 309.
  29. Albrechtsen M., Massaro A., Bock E. Enzyme-linked immunosorbent assay for human glial fibrillary acidic protein using a mouse monoclonal antibody // J, Neurochem. — 1985.1. V. 44 —P. 560−565.
  30. Albrechtsen M., Sorensen P. S., Gjerris F., Bock E. High cerebrospinal fluid concen-, tration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. // J. Neurol. Sci. 1985 — V. 70 — P. 269−274.
  31. Albrechtsen M., von Gerstenberg A.C., BockE. Mouse monoclonal antibodies react-! ing with human brain glial fibrillary acidic protein // J. Neurochem. — 1984. — V. 42, № 1. — P. 86 93.
  32. Alien T.M., Brandeis E., Hansen C.B. et al. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. // Bio-chim Biophys Acta 1995 — V. 1237 — P. 99−108.
  33. Allinquant B., Staugaitis S.M., D’Urso D. et al. The ectopic expression of myelin basic protein isoforms in Shiverer oligodendrocytes: implications for myelinogenesis. // J. Cell. Biol. 1991 — V. 113 — P. 393−403.
  34. AlvordE.C., Hruby S. Myelin basic protein and its free and and bound antibodies in cerebrospinal fluid. All three must be determined on each specimen. // Acta Neurol (Napoli). -1991 -V. 13(2)-P. 97−106.
  35. Amaducci L., Forno K.L., Eng L.F. Glial fibrillary acidic protein in cryogenic lesions of the rat brain // Neurosci. Lett. — 1981. — V. 21. — P. 27 32.
  36. Anderson R.E., Winnerkvist A., Hansson L.O. et al. Biochemical markers of cerebrospinal ischemia after repair of aneurysms of the descending and thoracoabdominal aorta. // J Cardiothorac Vase Anesth. 2003 — V. 17 — P. 598−603.
  37. Arochena M, Anadon R., Diaz-Regueira S.M. Development of vimentin and glial fibrillary acidic protein immunorcactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. // J Comp Neurol. 2004 — V. 469(3) — P. 413−436.
  38. Aurell A., Rosengren L.E., Karlsson B. et al. Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. // Stroke. — 1991 — V. 22-P. 1254−1258.
  39. Back S.A., Luo N.L. et al. Late oligodendrocute coincide with the developmental window of vulnerability for human perinatal white matter injury. // J. Neurosci 2001 — V. 21(4)-P. 1302−1312
  40. Banks W.A., Terrell B., Farr S.A. et al. Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer’s disease. // Peptides 2002 -V. 23(12)-P. 2223−2226.
  41. Banks W.A., Farr S.A., Morley JE. Entry of Blood-Borne Cytokines into Central Nervous System: Effects on Cognitive Processes. // Neuroimmunomodulation. 2002−2003 -V. 10(6)-P. 319−327
  42. Barbarese E., Koppel D.E., Deutscher M.P. et al. Protein translation components are colocalized in granules in oligodendrocytes. // J. Cell. Sci. 1995 — V. 100 — P. 2781−2790.
  43. Barber P.C., Lindsay R.M. Schwann cells of the olfactory nerves contain glial fibrillary acidic protein and resemble astrocytes // Neuroscience. — 1982. — V. 7. — P. 3077 3090.
  44. Barger S.W., Van Eldik J.J. SI00 stimulates calcium fluxes in glial and neuronal cells // J. Biol. Chem. — 1992. — V. 267. — P. 9689 9694.
  45. Barnea A., Roberts J. A method for dissociation and aggregate culture of human fetal brain cclls in serum-free medium. // Brain Res. Protocols 1999 — V. 4 — P. 156−164.
  46. Barone F.C., Clerk R K., Price W.J., et al. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia // Brain Res. — 1993. — V. 1 — P. 71 82.
  47. Basile A.M., Fusi C., Conti A.A. et al. S-100 protein and ncuron-specific enolase as markers of subclinical cerebral damage after cardiac surgery: preliminary observation of a 6-month follow-up study. // Eur Neurol. 2001 — V. 45(3) — P. 151−159.
  48. Baumann N. Pham-Dinh D. Biology of Oligodendrocyte and Myelin in the Mammalian Central Nervous System. // Physiol. Rev. 2001 — V. 81 — P. 871−927.
  49. Beach T.G., Walker R., McGeer E.G. Patterns of gliosis in Alzheimer’s disease and aging cerebrum. // Glia 1989 — V. 2 — P. 420 — 436.
  50. Beaudeux J.L., Leger P., Dequen L. et al. Influence of hemolysis on the measurement of S-lOObeta protein and neuron-specific enolase plasma concentrations during coronary artery bypass grafting. // Clin Chem. 2000 — V. 46(7) — P. 989−990.
  51. Beaudry P., Cohen P., Brandel J.P. et al. 14−3-3 protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. // Dement Geriatr Cogn Disord. 1999 — V. 10 — P. 40−46.
  52. Beemer F.A., Vlug A.M.C., et al. Isoenzyme patterns of enolase of childhood tumors // Cancer (Philadelphia). — 1984. — V. 54. — P. 293 296.
  53. Beems T., Simons K.S., Van Geel W.J. et al. Serum- and CSF-concentrations of brain specific proteins in hydrocephalus. // Acta Ncurochir (Wien). 2003 — V. 145 — P. 37−43.
  54. Bederson J.B., Pitts L.H., Tsuji M. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. // Stroke. 1986 — V. 17(3) — P. 472−476.
  55. Bellini T., Rippa M., Matteuzzi M. A rapid method for purification of myelin basic protein. // J. Neurochem 1986 — V. 46 (5) — P. 1644−1646.
  56. Benda P., Lightbody J., et al. Differentiated rat glial cell strain in tissue culture // Science. — 1968. — V. 161. — P. 370.
  57. Bennet G.S., Tapscott S.J., Kleinbart F.A., et al. Different proteins associated with 10-nanometer filaments in cultured chick neurons and nonneuronal cells // Science 1981 — V. 212-P. 567−569.
  58. Berger M, Shankar V, Vafai A. Therapeutic applications of monoclonal antibodies. // Med Sci.-2002-V. 324(1)-P. 14−30
  59. Berger T., Rubner P., Schautzer F. et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. // N Engl J Med. — 2003 — № 10-V. 349(2)-P. 139−145.
  60. Berger R.P., Pierce M.C., Wisniewski S.R. et al. Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. // Pediatrics. -2002-V. 109-P. E31.
  61. Berry M. Regeneration in the central nervous system In: Smith W.T., Canavagh J.B. (eds.). Recent advances in neuropathology. // Edinburgh: Churchill Livingstone, 1979 — V. 1 -P. 67- 111.
  62. Berteiii E., Regoli M., Gambelli F. et al. GFAP is expressed as a major soluble pool associated with glucagon secretory granules in A-cells of mouse pancreas. // J Histochem Cyto-chem. — 2000- V. 48(9)-P. 1233−1242.
  63. Benzinger P., Martiny-Baron G., Reusch P. et al. Targeting of endothelial KDR receptors with 3G2 immunoliposomes in vitro. // Biochim. Biophys. Acta. 2000 — V. 1466. — No. 1−2, —P. 71−78.
  64. Biddle R., March E. et al. // Research News. Mouse News Lett. 1973 V. 48 — P.24.
  65. Bigbee J.W., Eng L.F. Glial fibrillary acidic protein synthesized in vitro using messenger RNA from Jimpy mouse spinal cord // Brain Res. — 1982. — V. 249. — P 383 386.
  66. Bignami A., Dahl D. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein // J. Comp. Neurol. — 1974. — V. 153. — P. 27 38.
  67. Bignami A., Dahl D. Astroglial protein in the developing spinal cord of the chick embryo // Develop. Biol. — 1975. — V. 44. — P. 204.
  68. Bignami A., Dahl D. Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study to a protein specific to astrocytes // Brain Res. — 1973. — V. 49. — P. 393 402.
  69. Bignami A., Dahl D. Isolation of GFA protein from normal brain — a commcnt // J. Histochem. Cytochem. — 1979. — V. 27. — P. 693.
  70. Bignami A" Dahl D. The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates // Neuropathol. Appl. Neurobiol. — 1976. — V. 2. — P. 99 111.
  71. Bignami A., Eng L.F., Dahl D., Uyeda C.T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence // Brain Res. — 1972. — V. 43. — P. 429 435.
  72. Bigner D.D., Bigner S.H., Ponten J., et al. Heterogeneity of genotypic and pheno-typic characteristics of fifteen permanent cell lines derived from human gliomas // J. Neuropathol. Exp. Neurol. — 1981. — V. 40. — P. 201 229.
  73. Bishop A.E., Polak J.M., et al. Neuron specific enolase: a common marker for theendocrine cells and innervation of the gut and pancreas // Gastroenterology. — 1982. — V. 83.1. P. 902−915.
  74. Bjorklund H., Dahl D., Seiger A. Neurofilament and glial fibrillary acid protein-related immunoreactivity in rodent enteric nervous system //Neuroscience. — 1984. — V. 12.1. P. 277−287.
  75. Blennow K., Wallirt A., Ekman R. Neuron specific cnolase in cerebrospinal fluid: a biochemical marker for neuronal degeneration in dementia disorders? // J. Neural Transmission P-D Sect. — 1994. — V. 8. — P. 183 191.
  76. Blennow M., Hagberg H., Rosengren L. Glial fibrillary acidic protein in the cerebrospinal fluid: a possible indicator of prognosis in full-term asphyxiated newborn infants? // Pediatr. Res. — 1995. — V. 37. — P. 260 264.
  77. Blennow M., Rosengren L, Jonsson S" Forssberg H., et al. Glial fibrillary acidic protein is increased in the cerebrospinal fluid of preterm infants with abnormal neurological findings // Acta Paediatr. — 1996 — V. 85. — P. 485 489.
  78. Blennow M., Savman K., lives P. et al. Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. // Acta Paediatr. 2001 — V. 90 — P. 1171−1175.
  79. Blomstrand C., Johansson B., Rosengren B. Blood-brain barrier lesions in acute hypertension in rabbits after unilateral X-ray exposure of the brain // Acta Neurol. Scand. — 1995.1. V. 31. — P. 97- 102.
  80. Bock E., DissingJ. Demonstration of enolase activity connected to the brain specific protein 14−3-2 // Scand. J. Immunol. — 1975. — Suppl. № 2. — P. 31 36.
  81. Bock J.L. The new era of automated immunoassay. // Am J Clin Pathol. 2000 -V. 113 (5)-P. 628−646.
  82. Bodey B, Bodey B Jr et al. Genetically engineered monoclonal antibodies for direct anti-neoplastic treatment and cancer cell specific delivery of chemotherapeutic agents. // Curr Pharm Des. 2000 — V. 6(3) — P. 261−276.
  83. Bodhireddy S.R., Lyman W.D., Rashbaum W.K. Immunohistochemical detection of myelin basic protein is a sensitive marker of myelination in second trimester human fetal spinal cord. // J Neuropathol Exp Neurol 1994 — V. 53 (2) — P. 144−149
  84. Bologa L" Deugnier M.A. et al. Myelin basic protein stimulates the proliferation of astrocytes possible explanation for multiple — sclerosis plaque — formation. // Brain Res. -1985-V. 346-P. 199−203.
  85. Bonhomme V., Hans P., et al. Neuron-specific enolase as a marker of in vitro neuronal damage. Part III. Investigation of the astrocyte protective effcct against kainate-induced neurotoxicity // J. Neurosurg. Anesthesiol. — 1993. — V. 2. — P. 9 22.
  86. Borusiak P., Herbold S. Scrum neuron-specific enolase in children with febrile seizures: time profile and prognostic implications. // Brain Dev. 2003 — V. 25 — P. 272−274.
  87. Bradbury M W., Deane R. Permeability of the blood-brain barrier to lead // Neuro-toxicology. — 1993. — V. 2−3. — P. 1 6.
  88. Brady S.T., Lasek RJ. Nerve specific enolase and creatine phosphokinase in axonal transport: soluble protein and the axoplasmic matrix // Cell. — 1981. — V 23. — P. 515 520.
  89. Brady G. W, Murthy N.S., Fein D.B. et al. The effect of basic myelin protein on multilayer membrane formation. // Biophys J 1981 — V. 34 — P. 345−350
  90. Brennan M., Davison P.F., Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. //'Science. 1985 — V. 229(4708)-№ 5-P. 81−83.
  91. Brenner M, Lampel K" Nakatani Y., et al Characterization of human cDNA and genomic clones for glial fibrillary acidic protein // Mol. Brain Res. 1990 — V. 7 — P. 277 — 286.
  92. Brenner M. Structure and transcriptional regulation of the GFAP gene. //Brain Pathol. 1994 — V. 4 — P. 245 -257.
  93. Brenner M., Messing A. GFAP Transgenic Mice. // Methods: A companion to methods in enzymology. 1996 -V. 10 — P. 351−364.
  94. Brookes J.P., Fields P., Raff M.C. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. // Brain Res 1979 -V. 165-P. 105−118
  95. Brokstad K.A., Page M., Nyland H. Autoantibodies to myelin basic protein are not present in the serum and CSF of MS patients. // Acta Neurol Scand 1994 — V. 89 (6) — P. 407 411.
  96. Brunngraber E., Susz J.P., et al. Binding of concanavalin A to the brain-specific proteins obtained from human white matter by affinity chromatography // J. Neurochem. 1975. — V. 24. — P. 805 — 806.
  97. Burger P.C., Vogel S. The development of pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. // Am. J. Pathol. — 1973 — V. 73 — P. 457- 476.
  98. Bush T.G., Puvanachandra N., Homer C.H. et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scarforming, reactive astrocytes in adult transgenic mice. // Neuron 1996 — V. 23 — P. 297−308.
  99. Butterworth R.J., WassifW.S., Sherwood R.A. et al. Serum neuron-specific enolase, carnosinase, and their ratio in acute stroke. An enzymatic test for predicting outcome? // Stroke 1996 — V. 27(11) — P. 2064−2068.
  100. Cai Z, Pang Y et al. Chronic ischemia preferentially causes white matter injury in the neonatal rat brain. // Brain Res. 2001 — № 13. — V. 898 (1) — P. 126−135
  101. Calne D.B. II In: Neurodegenerative Diseases, ed. WB Saunders Philadelphia -1994.
  102. Campagnoni A.T., Skoff R.P. The pathobiology of myelin mutants reveal novel biological functions of the MBP and PLP genes. // Brain Pathol. 2001 — V. 11(1) — P. 74−91.
  103. Campbell I. L Transgenic mice and cytokine actions in the brain: bridging the gap between structural and functional neuropathology. // Brain Res. Brain Res. Reviews 1998 — V. 26-P. 327−336
  104. Carrasco J., Hernandez J., Gonzalez B. et al. Localization of metallothionein-I and -III expression in the CNS of transgenic mice with astrocyte-targeted expression of interleukin 6. //Exp. Neurol. 1998-V. 153-P. 184−194.
  105. Carney D.N., Marangos P.J., et al. Serum neuron-specific enolase: a marker for disease extend and response to therapy of small cell lung cancer // Lancet 1982 — V. i — P. 583−586
  106. Carpenter M.K., Winkler C., Fricker R. et al. Generation and transplantation of EGF responsive neural stem cells. // Exp. Neurol. 1997 — V. 148 — P. 187−204.
  107. Carter P. Improving the efficacy of antibody-based cancer therapies. // Nat Rev Cancer. 2001 — V. 1(2) -P. 118−129.
  108. Cather J.C., Cather J.C., Menter A. Modulating T cell responses for the treatment of psoriasis: a focus on efalizumab. // Expert Opin Biol Ther. 2003 — V. 3(2) — P. 361−370.
  109. Cerletti A., Drewe J., Fricker G. et al. Endocytosis and transcytosis of an immunoliposome-based brain drug delivery system. // J. Drug Target. 2000 — V8-N6-P. 435−446.
  110. Cervos-Navarro J., Sampaolo S., Hamdorf G. Brain changes in experimental chronic hypoxia // Exp Pathol. — 1991. — V. 42. — P. 205−212.
  111. Chamczuk A.J., Ursell M., O’Connor P. et al. A rapid ELISA-based serum assay for myelin basic protein in multiple sclerosis. // J Immunol Methods. 2002 — V. 1 — № 262 — P. 21−27.
  112. Chan P.H., Huston J.S., Dahl D. Initial characterization of astroglial protein from bovine brain // Fed. Proc. — 1975. — V 34. — P. 224.
  113. Cheifetz S., Moscarello M.A. Effect of bovine basic protein charge microheterogene-ity on protein-induced aggregation of unilamellar vesicles containing a mixture of acidic and neutral phospholipids. Biochemistry — 1985-V. 24-P. 1909−1914
  114. Chekhonin VP., Kabanov A.V., Zhirkov Yu.A., Morozov G.V. Fatty acid acylated Fab-fragments of antibodies to neurospecific proteins as carriers for neuroleptic targeted delivery in brain//FEBS Letters. —1991. —V. 287, № 1−2, —P. 149- 152.
  115. Chekhonin V.P., Ryabukhin LA., Zhirkov Yu.A., et al. Transport of hydrophobized fragments of antibodies through the blood-brain barrier //Ncuroreport. — 1995. — V. 7. — P. 129- 132.
  116. Chekhonin V.P., Zhirkov Yu.A., Belyaeva LA. et al. Serum time course of two brain-specific proteins, ai brain globulin and neuron-specific cnolase, in tick-born encephalitis and Lyme disease. // Clinica Chimica Acta 2002 — V. 320 — P. 117−125.
  117. Chekhonin V.P., Zhirkov Yu.A., Gurina O.L. et al. PEGylated immunoliposomes directed against brain astrocytes. // Drug Delivery 2005 — V. 12(1) — P. 1−6.
  118. Chen W.J., Liem R.K. Reexprcssion of glial fibrillary acidic protein rescues the ability of astrocytoma cells to form processes in response to neurons. // J. Cell Biol. 1994 — V. 127 -P. 813−823.
  119. Chester K., Pedley B., Tolner B. et al. Engineering antibodies for clinical applications in cancer. // Tumour Biol. 2004 — V. 25 (1−2) — P. 91−98.
  120. Chevalier D., Allen B.G. Purification of myelin basic protein from bovine brain. -Protein Expr Purif- 2000 V. 18 (2) — P. 229−234.
  121. Chignola R, Cestari T, Guerriero C et al. Expression of myelin basic protein (MBP) epitopes in human non-neural cells revealed by two anti-MBP IgM monoclonal antibodies. -Clin Exp Immunol 2000 — V. 122(3) — P. 429−436.
  122. Chiu F.-C., Goldman J.E. Regulation of glial fibrillary acidic protein (GFAP) expression in CNS development and in pathological states // J. Neuroimmunol. 1985. — V. 8. — P. 283 — 292.
  123. Choi B.H., Kim R.C. Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications // J. Neuroimmunol. — 1985. — V. 8. — P. 215 235.
  124. Chung KF. Anti-IgE monoclonal antibody, omalizumab: a new treatment for allergic asthma. // Expert Opin Pharmacother. 2004 — V. 5(2) — P. 439−446.
  125. Cicero T.J., Cowan W.M., Moore B.W. Changes in the concentration of the two brain specific proteins, SI00 and 14−3-2, during the development of the avian optic tectum. // Brain Res. — 1970. — V. 24. — P. 1 -10.
  126. Cohen /., Shani Y., Schwartz M. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration // J. Comp. Neurol. 1993 — V. 334 -P. 431 -443.
  127. Colman D.R., Kreibich G., Frey A.B. et al. Synthesis and incorporation of myelin polypeptides into CNS myelin. // J. Cell. Biol. 1982 — V. 95 — P. 598−608
  128. Condorelli DF., Nicoletti V.G., Barresi V. et al. Structural features of the rat GFAP gene and identification of a novel alternative transcript. // J. Neurosci. Res. 1999 — V. 56 — P. 219−228.
  129. CorrealeJ., Rabinowicz A.L., Heck C.N. et al. Status epilepticus increases CSF levels of neuron-specific enolase and alters the blood-brain barrier. // Neurology. 1998 — V. 50 -P. 1388−1391.
  130. Cruz M., Olsson T., Emerudh J. et al. Immunoblot detection of oligoclonal antimyelin basic protein IgG antibodies in cerebrospinal fluid in multiple sclerosis. // Neurology. -1987-V. 37(9)-P. 1515−1519.
  131. Cuello A.C., Priestley J.V., Milstein C. Immunocytochemistry with internally labeled monoclonal antibodies. // Proc Natl Acad Sci U S A. 1982 — V. 79(2) — P. 665−9.
  132. Cumar F.A., Maggio B. et al. Neurotransmitter movements in nerve endings. Influence of substances that modify the interfacial potential. // Biochim. Biophys. Acta 1980 — V. 597-P. 174−182.
  133. Cuzner M.L., Norton W.T. Biochemistry of demyelination. //Brain Pathol 19 961. V.6(3)-P. 231−242.
  134. Dahl D. The vimcntin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination // J. Neurosci. Res. — 1981. — V. 6. — P. 741 748.
  135. Dahl D" Bignami A. Glial fibrillary acidic protein from normal and gliosed human brain. Demonstration of multiple related polypeptides // Biochim. biophys. Acta. 1975 — V. 386 —P. 41 -51.
  136. Dahl D., Bignami A. Glial fibrillary acidic protein from normal human brain. Purification and properties // Brain Res. — 1973. — V. 57. — P. 343.
  137. Dahl D., Bignami A. Immunogenic properties of the glial fibrillary acidic protein // Brain Res. — 1976, — V. 116. —P. 150.
  138. Dahl D., Rueger D.C., Bignami A., et al. Yimentin, the 57,000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component of immature glia // Eur. J. Cell Biol. —1981. —V. 24, —P. 191 196.
  139. Dahl D., Bjorklund H., Bignami A. Immunological markers in astrocytes. In: Fe-doroff S., Vernadakis A. (eds). Astrocytes. Cell biology and pathology of astrocytes. — Orlando: Acad. Press, 1986. — V. 3. — P. 1 — 25.
  140. Dahl D., Chi N.H., Miles L.E., et al. Glial fibrillary acidic (GFA) protein in Schwann cells // J. Histochem. Cytochem. — 1982. — V. 30. — P. 912 918.
  141. Dahl D., Crosby C.J., Sethi J.S., Bignami A. Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies // J. Comp. Neurol. — 1985. — V. 239. — P. 75−88.
  142. Dangond F. Disorders of myelin in the central and peripheral nervous systems. // Butterworth/Heinemann, Woburn. 2002.
  143. Dauberschmidt R., Marangos P. J., Zinsmeyer J., et al. Severe head trauma and the changes of concentration of neuron-specific enolase in plasma and cerebrospinal fluid // Clin, chim. Acta. — 1983. —V. 131—P. 165 170.
  144. Davies L., McLeod J.G., Muir A. et I. Diagnostic value of cerebrospinal fluid myelin basic protein in patients with neurological illness. // Clin Exp Neurol. — 1987 V. 24 — P. 5−10.
  145. Dharmasaroja P. Specificity of autoantibodies to epitopes of myelin proteins in multiple sclerosis. // J Neurol Sci. 2003 — V. 15 — № 206 — P. 7−16.
  146. Dearden C. Monoclonal antibody therapy of haematological malignancies. // BioDrugs. 2002 — V. 16(4) — P. 283−301
  147. Debus E., Weber K., Osborn M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides // Differentiation. — 1983, — V. 25, —P. 193 -203.
  148. DeGiorgio CM., Gott P. S., Rabinowicz A.L. et al Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. // Epilepsia. 1996 -V. 37 — P. 606−609.
  149. DeGiorgio C.M., Heck C.N., Rabinowicz A.L. et al. Serum neuron-specific enolase in the major subtypes of status epilepticus. // Neurology. 1999 — V. 10 — № 52 — P. 746−749.
  150. Deibler G. E., R. E. Martenson, Kies M.W. Large scalcpreparationof myelin basic protein from central nervous tissue of several mammalian spccies // Preparative Biochemistry -1972-V. 2-P. 139−165.
  151. Deibler G.E., Martenson R.E., Krutzsch H.C. et al. Sequence of guinea pig myelin basic protein. // J. Neurochemistry 1984 — V. 43 — P. 100−105-
  152. Deibler G.E., Boyd L.F. et al. Enzymatic and nonenzymatic degradation of myelin basic protein.//Neurochem. Res. 1984-V. 9-P. 1371−1385.
  153. Deibler G.E., Krutzsch H.C. Martenson R.E. A reinvestigation of the amino acid sequences of bovine, rabbit, monkey, and human myelin basic proteins. // J. Biol. Chem. 1985 -V. 260 (1) — P. 472−474-
  154. Deibler G.E., Krutzsch H.C. et al. A new form of myelin basic protein found in human brain. // J. Neurochem. 1986-V. 47-P. 1219−1225.
  155. Deibler G.E., Burlin T. V., Stone A.L. Three isoforms of human myelin basic protein: purification and structure. // J Ncurosci Res 1995 — V. 15 — № 41 (6) P. 819−827.
  156. Delaney C.L., Brenner M., Messing A. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. // J. Neurosci. 1996 — V. 16 — P. 6908−6918.
  157. Del Bigio M.R., Kanfer J.N., Zhang Y.W. Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. // J Neuropathol Exp Neurol 1997-V. 56 (9)-P. 1053−1066.
  158. Deshmukh D.S., Kuizon S., Brockerhoff H. Mutual stimulation by phosphatidyl-inositol-4-phosphate and myelin basic protein of thcr phosphorylation by the kinases solubilized from rat brain myelin. // Life Sci. 1984 — V. 34 — P. 259−264
  159. Devlin J.J., Panganiban L.C., Devlin P.E. Random peptide libraries: a source of286specific protein binding molecules // Science. — 1990. — V. 249. — P. 404 406.
  160. Dillman R.O. Monoclonal antibodies in the treatment of malignancy: basic concepts and recent developments. // Cancer Invest. 2001 — V. 19 — P. 833−841
  161. Dotevall L., Rosengren L.E., HagbergL. Increased cerebrospinal fluid levels of glial fibrillary acidic protein (GFAP) in Lyme neuroborreliosis // Infection. — 1996. — V. 24. — P. 125- 129.
  162. Dotevall L., Hagberg L., Karlsson J.E. Astroglial and neuronal proteins in cerebrospinal fluid as markers of CNS involvement in Lyme neuroborreliosis. // Eur J Neurol. — 1999 -V. 6-p. 169−178.
  163. Drivsholm L., Osterlind K., Cooper E.H.et al. Neuron-specific enolase (NSE) in scrum. Comparison of monoclonal versus polyclonal assay based on 392 blood samples. // Int J Biol Markers. 1995 — V. 10(1) — P. 1−4.
  164. Dubois-Dalcq M, Behar Т., Hudson L. et al. Emergence of three myelin proteins in oligodendrocytes cultured without neurons. // J. Cell. Biol. 1986 — V. 102 — P. 384−392.
  165. Duffy P. E, Rapoport M., Graf L. Glial fibrillary acidic protein and Alzheimer-type senile dementia. // Neurol. 1980 — V. 30 — P. 778−782
  166. Dunker S., Sadun A.A., Sebag J. Neuron specific enolase in retinal detachment. // Curr Eye Res. 2001 — V. 23 — P. 382−385.
  167. Dworschak M., Franz M., Czerny M. et al. Release of neuron-specific enolase and S100 after implantation of cardioverters/defibrillators. // Crit Care Med. 2003 — V. 31(8) — P. 2085−2089.
  168. Dziewulska D, Jamrozik Z, Podlecka A. et al. Do astrocytes participate in rat spinal cord myelination? // J Folia Neuropathol 1999 — V. 37(2) — P. 81−86
  169. Eddleston M" Mucke L. Molecular profile of reactive astrocytes- implications for their role in neurologic diseases. // Neurosci. 1993 — V. 54 — P. 15 -36.
  170. Edelman GM. Building a picture of the brain. // Ann N Y Acad Sci. 1999 — № 30 -V. 882-P. 68−89-
  171. Egg R., Reindl M., Deisenhammer F. et al. Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis. // Mult Scler. 2001 — V. 7 — P. 285−289.
  172. Ehlers S., Kyllerman M, Rosengren L. Analysis of glial fibrillary acidic protein in the cerebrospinal fluid of children investigated for encephalopathy //Neuropediatrics. — 1994.1. V. 25. — P. 129- 133.
  173. Elimian A., Figueroa R., Patel K. et al. Reference values of amniotic fluid neuron-spccific enolase. // J Matern Fetal Med. 2001 — V. 10 — P. 155−158.
  174. Eng L.F., Gerstl B., Vanderhaeghen J.J. A study of proteins in old multiple sclerosis plaques. // Trans. Amer. Soc. Neurochem. — 1970. — V. 1. — P. 42.
  175. Eng L.F., Bond P., Gerstl B. Isolation of myelin proteins from disc acrylamide gels clectrophorescd in phenolformic acid-water. //Neurobiol. 1971 — V. 1 — P. 58−63.
  176. Eng L.F., Vanderhaeghen J. J., et al. An acidic protein isolated from fibrous astrocytes. // Brain Res. — 1971. — V. 28. — P. 351.
  177. Eng L.F. Glial fibrillary acidic protein: the major protein of glial intermediate filaments in differentiated astrocytes // J. Ncuroimmunol. — 1985. — V. 8. — P. 203 214.
  178. Eng LF. Chemical characterization of the glial fibrillary acidic protein // Fed. Proc.1973, —V. 32.—P. 485.
  179. Eng L.F., DeArmond S.J. Immunochemistry of the glial fibrillary acidic protein // Prog. Neuropathol. — 1983. — V. 5. — P. 19 39.
  180. Eng L.F., Lee Y.L., Fukayama G. Isolation of glial fibrillary acidic (GFA) protein from bovine spinal cord // Trans. Amer. Soc. Neurochem. — 1979. — V. 10. — P. 126.
  181. Eng L.F., Ghirnikar R.S., Lee Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969−2000). //Neurochem Res. 2000 — V. 25 (9−10) — P. 1439−1451.
  182. Engberg J., Yenidunya A.F., Clausen R. et al. Human recombinant Fab antibodies with T-cell receptor-like specificities generated from phage display libraries. //Methods Mol Biol. 2003 — V. 207 — P. 161 -777
  183. Epand R.M. Structural, functional and clinical aspects of myelin proteins. // In: Neuronal and glial proteins: structure, function and clinical application. 1988 — P. 231−265
  184. Epenetos A.A., Hird V., Lambert H. et al. Long term survival of patients with advanced ovarian cancer treated with intraperitoneal radioimmunotherapy. // Int J Gynecol Cancer.- 2000 V. 10 (SI) — P. 44−46.
  185. Ergun R., Bostanci U., Akdemir G. et al. Prognostic value of serum neuron-specific enolase levels after head injury. // Neurol Res. 1998 — V. 20 — P. 418−420.
  186. Ezgii F.S., Atalay Y., Gucuyener K. et al. Neuron-specific enolase levels and neuroimaging in asphyxiated term newborns. // J Child Neurol. 2002 — V. 17 — P. 824−829.
  187. Farr S.A., Banks W.A., Uezu K. et al. Antibody to beta-amyloid protein increases acetylcholine in the hippocampus of 12 month SAMP8 male mice. // Life Sci. — 2003 — № 20 -V. 73(5) P. 555−562.
  188. Fletcher L., Rider C.C., Taylor C.B. Enolase isoenzymes. III. Chromatographic and immunological characteristics of rat brain enolase. // Biochim. Biophys. Acta. 1976. — V. 452.1. P. 245−252.
  189. Fraker P.J., Speck J.C.Jr. Protein and cell membrane iodinations with a sparingly soluble chloroamide, l, 3,4,6-tetrachloro-3a, 6a-diphrenylglycoluril. // Biochem Biophys Res Commun. 1978 -№ 28 — V. 80(4) — P. 849−857.
  190. Friede R.L., Samorajski T. Myelin formation in the sciatic nerve of the rat. A quantitative electron microscopic, histochemical and redioautigraphic study. // J. Neuropathol. Exp. Neurol. 1968 — V. 27 — P. 546−570.
  191. Fridriksson T., Kini N. Walsh-Kelly C. et al. Serum neuron-specific enolase as a predictor of intracranial lesions in children with head trauma: a pilot study. // Acad Emerg Med. -2000-V. 7-P. 816−820.
  192. Frikke M.J., Sechi B., Bell R.C.E. Monoclonal antibodies in human neuron-specific enolase reveal heterogeneity of the enzyme in neurons of the central nervous system // Brain Res. 1987. — V. 417. — P. 283 — 292.
  193. Froes M.M., Correia A.H.P., Garcia-Abreu J. et al. Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. // Proc. Natl. Acad. Sci. USA 1999 — V. 96 — P. 7541−7546.
  194. Fukuyama R, Izumoto T, Fushiki S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. // Eur Neurol. 2001 — V. 46 — P. 35−38.
  195. Galbreath E" Kim S.J., Park K" Brenner M. et al. Overexpression of TGF-beta 1 inthe central nervous system of transgenic mice results in hydrocephalus. // J. Neuropathol. Exp. Neurol. 1995 — V. 54 — P. 339−349.
  196. Galfre G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. // Methods in Enzymology 1981 — V. 73B — P. 3−46.
  197. Galou M., Colucci-Guyon E., Ensergueix D. et al. Disrupted glial fibrillary acidic protein network in astrocytes from vimcntin knockout mice. // J. Cell Biol. — 1996 — V. 133 P. 853−863.
  198. Gao F., Harris D.N., Sapsed-Byrne S. Time course of neurone-specific enolase and S-100 protein release during and after coronary artery bypass grafting. // Br J Anaesth. 1999 -V. 82(2) — P. 266−267.
  199. Gao F., Harris D.N., Sapsed-Byrne S. et al. Nerve tissue protein S-100 and neurone-specific enolase concentrations in cerebrospinal fluid and blood during carotid endarterectomy. // Anaesthesia. 2000 — V. 55 — P. 764−769.
  200. Garbay B., Heape A.M., Sargueil F. et al. — Myelin synthesis in the peripheral nervous system // Progress in neurobiology 2000 — V. 61 — P. 267−304
  201. Gard A.L., White F.P., Dutton G.R. Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver // J. Neuroimmunol. — 1985. —V. 8. —P. 359- 375.
  202. Ghirnikar R.S., Yu A.C., Eng L.F. Astrogliosis in eulture: III. Effect of recombinant retrovirus expressing antisenseglial fibrillary acidic protein RNA. // J. Neurosci. Res. 1994 -V. 38-P. 376−385.
  203. Gibson B.W., Gilliom R.D., Whitaker J.N. Amino acid sequence of human myelin basic protein peptide 45−89 as determined by mass spectrometry. // J Biol Chcm 1984 — V. 25 -№ 259 (8)-P. 5028−5031.
  204. Givogri M.I., Bongarzone E.R. et al. New insights on the biology of myelin basic protein gene: the neural-immune connection. // J. Neurosci. Res. 2000 — N 15 — V. 59(2) — P. 153−159.
  205. Goldenberg D.M. Monoclonal antibodies in cancer detection and therapy // Am. J. Med. — 1993. — V. 94. — P. 297 311.
  206. Goldenberg DM. Advancing role of radiolabeled antibodies in the therapy of cancer. // Cancer Immunol Immunother. 2003 — V. 52(5) -P. 281−296.
  207. Goldenberg DM. Targeted therapy of cancer with radiolabeled antibodies. // J Nucl Med. 2002 — V. 43(5) — P. 693−713.
  208. Goldman J.E., Schaumburg H.H., Norton W.T. Isolation and characterization of glial filaments from human brain. // J. Cell Biol. 1978 — V. 78 — P. 426140.
  209. Goldman R.D., Zackroff R.V., Steinert P.M. Intermediate filaments: overview. In: Goldman R.D., Steinert P.M. (eds). Cellular and molecular biology of intermediate filaments. — NY: Plenum, 1990. — P. 3 — 20.
  210. Gomes F.C., Garcia-Abreu J., Galou M. et al. Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. // Glia 1999 — V. 26 — P. 97−108.
  211. Gomi H" Yokoyama 71, Fujimoto K., et al. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions // Neuron. — 1995. — V. 14. — P. 29−41.
  212. Goodison K.L., ParhadI.M., White C.L. et al. Neuronal and glial gene expression in neocortex of Down’s syndrome and Alzheimer’s disease. // J. Neuropathol. Exp. Neurol. 1993 -V. 52-P. 192−198.
  213. Gould R.M., Freund C.M., Palmer F. et al. Messenger RNAs located in myelin sheath assembly sites. // J Neurochem. 2000 — V. 75(5) — P. 1834−1844.
  214. Grasso A., Haglid K.J., et al. Localization of 14−3-2 protein in the rat brain by im-munoelectron microscopy // Brain Res. — 1977. — V. 122. — P. 582 585.
  215. Grasso A., Roda G., et al. Preparation and properties of the brain specific protein 14−3-2 // Brain Res. — 1977. — V. 124. — P. 497 507.
  216. M., Langley K. (eds). Markers for neural and endocrine cells: molecular and cell biology, diagnostic applications. — Weinheim: VCH, 1991.
  217. Green A.J., Thompson E.J., Stewart G.E. et al. Use of 14−3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt-Jakob disease. // J Neurol Neuro-surg Psychiatry. 2001 — V. 70 (6) -P. 744−748.
  218. Georgiadis D., Berger A., Kowatschev E. et al. Predictive value of S-lOObeta and neuron-specific enolase serum levels for adverse neurologic outcome after cardiac surgery. // J. Thorac. Cardiovasc. Surg. 2000 — V. 119(1) — P. 138−147.
  219. Grever W.E., Chiu F.C., Tricoche M. Quantification of myelin basic protein in thehuman fetal spinal cord during the midtrimester of gestation. // J Comp Neurol 1996 — V. 376 (2)-P. 306−314
  220. Grejfe J., Lemoine P., Lacroix C. et al. Increased serum levels of neuron-specific enolase in epileptic patients and after electroconvulsive therapy—a preliminary report. // Clin Chim Acta. 1996- V. 31-№ 244-P. 199−208.
  221. Guan W., Yang Y.L., Xia W.M. et al. Significance of serum neuron-specific enolase in patients with acute traumatic brain injury. // Chin J Traumatol. 2003 — V. 1 — № 6 — P. 218 221.
  222. Guez M., Hildingsson C., Rosengren L. et al. Nervous tissue damage markers in cerebrospinal fluid after cervical spine injuries and whiplash trauma. // J. Neurotrauma. 2003 -V. 20-P. 853−858.
  223. Gurnett C.A., Landt M, Wong M. Analysis of cerebrospinal fluid glial fibrillary acidic protein after seizures in children. // Epilepsia. 2003 — V. 44 — P. 1455−1458.
  224. Gutman R.L., Peacock G., Lu D.R. Targeted drug delivery for brain cancer treatment. // J. Control. Release. 2000 — V. 65 — N 1−2 — P. 31−41.
  225. Haan E.A., Boss B.D., Cowan W.M. Production and characterization of monoclonal antibodies against the «brain-specific» proteins 14−3-2 and S100 //Proc. natl. Acad. Sci. USA. — 1982. — V. 79. — P. 7585 7589.
  226. Haase CG, Schmidt S. Detection of brain-specific autoantibodies to myelin oligodendrocyte glycoprotein, SlOObeta and myelin basic protein in patients with Devic’s neuromyelitis optica. //Neurosei Lett. -2001 V. 13 -№ 307 — P. 131−133.
  227. Haghighi S., Andersen O., Oden A. et al. Cerebrospinal fluid markers in MS patients and their healthy siblings. // Acta Neurol Scand. 2004 — V. 109 — P. 97−99.
  228. Hagiwara N. Imada S., Sueoka N. Cell type specific segregation of transcriptional expression of glial genes in the rat peripheral neurotumor RT4 cell lines. // J. Neurosei. Res. -1993-V. 36-P. 646−656.
  229. Haimoto H., Takahashi Y., et al. Immunohistochemical localization of gamma-eno-lase in normal human tissues other than neurons and neuroendocrine tissues. // Lab. Invest. — 1985. — V. 52. — P. 257−263.
  230. HallpikeJF., Adams C. WM" Tourtellotte WW Multiple Sclcrosis. Pathology, diagnosis and management. // Williams & Wilkins: Baltimore. 1983.
  231. Harauz G., Ishiyamaa N., Hilla C. et al. Myelin basic protein—diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. // Micron 2004 — V. 35 — P. 503−542
  232. Harlow E" Lane D. Antibodies: A laboratory manual. Cold Spring Harbour Laboratory Press. 1988−726 p.
  233. Harlow E., Lane D. Using Antibodies: A Laboratory Manual: Portable Protocol NO. I Cold Spring Harbour Laboratory Press. 1998. — 495 p.
  234. Harrington K.L., Lewanski C.R., Stewart S. W. Liposomes as vehicles for targeted therapy of cancer. Part.2: Clinical development. // Clin Oncol 2000 — V. 12 — P. 16−24.
  235. Hatfield J.S., Skoff R.P., et al. The lens epithelium contains glial fibrillary acidic protein // J. Neuroimmunol. — 1985. — V. 8. — P. 347 357.
  236. Herrmann M., Curio N. Jost S. et al. Protein S-100B and neuron specific enolase as early neurobiochemical markers of the severity of traumatic brain injury. // Restor Neurol Neu-rosci.- 1999-V. 14-P. 109−114.
  237. Herrmann M, Ehrenreich H. Brain derived proteins as markers of acute stroke: their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. // Restor. Neurol. Neurosci. 2003 — V. 21 — P. 177−190.
  238. Herrmann M" Vos P., Wunderlich M.T. et al. Release of glial tissue-specific proteins after acute stroke: A comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. // Stroke. 2000 — V. 31 — P. 2670−2677.
  239. Herrmann M., Ebert A.D., Galazky I. et al. Neurobehavioral outcome prediction after cardiac surgery: role of neurobiochemical markers of damage to neuronal and glial brain tissue. // Stroke. 2000 — V. 31(3) — P. 645−650.
  240. Higley H.R., McNulty J.A., Rowden G. Glial fibrillary acidic protein and SI00 protein in pineal supportive cells: an electron microscopic study // Brain Res. — 1984. — Vol. 304. — P. 117- 120.
  241. Hill M.D., Jackowski G., Bayer N. et al. Biochemical markers in acute ischemic stroke // CMAJ 2000 — V. 18 — P. 162−168
  242. Him M., Pierres M., Deagostini-Bazin II., et al. Monoclonal antibody against cell surface glycoprotein of neurons // Brain Res. — 1981. — V. 214, № 2. — P. 433−439.
  243. Hofler H., Walter G.F., Denk H. Immunohistochemistry of folliculo-stellate cells in normal human adenohypophyses and in pituitary adenomas // Acta Neuropathol. — 1984. — V. 65. — P. 35−40.
  244. Holland E.C., Varmus H.E. Basic fibroblast growth factor induces cell migration and. // Proc. Natl. Acad. Sci. USA 1998 — V. 95 — P. 1218−1223.
  245. Hu Y., Doudevski I., Wood D. et al. Synergistic interactions of lipids and myelin basic protein. // Proc Natl Acad Sci USA.- 2004 V. 101(37) — P. 13 466−13 471.
  246. Huwyler J., Wu D., Pardridge W.M. Brain drug delivery of small molecules using immunoliposomes. // Proc. Natl. Acad. Sci. USA. 1996 — V. 93 — P. 14 164−14 169.
  247. Jankovic B.D. Neural tissue hypersensitivity in psychiatric disorders with immunologic features. // J. Immunol. 1985 — V. 135(2) — P. 8536−8575.
  248. Joachim C.L., Morris J.H., Selkoe D.J. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. // Am. J. Pathol. 1989 — V. 135 — P. 309−319.
  249. Johnsson P., Blomquist S., Luhrs C. et al Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. // Ann Thorac Surg. — 2000 — V. 69 P. 750−754.
  250. Jauch E.C. Diagnosis of stroke: the use of serum markers. // Stroke 2000 — V. 31, № 2781 -P.39−45.
  251. J0rgensen O.S., Centervall G. Enolase in the rat: ontogeny and tissue distribution. // J. Neurochem. — 1982. — V. 39. — P. 537−542.
  252. Jorgensen L.G., Lober J., Carlsen N.L. et al. Serum neuron specific enolase (S-NSE) reference interval evaluation by time-resolved immunofluorometry compared with a radioimmunoassay. // Clin Chim Acta. 1996 — V. 249(1−2) — P. 77−91.
  253. Iida K., Takashima S. et al Immunohistochemical study of myelination and oligodendrocytye in infants with periventricular leucomalacia. // Pediatr. Neurol. Nov. 1995 -V. 13(4) — P. 296−304
  254. Inouye H, Kirschner D.A. Folding and function of the myelin proteins from primary sequence data // J Neurosci Res. 1991 — V. 28 — P. 1 — 17.
  255. Ingebrigtsen T, Romner B. Biochemical serum markers for brain damage: a short review with emphasis on clinical utility in mild head injury. // Restor Neurol Neurosci. 2003 — V. 21(3−4)-P. 171−176.
  256. Kalistova H., Havrdova E., Uhrova J. et al. Myelin basic protein in multiple sclerosis and other neurological disorders. // J Neurol. 2003 — V. 250 — P. 874−875
  257. Kalman M., Pritz M.B. Glial fibrillary acidic protein-immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. // J. Comp. Neurol. 2001 — V. 431(4) — P. 460−480.
  258. Kalofonos H.P., Karamouzis M.V., Epenetos A.A. Radioimmunoscintigraphy in patients with ovarian cancer. // Acta Oncol. 2001 — V. 40(5) — P. 549−557.
  259. Kamps J.A.A.M, Konig G.A., Velinova M. J et al Uptake of long-circulating immu-noliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer. // J. Drug Targeting. — 2000. — V. 8. — No. 4. — P. 235−245.
  260. Kanfer J., Parenty M., Goujet-Zalc C. et al Developmental expression of myelin proteolipid, basic protein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase transcripts in different rat brain regions. // J. Mol. Neurosci. 1989 -V. 1 — P. 39−46.
  261. Kato K., Assai R. et al Immunoassay of three cnolase isoenzymes in human serum and in blood cells. // Clin. Chim. Acta. — 1983. — V. 127. — P. 353−358.
  262. Kato K., Suzuki F., et al Developmental profile of three enolase isoenzymes in rat brain: determination from one cell embryo to adult brain. //Neurochem. Int. 1984. — V. 6.1. P. 81−84
  263. Kellermann S.A., Green L.L. Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. // Curr Opin Biotechnol. 2002 — V. 13(6) -P. 593−597.
  264. Kennett R.H. Hybridomas: a new dimension in biological analyses. // In Vitro. -1981 V. 17(12) — P. 1036−1050.
  265. Kim S., Tuck M., Kim M. Myelin basic protein specific protein methylase I activity in Shiverer mutant mouse brain. // J. Neurosci. Res. — 1986 — V. 16 — P. 357−365.
  266. Kipriyanov S.M., Le Gall F. Generation and production of engineered antibodies. // Mol Biotechnol. 2004 — V. 26(1) — P. 39−60.
  267. Kira G., Deibler G" Krutzsch H.C. et al. Aminoacid sequence of porcine myelin basic protein. // J Neurochemistry 1985 — V. 44 — P. 134−142.
  268. Kiryushko D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. // Ann N Y Acad Sci. 2004 — V. 1014 — P. 140−154.
  269. Kishimoto A., Nishiyama K, Nakanishi H. et al Studies of the phosphorilation of myelin basic protein by protein kinase C and adenosine 3':5'-monophosphate-dependet protein kinase. // J. Biol. Chem. 1985 — V. 260 — P. 12 492−12 499
  270. Kleine T.O., Benes L., Zofel P. Studies of the brain specificity of S100B and neuron-specific enolase (NSE) in blood serum of acute care patients. // Brain Res Bull. — 2003 — V. 15 № 61 -P. 265−279.
  271. Kojke W.A., Konitzer P., Meng Q.C. The effect of apolipoprotein E genotype on neuron specific enolase and S-lOObeta levels after cardiac surgery. // Anesth Analg. 2004 — V. 99(5)-P. 1323−1325.
  272. Kohlschutter A. Myelin basic protein in cerebrospinal fluid from children. // Eur. J. Pediatr.- 1978-№ 13-V. 127(3)-P. 155−161.
  273. Kohlschutter C., Mosgoller W. Myelination deficits in brain of rats following perinatal asphyxia. II Life Sci. 2000 — № 29 — V. 67(19) — P. 2355−2368.
  274. Kohler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. // Nature -1975 V. 256 — P. 495−497.
  275. Kohira /., Tsuji T., Ishizu H. et al. Elevation of neuron-specific enolase in serum and cerebrospinal fluid of early stage Creutzfeldt-Jakob disease. // Acta Neurol Scand. 2000 — V. 102-P. 385−387.
  276. Kordower J.H., Chen E.Y., Winkler C. et al. Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF. // J. Comp. Neurol. 1997 — V. 387 — P. 96−113.
  277. Kragh J., Bolwig T.G., Woldbye D.P., et al. Electroconvulsive shock and lidocaine-induced seizures in the rat activate astrocytes as measured by glial fibrillary acidic protein. // Biol. Psychiatry. — 1993. — V. 33(11−12) — P. 794−800.
  278. Krams J. Recombinant antibodies for the diagnosis and treatment of cancer. // Mol Biotechnol. -2003 V. 25(1)-P. 1−17.
  279. Lamers K.J.B., Van Engelen B.G.M., et al. Cerebrospinal neuron-specific enolase,
  280. SI00 and myelin basic protein in neurological disorders // Acta Neurol. Scand. — 1995. — V. ^ 92.— P. 247 -251.
  281. Lamers K.J., de Reus H.P., Jongen P.J. Myelin basic protein in CSF as indicator of disease activity in multiple sclerosis. // Mult Scler- 1998 -V. 4 (3) P. 124−126-
  282. Landry C.F., Ivy G.O., Brown I.R. Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization //J. Neurosci. — 1990. — V. 25. —P. 194−203.
  283. Lane, R.D. A short duration polyethylene glycol fusion technique for increasing production of monoclonal antibody-secreting hybridomas. // J. Immunol. Meth. 1985 — V. 81 -P. 223−228.
  284. Lasic D.D., Papahadjopoulos D. Liposomes revisited // Science. 1995 — V. 2671. P.1275−1276.
  285. Lassmann H, Bmnner C. et al. Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. // Acta Neuropathol 1988 — V. 75 — P. 566−576.
  286. Laubsher A., Pletsher A. et al. Shape change of blood platelets brought about bu myelin basic protein and other basic polypeptides. // Naunyn-Schmiedebergs Arch. Pharmacol.- 1979-V. 310-P. 87−92.
  287. Laurino J.P., Shi Q., Ge J. Monoclonal antibodies, antigens and molecular diagnostics: a practical overview. // Ann Clin Lab Sci. 1999 — V. 29(3) — P. 158−166.
  288. Li Y., Wang X., Yang Z. Neuron-specific enolase in patients with acute ischemic stroke and related dementia. // Chin Med J (Engl). 1995 — V. 108(3) — P. 221−223.
  289. Li Z" Zhang Y., Li D. et al. Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins. // J. Ncurosci. -2000 V. 20 (13) — P. 4944−53.
  290. Liedtke W., Edelmann W, Biery P.L., et al. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination //Neuron. — 1996.1. V. 17. —P. 607−615.
  291. Liem R.K.H., Shelanski M.L. Identity of the major protein in «native» glial fibrillary acidic protein preparations with tubulin // Brain Res. — 1978. — V. 145. — P. 196.
  292. Lima J.E., Takayanagui O.M., Garcia L.V. et al. Use of neuron-specific enolase for assessing the severity and outcome in patients with neurological disorders. // Braz J Med Biol Res. 2004 -V. 37 — P. 19−26.
  293. Leibowitz S., Hughes R.A.C. Immunology of the nervous system. (Current topics in immunology.) — London: Edward Arnold, 1983. V 17 — 303 p.
  294. Lewis S.A., Cowan N.J. Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure. // J. Neurochem. 1985 — V. 45 — P. 913−919.
  295. Longatti P.L., Canova G., Guida F. et al. The CSF myelin basic protein: a reliable marker of actual cerebral damage in hydrocephalus. // J Neurosurg Sei. 1993 — V. 37(2) — P. 87−90.
  296. Longatti P.L., Guida F., Agostini S. The CSF myelin basic protein in pediatric hydrocephalus. // Childs Nerv Syst 1994 — V. 10 (2) — P. 96−98-
  297. Loy D.N., Sroufe A.E., Pelt J.L. et al. Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron-specific enolase and S-100beta. // Neurosurgery. -2005 — V. 56(2)-P. 391−397.
  298. Lundkvist J., Sundgren-Andersson A.K., Tingsborg S. et al. Acute-phase responses in transgenic mice with CNS overexpression of IL-1 receptor antagonist. // Am. J. Physiol. -1999 V. 276 — P. R644 — 651
  299. Maatta J.A., Coffey E.T., Hermonen J.A. et al. Detection of myelin basic protein iso-forms by organic concentration // Biochem Biophys Res Commun 1997 — V. 238 (2) — P. 498 502-
  300. Magerkurth O. Nachweis von saurem glialen Faserprotein (GFAP) in humanem Serum und erste klinische Ergebnisse II Dissertation zum Erwerb des Doktorgrades der Medizin 2003 -Munchen.
  301. Macklin W.B., Weill C.L., Deininger P.L. Expression of myelin proteolipid and basic protein mRNAs in cultured cells. II J Neurosci Res 1986 — V. 6 — P. 203−217.
  302. Malamud N. Neuropathology of organic brain syndromes associated with aging. // In: Aging and the Brain, Gaitz, C. (ed.) New York — pages 63−87.
  303. Malmestrom C., Haghighi S., Rosengren L. et al. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. // Neurology. 2003 — V. 23 — P.1720−1725.
  304. Mancardi G.L., Liwnicz, B.H., Mandybur T.I. Fibrous astrocytes in Alzheimer’s disease and senile dementia of Alzheimer’s type. An immunohistochemical and ultrastructural study. // Acta Neuropathol. (Berl.) 1983 — V. 61 — P. 76−80.
  305. Mann D.M.A. The pathological association between Down’s syndrome and Alzheimer’s disease. // Mech. Aging Dev. 1988 — V. 43 — P. 99 -136.
  306. Marangos P.J., Campbell I.C., et al. Blood platelets contain a neuron specific enolase subunit. // J. Neurochem. — 1980. — V. 34. — P. 1254−1258.
  307. P. J., Campbell I. C., Cohen R.M. (eds). Neuronal and glial proteins: Structure, function, and clinical application. — San Diego etc.: Acad. Press, 1988. — 398 p.
  308. Marangos P.J., Zomzely-Neurath C., Goodwin F.K. Structural and functional properties of neuron specific protein (NSP) from rat, cat and human brain. // J. Neurochem. — 1977. — V. 28, —P. 1097−1107.
  309. Marangos P.J., Zomzely-Neurath C., York C. Immunological studies of a nerve specific protein (NSP) // Arch. Biochem. Biophys. — 1975. — V. 170. — P. 289 293.
  310. Marangos P.J., Parma A.M., Goodwin F.K. Functional properties of neuronal and • glial isoenzymes of brain enolase. // J. Neurochem. — 1978. — V. 31. — P. 727−732.
  311. Marchi N, Rasmussen P, Kapural M et al. Peripheral markers of brain damage and blood-brain barrier dysfunction. // Restor Neurol Neurosci. 2003 — V. 21(3−4) — P. 109−121.e
  312. Martens P. Serum neuron-specific enolase as a prognostic marker for irreversible brain damage in comatose cardiac arrest survivors. // Acad. Emerg Med. 1996 — V. 3(2) — P. 126−131.
  313. Martens P., Raabe A., Johnsson P. Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. // Stroke. 1998 — V. 29 -P. 2363−2366.
  314. Maruyama K. In vivo targeting by liposomes. // Biol Pharm Bull 2000 — V. 23 — P. 791−799.
  315. Matias-Guiu J., Martinez-Vazquez J., Ruibal A. Myelin basic protein and creatine kinase BB isoenzyme as CSF markers of intracranial tumors and stroke Acta Neurol Scand -1986-V. 73 (5)-P. 461−465-
  316. McCall M.A., Gregg R.G., Behringer R.R. et al. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. //Proc. Natl. Acad. Sci. USA 1996 -V. 93-P. 6361−6366.
  317. McKie E.A., Graham D.I., Brown S.M. Selective astrocytic transgene expression in vitro and in vivo from. // Gene Therapy 1998 — V. 5 — P. 440 -450.
  318. Mecocci P., Parnetti L., Donato R. et al. Serum autoantibodies against glial fibrillary acidic protein in brain aging and senile dementias. // Brain Behav Immun. 1992 — V. 6(3) — P. 286−292.
  319. Mecocci P., Parnetti L" et al. Serum anti-GFAP and anti-SlOO autoantibodies in brain aging, Alzheimer’s disease and vascular dementia // J. Neuroimmunol. — 1995. — V. 57.1. P. 165−170.
  320. Meinl E, Hohlfeld R. Immunopathogenesis of multiple sclerosis: MBP and beyond. // Clin Exp Immunol. 2002 — V. 128 — P. 395−397.
  321. Menet V., Prieto M., Privat A. et al. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. // Proc Natl Acad Sci U S A. 2003 — V. 100(15) — P. 8999−9004.
  322. Merluzzi S., Figini M., Colombatti A. et al. Humanized antibodies as potential drugs for therapeutic use. //Adv Clin Path. 2000 — V. 4(2) — P. 77−85.
  323. Meynaar I.A., Straaten H.M., van der Wetering J. et al. Serum neuron-specific enolase predicts outcome in post-anoxic coma: a prospective cohort study. // Intensive Care Med. 2003 — V. 29 — P. 189−195.
  324. Michetti F., Larocca L.M., Rinelli A. et al. Immunocytochemical distribution of S-100 protein in patients with Down’s syndrome. // Acta Neuropathol. (Berl.) 1990 — V. 80 — P. 475−478
  325. Milenic DE. Monoclonal antibody-based therapy strategies: providing options for the cancer patient. // Curr Pharm Des. 2002 — V. 8(19) — P. 1749−1764
  326. Miller D B., Blackman C.F., O’Callaghan J.P. An increase in glial fibrillary acidic protein follows brain hyperthermia in rats // Brain Res. — 1987. — V. 415. — P. 371 374.
  327. Milstein C., Cuello A.C. Hybrid hybridomas and their use in immunohistochemistry //Nature (London). — 1983. — V. 305. —P. 537 540.
  328. Missler U., Wiesmann M., Wittmann G. et al. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. // Clinical Chemistry — 1999 — V. 45 -№ 1 -P. 138−141.
  329. Missler U., Wiesmann M., Friedrich C. et al. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. // Stroke. 1997 -V. 28(10) — P. 1956−1960.
  330. Missler U., Orlowski N., Notzold A. et al. Early elevation of S-100B protein in blood after cardiac surgery is not a predictor of ischemic cerebral injury. // Clin Chim Acta. 2002 -V. 321(1−2)-P. 29−33.
  331. Mito T., Becker L.E. Developmental changes of S100 protein and glial fibrillary acidic protein in the brain in Down syndrome. // Exp. Neurol. 1993 — V. 120(2) — P. 170−176.
  332. Modak S., Cheung N.K. Antibody-based targeted radiation to pediatric tumors. // J Nucl Med.-2005-V. 46(1 Suppl), P. 157S-163S.
  333. Modesti N.M., Barra H.S. The interaction of myelin basic protein with tubulin and the inhibition of tubulin carboxypeptidase activity. // Biochem. Biophys. Res. Commun. 1986 -V. 136-P. 482−489.
  334. Monge M., Kadiiski D, Jacque C.M. et al. Oligodendroglial expression and deposition of four myelin constituents in the myelin sheath during development. An in vivo study. // Dev. Neurosci. 1986 — V. 8 — P. 222−226
  335. Mori T., Morimoto K., Hayakawa T., et al. Radioimmunoassay of astroprotein (an astrocyte specific cerebroprotein) in cerebrospinal fluid and its clinical significance //Neurol. Med.-Chir. (Tokyo). — 1978. — V. 18. — P. 25 31.
  336. Moore B.W. Brain-specific proteins, S100 protein, 14−3-2 protein and glial fibrillary protein // Advances in Neurochemistry. — 1976. — V. 1. — P. 137 155.
  337. Moore B.W., McGregor D. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. // J. Biol. Chem. — 1965. — V. 133. — P. 1647−1653.
  338. Morell P., Greenfield S. et al. Changes in the protein composition of mouse brain myelin during development. // J Neurochem. 1972 — V. 19 — P. 2545−2554.
  339. Morris S.J., Bradley D. et al. Myelin basic protein binds heme at a specific site nesr the tryptophan residue. // Biochemistry 1987 — V. 26 — P. 2175−2182.
  340. Mucke L., Rockenstein E.M. Prolonged delivery of transgene products to specific brain regions by migratory astrocyte grafts. // Transgenics 1993 — V. 1 — P. 3−9
  341. Murphy G.M., Eng L.F., Ellis W.G. et al. Antigenic profile of plaques and neurofibrillary tangles in the amygdala in Down’s syndrome: a comparison with Alzheimer’s disease. //Brain Res. 1990-V. 537-P. 102−108.
  342. Murphy G.M., Jr., Murphy E., Greenberg B.D. et al. Alzheimer’s disease: beta-amyloid precursor protein expression in plaques varies among cytoarchitectonic areas of the medial temporal lobe. // Neurosci. Lett. 1991 — V. 131 — P. 100 -104.
  343. Moryama E., Salkman M" Broadwell R.D. Blood-brain barrier alteration after microwave-induced hyperthermia is purely a thermal effect. 1. Temperature and power measurements // Surg. Neurol. — 1991. — V. 35. — P. 177−182.
  344. Moscarello M.A., Chia L.S., Leighton D. et al. Size and surface charge properties of myelin vesicles from normal and diseased (multiple sclerosis) brain. // J Neurochem 1985 — V. 45 (2)-P. 415−421
  345. Mussack T., Biberthaler P., Kanz K.G. et al. Immediate S-100B and neuron-specific enolase plasma measurements for rapid evaluation of primary brain damage in alcohol-intoxicated, minor head-injured patients. // Shock. 2002 — V. 18 — P. 395−400.
  346. Muvajfak A, Hasirci N. The use of antibodies in diagnosis and therapy of cancer. // Adv Exp Med Biol. 2003 — V. 534 — P. 309−325
  347. Nagdyman N., Komen W., Ko H.K. et al. Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia. // Pediatr Res. 2001 — V. 49(4) — P. 502−506.
  348. Nagdyman N. Grimmer I., Scholz T. et al. Predictive value of brain-specific proteins in serum for neurodevelopmental outcome after birth asphyxia. // Pediatr Res. 2003 — V. 54(2) — P. 270−275.
  349. Nakagawa H., Yamada M., Kanayama T. Myelin basic protein in the cerebrospinal fluid of patients with brain tumors. // Neurosurgery 1994 — V. 34 (5) — P. 825−833-
  350. Nakamura K., Takeda M., Tanaka T. et al. Glial fibrillary acidic protein stimulates proliferation and immunoglobulin synthesis of lymphocytes from Alzheimer’s disease patients. // Methods Find Exp Clin Pharmacol. 1992 — V. 14(2) — P. 141−149.
  351. Nakano 71, Nagata A. ELISAs for free light chains of human immunoglobulins using monoclonal antibodies: comparison of their specificity with available polyclonal antibodies. // J Immunol Methods. 2003 — № 1 — V. 275 (1−2) — P. 9−17.
  352. Nakanishi K., Nakanishi M" Kukita F. Dual intracellular recording of neocortical neurons in a neuron-glia coculture system. // Brain Res. Protocols 1999 — V. 4 — P. 105−114
  353. Nakazato Y, Ishizeki J., et al. Localization of SI00 and glial fibrillary acidic protein-related antigen in pleomorphic adenoma of salivary glands // Lab. Invest. — 1982. — V. 46, —P. 621 -626.
  354. Niebroj-Dobosz /., Rafalowska J., Lukasiuk M., et al. Immunochemical analysis of some proteins in cerebrospinal fluid and serum of patients with ischemic strokes // Folia Neuro-pathol. — 1994. — V. 34. — P. 182 186.
  355. Nooijen P.T.G.A., Schoonderwaldt H.C., et al. Neuron-specific enolase, S100 protein, myelin basic protein and lactate in CSF in dementia // Dement. Geriatr. Cogn. Disord. — 1997. —V. 8, —P. 169- 173.
  356. Norton W.T., Cammer W. Isolation and characterization of myelin. // In: «Myelin» (Ed. Morell P.) Premium press, N-Y 1984 — P. 147−195.
  357. Noseworthy T.W., Anderson B.J., Noseworthy A.F. Cerebrospinal fluid myelin basic protein as a prognostic marker in patients with head injury. // Crit Care Med 1985 — V. 13 (9) -P. 743−746-
  358. Nylen K., Karlsson J.E., Blomstrand C. et al. Cerebrospinal fluid neurofilament and, glial fibrillary acidic protein in patients with cerebral vasculitis. // J. Neurosci Res. 2002 — V.15.P. 844−851.
  359. O’Callaghan J.P., Lavin K.L., Chess G., Clouet D.H. A method for dissection of discrete regions of rat brain following microwave irradiation // Brain Res. Bull. — 1983. — V. 11, —P.31 -42.
  360. O’Callaghan JP. Quantification of glial fibrillary acidic protein: comparison of slot-immunobinding assays with a novel sandwich ELISA. // Neurotoxicol Teratol. 1991 — V. 13(3)-P. 275−281.
  361. Oh S.H., Lee J.G., Na S.J. et al. The effect of initial serum neuron-specific enolase level on clinical outcome in acute carotid artery territory infarction. // Yonsei Med J. 2002 -V. 43 — P. 357−362.
  362. Oh S.H., Lee J.G., Na S.J. et al. Prediction of early clinical severity and extent of neuronal damage in anterior-circulation infarction using the initial serum neuron-specific enolase level. // Arch Neurol. 2003 — V. 60 — P. 37−41.
  363. Ohta M., Ohta K., Ma J. et al. Clinical and analytical evaluation of an enzyme immunoassay for myelin basic protein in cerebrospinal fluid. // Clin Chem. 2000 — V. 46 — P. 1326−1330.
  364. Ohta M., Ohta K. Detection of myelin basic protein in cerebrospinal fluid. // Expert Rev Mol Diagn. 2002 — V. 2 — P. 627−633.
  365. Ohta M., Ohta K., Nishimura M. et al. Detection of myelin basic protein in cerebrospinal fluid and serum from patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. // Ann Clin Biochem. 2002 — V. 39 — P. 603−605.
  366. Onteniente B., Kimura H., Maeda T. Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry // J. Comp. Neurol. — 1983. — V. 215 -P. 427−436.
  367. Orlino, E.N., Jr. Olmstead C.E., et al. An enzyme immunoassay for neuron-specificenolase in cerebrospinal fluid // Biochem. Molec. Med. — 1997. — V. 61. — P. 41 46.
  368. Pachter J.S., de Vries H.E., Fabry Z. The blood-brain barrier and its role in immune privilege in the central nervous system. // J Ncuropathol Exp Neurol. 2003 — V. 62(6) — P. 593−604.
  369. Pan W., Banks W.A., Fasold M.B. et al. Transport of brain-derived neurotrophic factor across the blood-brain barrier. // Neuropharmacology. 1998 — V. 37(12) — P. 1553−1561.
  370. Payne G. Progress in immunoconjugate cancer therapeutics. // Cancer Cell. 2003 — V. 3(3)-P. 207−212
  371. Palmio J., Peltola J., Vuorinen P. et al. Normal CSF ncuron-specific enolase and S-100 protein levels in patients with recent non-complicated tonic-clonic seizures. // J Neurol Sci.-2001 -V. 15-№ 183-P. 27−31.
  372. Papasozomenos S., Shapiro S. Pineal astrocytoma report of a case, confined to the epiphysis, with immunocytochemical and electron microscopic studies // Cancer (Philadelphia). — 1981.—V. 47 —P. 99- 103.
  373. Pardridge W.M. CNS drug design based on principles of blood-brain barrier transport//! Neurochem.— 1998, —V. 70. —P. 1781 1792.
  374. Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. // Mol Interv. 2003 — № 51 — V. 3(2) — P. 90−105
  375. Park Y.S. Tumor-directed targeting of liposomes. // Biosci Rep. 2002 — V. 22(2) -P. 267−281
  376. Parnetti L" Palumbo B., Cardinali L. et al. Cerebrospinal fluid neuron-specific enolase in Alzheimer’s disease and vascular dementia. // Neurosci Lett. 1995 — V. 2 — № 183 — P. 43−45.
  377. Pedraza L., Fidler L" Staugaitis S.M. et al. The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. //Neuron 1997 — V, 18 — P. 579−589.
  378. Pekny M, Leveen P., Pekna M. et al. Mice lacking GFAP display astrocytes devoid of intermediate filaments but develop and reproduce normally. // EMBO J. 1995 — V. 14 — P. 1590−1598.
  379. Pekny M., Johansson C.B., Eliasson C. et al. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. // J. Cell Biol. — 1999 — V. 145-P. 503−514.
  380. Petito C.K., Halaby I.A. Relationship between ischemia and ischemic neuronal necrosis to astrocyte expression of glial fibrillary acidic protein //Int. J. Dev. Neurosci. — 1993. — Vol. 11, № 2. — P. 239 247.
  381. Petzold A., Keir G., Green A.J. et al. An ELISA for glial fibrillary acidic protein. // J. Immunol Methods. 2004 — V. 287 — P. 169−177.
  382. Pineda J.A., Wang K.K., Hayes R.L. Biomarkers of proteolytic damage following traumatic brain injury. // Brain Pathol. 2004 — V. 14(2) — P. 202−209.
  383. Polak M, Haymaker w., Johnson J.E., D 'Amelio J. Neuroglia and their reactions. In: Haymaker W., Adams R. (Eds.) Histology and histopathology of the nervous system. Springfield, III.: Thomas, 1982. — V. 1. — P. 363−480.
  384. Povlsen G.K., Ditlevsen D.K., Berezin V. et al. Intracellular signaling by the neural cell adhesion molecule. // Neurochem Res. 2003 — V. 28(1) — P. 127−141.
  385. Price C.P. Progress in immunoassay technology. // Clin Chem Lab Med. 1998 -V. 36 (6)-P. 341−347.
  386. Quintana J.G., Lopez-Colberg I., Cunningham, L.A. Use of GFAP-lacZ transgenic mice to determine astrocyte fate in grafts of embryonic ventral midbrain. // Brain Res. Dev. Brain Res.-1998-V. 105-P. 147−151.
  387. Raff M. C" Williams B.P. Miller R.H. The in vitro differentiation of a bipotential glial progenitor cell // EMBO J. — 1984. — V. 3. — P. 1857−1864.
  388. Ramer M.S., Kawaja M.D., Henderson J.T. et al. Glial overexpression of NGF enhances neuropathic pain and adrenergic sprouting into DRG following chronic sciatic constriction in mice. // Neurosci. Lett. 1998 — V. 251 — P. 53−56.
  389. Rasmussen L.S., Christiansen M" Eliasen K. et al. Biochemical markers for brain damage after cardiac surgery time profile and correlation with cognitive dysfunction. // Acta
  390. Anaesthesiol Scand. 2002 — V. 46 — P. 547−551.
  391. Rasmussen L.S., Christiansen M., Johnsen J. et al. Subtle brain damage cannot be detected by measuring neuron-specific enolase and S-lOObeta protein after carotid endartcrec-tomy. // J. Cardiothorac Vase Anesth. 2000 — V. 14(2) — P. 166−170.
  392. Rasmussen L.S., Poulsen M.G., Christiansen M. et al. Biochemical markers for brain damage after carbon monoxide poisoning. // Acta Anaesthesiol Scand. 2004 — V. 48(4) — P. 469−473.
  393. Rasmussen L.S., Christiansen M., Hansen P.B. et al. Do blood levels of neuron-specific enolase and S-100 protein reflect cognitive dysfunction after coronary artery bypass? // Acta Anaesthesiol Scand. 1999 — V. 43(5) — P. 495−500.
  394. Rasmussen L.S., Christiansen M., Rasmussen H. et al. Do blood concentrations of neurone specific enolase and S-100 beta protein reflect cognitive dysfunction after abdominal surgery? ISPOCD Group. // Br J Anaesth. 2000 — V. 84(2) — P. 242−244.
  395. Reeves S. A., Helman L J., Allison A., et al. Molecular cloning and primary structure of human glial fibrillary acidic protein // Proc. natl. Acad. Sci. — 1989. — V. 86. — P. 5178 -5182.
  396. Reff M. E, Hariharan K., Braslawsky G. Future of monoclonal antibodies in the treatment of hematologic malignancies. // Cancer Control. 2002 — V. 9(2) — P. 152−166
  397. Reindl M., Linington C., Brehm U. et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. // Brain. 1999 — V. 122 — P. 2047−2056.
  398. Ribotta M.G., Menet V., Privat A. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice, // Acta Neurochir Suppl. 2004 — V. 89 — P. 87−92.
  399. Riccio P., Rosenbusch, et al. A new procedure for the isolation of the brain myelin basic protein in a lipid- bound form. // FEBS Lett. 1984 — V. 177 — P. 236−240
  400. Riccio P., Fasano A., Borenshtein N. Multilamellar packing of myelin modeled by lipid-bound MB P. // J Neurosci Res 2000 — V. 15 — № 59 (4) — P. 513−521-
  401. Rider C.C., Taylor C.B. Evidence for a new form of enolase in rat brain. // Biochem.
  402. Biophys. Res. Commun. — 1975. —V. 66. — P. 814−820.
  403. Ritter M.A., Ladyman H.M. Monoclonal antibodies. Production, engeneering and clinical application. 1995 — Cambridge University Press. — pp. 480.
  404. Rodriguez-Nunez A., Cid E., Eiris J. et al. Neuron-specific enolase levels in the cerebrospinal fluid of neurologically healthy children. // Brain Dev. 1999 — V. 21 — P. 16−19.
  405. Rodriguez-Nunez A., Cid E., Rodrigaez-Garcia J. et al. Cerebrospinal fluid purine metabolite and neuron-specific enolase concentrations after febrile seizures. // Brain Dev. — 2000-V. 22-P. 427−431.
  406. Roque A.C., Lowe C.R., Taipa M.A. Antibodies and genetically engineered related molecules: production and purification. // Biotechnol Prog. 2004 — V. 20(3) — P. 639−654.
  407. Rosen H., Sunnerhagen K.S., Herlitz J. et al. Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. // Resuscitation. 2001 -V. 49 — P. 183−191.
  408. Rosengren L.E., Ahlsen G., Belfrage M. et al. A sensitive ELISA for glial fibrillary acidic protein: application in CSF of children. // J. Neurosci Methods. 1992 — V. 44 — P. 113 119.
  409. Rosengren L.E., Lycke J., Andersen O. Glial fibrillary acidic protein in CSF of multiple sclerosis patients: relation to neurological deficit // J. Neurol. Sci. — 1995. — V. 133. — P. 61−65.
  410. Rosengren L.E., Wikkelse C., Hagberg L. A sensitive ELISA for glial fibrillary acidic protein: application in CSF of adults // J. Neurosci. Methods. — 1994. — V. 51. — P. 197−204.
  411. Ross JS, Gray K., Gray GS et al. Anticancer antibodies. // Am J Clin Pathol. 2003 — V. 119(4)-P. 472−485.
  412. Ross J., Gray K., Schenkein D. et al. Antibody-based therapeutics in oncology. // Expert Rev Anticancer Ther. 2003 — V. 3(1) — P. 107−121.
  413. Rozemuller J.M., Eikelenboom P., Stam F.C. et al. A4 protein in Alzheimer’s disease: primary and secondary cellular events in extracellular amyloid deposition. // J. Neuropa-thol. Exp. Neurol. 1989 — V. 48 — P. 674 -691
  414. RuegerR., Dahl D., Bignami A. Purification of a brain-specific astroglial protein by immunoaffinity chromatography // Ann. Biochem. — 1978. — V. 89. — P. 360.
  415. Rutka J.T., Murakami M, Dirks P.B., et al. Role of glial filaments in cells and tumors of glial origin: a review // J. Neurosurg. — 1997. — V. 87. — P. 420 430.
  416. Rutka J.T., Smith S.L. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenecity // Cancer Res. — 1993. — V. 53. — P. 3624 3641.
  417. Ruutiainen J., Newcombe J., Salmi A. et al. Measurement of glial fibrillary acidic protein (GFAP) and anti-GFAP antibodies by solid-phase radioimmunoassays. // Acta Neurol Scand. 1981 — V. 63 — P. 297−305.
  418. Sakimura K. Kushiya E., et al. Molecular cloning and the nucleotide sequence of cDNA to mRNA for non-neuronal enolase (aa-enolase) of rat brain and liver // Nucleic Acids Res. — 1985. — V. 13. — P. 4365 4378.
  419. Salm A.K., Hatton G.I., Nilaver G. Immunoreactive glial fibrillary acidic protein in pituicytes of the neurohypophysis // Brain Res. — 1982. — V. 236. — P. 471 476.
  420. Sam L., Blanco B., Alvarez-Vallina L. Antibodies and gene therapy: teaching old 'magic bullets' new tricks. // Trends Immunol. 2004 — V. 25(2) — P. 85−91.
  421. Schaumburg H.H., Powers J.M., Raine C.S. et al. Adrenoleukodystrophy. A clinical and pathological study of 17 cases. // Arch Neurol. 1975 — V. 33 — P. 577−591.
  422. Schechter R., Yen S.-H.C., Terry R.D. Fibrous astrocytes in senile dementia of the Alzheimer type. // J. Neuropathol. Exp. Neurol. 1981 — V. 40 — P. 95−101.
  423. Schmechel D.E. Methods of localizing cell-specific proteins in brain. In: Marangos P.J., Campbell I.C., Cohen R.M. (Eds.) Neuronal and glial proteins: Structure, function, and clinical application. — San Diego etc.: Acad. Press, 1988. —¦ P. 69−102.
  424. Schmechel D.E., Brightman M.W., Marangos P.J. Neurons switch from nonneuronal (NNE) enolase to neuronal (NSE) enolase during development. // Brain Res. — 1980. — V. 190, — P. 195−214
  425. Schmitt B., Bauersfeld U., Schmid E.R. et al. Serum and CSF levels of neuron-specific enolase (NSE) in cardiac surgery with cardiopulmonary bypass: a marker of brain injury? // Brain Dev. 1998 — V. 20 — P. 536−539.
  426. Schmidt S., Haase C.G., Bezman L. et al. Serum autoantibody responses to myelin oligodendrocyte glycoprotein and myelin basic protein in X-linked adrenoleukodystrophy andmultiple sclerosis. // J Neuroimmunol. 2001 — № 3 — V. 119 (1) — P. 88−94.
  427. Schnitzer J., Franke W. W., Schachner M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system // J. Cell Biol. — 1981. — V. 90. — P. 435 — 447.
  428. Schoerkhuber W., Kittler H" Sterz F. et al. Time course of serum neuron-specific enolase. A predictor of neurological outcome in patients resuscitated from cardiac arrest. // Stroke.- 1999-V. 30-P. 1598−1603.
  429. Segovia J., Vergara P., Brenner M. Astrocytespecific expression of tyrosine hydroxylase after intracerebral gene transfer induces behavioral recovery in experimental Parkinsonism. // Gene Therapy 1995-V. 5-P. 1650−1655.
  430. Seshi B" Bell C.E. Preparation and characterization of monoclonal antibodies to human neuron-specific enolase. // Hybridoma. — 1985. — V. 4. — P. 13−25.
  431. Sharp F.R., Liu J., Bernabeu R. Neurogenesis following brain ischemia. // Brain Res Dev Brain Res. 2002 — № 31 — V. 134(1−2) — P. 23−30.
  432. Shirasaka Y. Lack of neuronal damage in atypical absence status epilepticus. // Epilepsia.-2002-V. 43-P. 1498−1501.
  433. Seiwa Ch, Kojima-Aikawa K" Matsumoto I. et al. CNS Myelinogenesis in Vitro: Myelin Basic Protein Deficient shiverer Oligodendrocytes. // J. Neurosci. Res. 2002 — V. 69 -P. 305−317.
  434. Seshi B., Bell C.E. Preparation and characterization of monoclonal antibodies to human neuron-specific enolase // Hybridoma. — 1985. — V. 4. — P. 13−25.
  435. SellebjergF., Christiansen M., GarredP. MBP, anti-MBP- and anti-PLP-antibodies, and intrathecal complement activation in multiple sclerosis. // Mult Scler 1998 — V. 4 (3) — P. 127−131-
  436. SellebjergF., Christiansen M" Nielsen P.M. Cerebrospinal fluid measures of disease activity in patients with multiple sclerosis. // Mult Scler 1998 — V. 4 (6) — P. 475−479-
  437. Segovia J., Vergara P., Brenner M. Astrocytespccific expression of tyrosine hydroxylase after intracerebral gene transfer induces behavioral recovery in experimental Parkinsonism.//Gene Therapy 1995 -V. 5 -P. 1650−1655.
  438. Sharkey R.M., Goldenberg D.M. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. // J Nucl Med. 2005 — V. 46(1 Suppl) — P. 115S-127S.
  439. Shibuki K., Gomi H., Chen L. et al. Deficient cerebellar long-term depression, im-311paired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. // Neuron -1996-V. 16-P. 587−599.
  440. Shine H.D., Readhead C., Popko B. Morphometric analysis of normal, mutant, anditransgenic CNS: correlation of myelin basic protein expression to myelinogenesis. // J. Neurochem 1992 — V. 58 (1) — 342−349.
  441. Shults C.W., Whitaker J.N., Wood J.G. Myelin basic protein microheterogenity in subfractions of rat brain myelin J. Neurochemistry — 1978 — V. 30 — № 6 — P. 1543−1551
  442. Singh V.K., Warren R., Averett R. et al. Circulating autoantibodies to neuronal and glial filament proteins in autism. // Pediatr Neurol. 1997 — V. 17(1) — P. 88−90.
  443. Singh K.V., Kaur J., Varshney G.C. et al. Synthesis and characterization of hapten-protein conjugates for antibody production against small molecules. // Bioconjug Chem. 2004 -V. 15(1)-P. 168−173.
  444. Slagel D.E., Wilson C.B., Simmons P.B. Polyacrylamide electrophoreses and immunodiffusion studies of brain tumor proteins //Ann. N.Y. Acad. Sci. — 1969. — V. 159: — P. 490 496.
  445. Smith J.D., Sikes J., Levin A.J. Human apolipoprotein E allele-specific brain expressing transgenic mice. // Neurobiology of Aging 1998 — V. 19 — P. 407−413.
  446. Snyder-Ramos S.A., Bottiger B. W. Molecular markers of brain damage clinical and ethical implications with particular focus on cardiac arrest. // Restor Neurol Neurosci. — 2003 -V. 21 (3−4)-P. 123−139.
  447. Soderstrom M., Link H" Xu Z. Optic neuritis and multiple sclcrosis: anti-MBP and anti-MBP peptide antibody-secreting cells are accumulated in CSF //Neurology 1993 — V. 43 (6)-P. 1215−1222-
  448. Soler A., Federsppiel B.S., Karcher D" Lowenthal A. Blood and cerebrospinal fluid anomalies in brain ageing and Alzheimer’s disease. // Gerontology. 1987 — V. 33 — p. 193−196.
  449. Sorg B., Agrawal D., Agrawal H. et al. Expression of myelin proteolipid protein and myelin basic protein in normal and dysmyelinating mutant mice. //J. Neurochem. 1986 — V. 46-P. 379−387.
  450. Sporer B., Missler U., Magerkurth O. et al. Evaluation of CSF glial fibrillary acidic protein (GFAP) as a putative marker for HIV-associated dementia. // Infection. 2004 — V. 32(1)-P. 20−23.
  451. Stalnacke B.M., Tegner Y" Sojka P. Playing soccer increases serum concentrationsof the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: a pilot study. // Brain Inj. 2004 — V. 18(9) — P. 899−909.
  452. Steinhoff B.J., Tumani H., Otto M. et al. Cisternal SI00 protein and neuron-specific enolase are elevated and site-specific markers in intractable temporal lobe epilepsy. // Epilepsy Res. 1999 — V. 36 — P. 75−82.
  453. Sternberger N.H., Itoyama Y., Kies M.W. et al. Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation. // Proc. Natl. Acad. Sci. USA. 1978 — V. 75(5) — P. 2521−2524.
  454. Sterk M., Oenings A., Eymann E. et al. Development of a new automated enzyme immunoassay for the determination of neuron-specific enolase. // Anticancer Res. 1999 — V. 19 (4A) — P. 2759−2762.
  455. Stockwin LH, Holmes S. The role of therapeutic antibodies in drug discovery. // Biochem Soc Trans. 2003 — V. 31(2) — P. 433−436.
  456. Strand T., Ailing C. Et al. Brain and plasma proteins in spinal fluid as markers for brain damage and severity of stroke. // Stroke 1984 — V. 15(1) — P. 138−44.
  457. Strobel E.S., Fritschka E., Schmitt-Graff A. et al. An unusual case of systemic lupus erythematosus, lupus nephritis, and transient monoclonal gammopathy. // Rheumatol Int. 2000 -V. 19(6)-P. 235−241.
  458. Su II.D., Kemp B.E. et al. Synthetic myelin basic protein peptide analogs are specific ingibitors of phospholipid/calcium-dependent protein kinase (protein kinase C). // Biochem. Biophys. Res. Commun. 1986 — V. 134 — P. 78−84.
  459. Suenaga T., Hirano A., Llena J.F. et al. Modified immunocytochemical studies in cerebellar plaques in Alzheimer’s disease. // J. Neuropathol. Exp. Neurol. 1990 — V. 49 — P. 31−40.
  460. Sun Y., Wu S., Bu G. et al. Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic. // J. Neurosei. 1998 — V. 18 — P. 3261−3272.
  461. Suresh M.R., Cuello A.C., Milstein C. Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays. // Proc Natl Acad Sci USA.- 1986 V. 83(20) -P. 7989−7993.
  462. Sutton L.N., Wood J.H., Brooks B.R. et al. Cerebrospinal fluid myelin basic protein in hydrocephalus. // J Neurosurg. 1983 — V. 59 (3) — P. 467−470.
  463. Tanabe T., Suzuki S., Hara K. et al. Cerebrospinal fluid and scrum neuron-specificenolase levels after febrile seizures. // Epilepsia. 2001 — V. 42 — P. 504−507.
  464. Tapia F.J., Polak J.M., et al. Neuron-specific enolase is produced by neuroendocrine tumours. // Lancet. — 1981. — V. i. — P. 808−812.
  465. Tardy M., Fages C., Riol H., et al. Developmental expression of the glial fibrillary acidic protein mRNA in the central nervous system and in cultured astrocytes // J. Neurochem. -1989.-V. 52.-P. 162- 167.
  466. Thomas D.G., Hoyle N.R., Seeldrayers P. Myelin basic protein immunoreactivity in serum of neurosurgical patients. // J Neurol Neurosurg Psychiatry. 1984 — V. 47(2) — P. 173 175.
  467. Thompson S. Small-molecule-protein conjugation procedures. // Methods Mol Med. 2004 — V. 94 — P. 255−265.
  468. Thomson A.J., Brazil J., Feighery C. CSF myelin basic protein in multiple sclerosis. // Acta Neurol Scand 1985 — V. 72 (6) — P. 577−583.
  469. Terryberry JW, Thor G, Peter JB. Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. // Neurobiol Aging. 1998 — V. 19(3) — P. 205−216.
  470. Tiainen M., Roine R.O., Pettila V. et al. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. // Stroke. 2003 — V. 34(12) — P. 2881−2886.
  471. Timar J., Udvarhelyi N. Banfalvi T. et al. Accuracy of the determination of S100B protein expression in malignant melanoma using polyclonal or monoclonal antibodies. // Histo-pathology. 2004 — V. 44(2) — P. 180−184.
  472. Torchilin V.P., Klibanov A.L., Huang L. et al. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. // FASEB J 1992 — V. 6 -P. 2716−2719.
  473. Torchilin V.P., Papisov M.I., Bogdanov A.A. et al. Molecular mechanissm of liposome and immunoliposome steric protection with poly (ethylene glycol) in: «Stealth Liposomes». D. Lasic, F. Martin (Eds) 1995 — P. 51−62.
  474. Tort A.B., Portela L.V., Rockenbach I.C. et al. S100B and NSE serum concentrations in Machado Joseph disease. // Clin Chim Acta. 2005 — V. 351(1−2) — P. 143−148.
  475. Trail P.A., King H.D., Dubowchik G.M. Monoclonal antibody drug immunoconju-gates for targeted treatment of cancer. // Cancer Immunol Immunother. 2003 — V. 52(5) — P. 328−337.
  476. Trejo F., Vergara P., Brenner M. et al. Gene therapy in a rodent model of Parkinson’s disease using differentiated C6 cells expressing a GFAP-tyrosine hydroxylase transgcne. // Life Sciences 1999 — V. 65 — P. 48391.
  477. Trikha M., Yan L., Nakada M.T. Monoclonal antibodies as therapeutics in oncology. // Curr Opin Biotechnol. 2002 — V. 13 (6) — P. 609−614.
  478. Trojanowski J.Q., Lee V.M.-Y., Schlaepfer W.W. An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments // Hum. Pathol. — 1984 — V. 15. — P: 248 257.
  479. Tsukita S. Ishikawa H., Karokawa M. Isolation of 10 nm filaments from astrocytes in the mouse optic nerve. J. Cell Biol. — 1981 — V. 88. — P. 245 250.
  480. Tullberg M, Rosengren L., Blomsterwall E. et al. CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. // Neurology 1998 — V. 50 — P. 11 221 127.
  481. Tumani H., Otto M., Gefeller O. et al. Kinetics of serum neuron-spccific enolase and prolactin in patients after single epileptic seizures. // Epilepsia. 1999 — V. 40(6) — P. 713−718.
  482. Uyeda C.T., Eng L.F., Bignami A. Immunological study of the glial fibrillary acidic protein // Brain Res. — 1972 — V. 37. — P. 81 89.
  483. Van Engelen B.G., Lamers K.J., Gabreels F.J. Age-related changes of neuron-specific enolase, S-100 protein, and myelin basic protein concentrations in cerebrospinal fluid. // Clin Chem- 1992-V. 38 (6)-P. 813−816-
  484. Van Geel W.J., de ReusH.P., Nijzing H. et al. Measurement of glial fibrillary acidic protein in blood: an analytical method. // Clin Chim Acta. 2002 — V. 326 — P. 151−154.
  485. Van Reempts J.L.H., Borgers M. Structural damage in experimental ccrebral ischemia. // In: Schurr A., Rigor B.M. (eds). Cerebral ischemia and resuscitation. Boca Raton, Florida: CRC, 1990 — P. 235 — 257.
  486. Varma S" Janesko K.L., Wisniewski S.R. et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. //
  487. J. Neurotrauma. 2003 — V. 20 — P. 781−786.
  488. Verbeek M.M., De Jong D., Kremer H.P. Brain-specific proteins in cerebrospinal fluid for the diagnosis of neurodegenerative diseases. // Ann Clin Biochem. 2003 — V. 40 (Pt 1)-P. 25−40.
  489. Verity A.N., Campagnoni A.T. Regional expression of myelin protein genes in the developing mouse brain. // J. Neurosci. Res. 1988 — V. 21 — P. 238−248.
  490. Vijayan V., Geddes J.W., Anderson K.J. et al. Astrocyte hypertrophy in the Alzheimer’s disease hippocampal formation. // Exp. Neurol. 1991 — V. 112 — P. 72−78.
  491. Von Mehren M., Weiner L.M. Monoclonal antibody-based therapy. // Curr Opin Oncol. 1996 — V. 8(6) — P. 493−498.
  492. Von Mehren M., Adams G.P., Weiner L.M. Monoclonal antibody therapy for cancer. // Annu Rev Med. 2003 — V. 54 — P. 343−369.
  493. Wallin A., Blennow K., Rosengren L.E. Glial fibrillary acidic protein in the cerebrospinal fluid of patients with dementia // Dementia. — 1996. — V. 7. — P. 267 272.
  494. Warren KG., Catz I. Increased synthetic peptide specificity of tissue-CSF bound anti-MBP in multiple sclerosis. //J Neuroimmunol 1993 — V. 43 (1−2) — P. 87−96-
  495. Warren KG., Catz I. Autoantibodies to myelin basic protein within multiple sclerosis central nervous system tissue. // J Neurol Sci 1993 — V. 115 (2) — P. 169−176-
  496. Warren K, Catz I. Johnson E. Anti-myelin basic protein and anti-proteolipid protein specific forms of multiple sclerosis. // Ann Neurol 1994 — V. 35 (3) — P. 280−289-
  497. Warren K.G., Catz I. Relative frequency of autoantibodies to myelin basic protein and proteolipid protein in optic neuritis and multiple sclerosis cerebrospinal fluid. //J Neurol Sci 1994-V. 121(1)-P. 66−73-
  498. Warren K.G., Catz I. Administration of myelin basic protein synthetic peptides to multiple sclerosis patients. // J Neurol Sci 1995 — V. 133 (1−2) — P. 85−94-
  499. Warren K.G., Catz I, Steinman L. Fine specifity of the antibody response to myelin basic protein in the central nervous system in MS: the minimal B-cell epitope and a model of its features. // Proc. Natl. Acad. Sci 1995 — V. 92 — P. 11 061 — 11 065.
  500. Warren KG., Catz I. An extensive search for autoantibodies to myelin basic protein in cerebrospinal fluid of non-multiple-sclerosis patients: implications for the pathogenesis of multiple sclerosis. // Eur Neurol 1999 — V. 42 (2) — P. 95−104- '
  501. Wei L C, Shi M., Chen L. W. et al. Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. // Brain Res Dev Brain Res. 2002 — V. 139 (1) — P. 9−17.
  502. Weidenheim K.M., Epshteyn I., Rashbaum W.K. Neuroanatomical localization of myelin basic protein in the late first and early second trimester human foetal spinal cord and brainstem. // J Neurocytol 1993 — V. 22 (7) — P. 507−516
  503. Weidenheim K.M., Bodhireddy S.R., Rashbaum W.K. Temporal and spatial expresision of major myelin proteins in the human fetal spinal cord during the second trimester. // J Neuropathol Exp Neurol 1996 — V. 55 (6) — P. 734−745-
  504. Weinstein D.E., Shelanski M. E Liem R. K Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons.//J. Cell Biol. 1991 -V. 112-P. 1205−1213.
  505. Welzl H., Stork O. Cell adhesion moleculcs: key players in memory consolidation? // News Physiol Sci. 2003 — V. 18 — P. 147−150.
  506. Wendling D., Toussirot E. Anti-TNF-alpha therapy in ankylosing spondylitis. // Expert Opin Pharmacother. 2004 — V. 5(7) — P. 1497−1507.
  507. Wijnberger ED., Nikkels P.G., van Dongen A. J. et al. Expression in the placenta of neuronal markers for perinatal brain damage. // Pediatr Res. 2002 — V. 51 — P. 492−496.
  508. Woertgen C., Rothoerl R.D., Holzschuh M. et al. Comparison of serial S-100 and NSE serum measurements after severe head injury. // Acta Neurochir (Wien). 1997 — V. 1391. P. 1161−1164i
  509. Woertgen C, Albert R., Kohler M. et al. Ventricular tapping seems to have no influence on S-100B and NSE serum concentrations. // Neurosurg Rev. 2004 — V. 27 — P. 178−180
  510. Biotechnol 1999 — V. 13 (1) — P. 17−19-
  511. Wood D.D., Vella G.J. et al. Interaction between human myelin basic protein and lipophilin. //Neurochem. Res. 1984-V. 9-P. 1523−1531.
  512. Wood D.D., Bilbao J.M., O’Connors P. Acute multiple sclerosis (Marburg type) is associated with developmcntally immature myelin basic protein. // Ann Neurol 1996 — V. 40 (1) — P. 18−24-
  513. Wright S., Huang L. Antibody-directed liposomes as drug-delivery vehicles. // Advanced Drug Delivery Rev 1989 — V. 3 — P. 343−389.
  514. Wu N.C., Ahmad F. Calcium and cyclic AMF-regulated protcin-cinases of bovine central-nervous-system myelin. // Biochem. J 1984 — V. 218 — P. 923−932
  515. Wu D., Pardridge W.M. Neuroprotection with noninvasive neurotrophin delivery to the brain. // PNAS 1999 — № 5 — V. 96(1) — P. 254−259.
  516. Yamamoto R., Kimura S., et al. Two-site column enzyme immunoassay for neuron-spccific enolase (NSE) in human serum using monoclonal antibodies I I J. Immunol. Methods. — 1986. —V. 94. —P. 51 -55.
  517. Yamazaki Y., Yada K., Morii S. et al Diagnostic significance of serum neuron-spccific enolase and myelin basic protein assay in patients with acute head injury. // Surg Neurol 1995 — V. 43 (3) — P. 267−270-
  518. Yen S.-H., Dahl D., et al. Biochemistry of the filaments of brain //Proc. Nat. Acad. Sci. USA. — 1976. — V. 73. — P. 529.
  519. Yen S.H., Croue A., Dickson D.W. Monoclonal antibodies to Alzheimer’s neurofibrillary tangles: identification of polypeptides // Am. J. Pathol. — 1985. — P. 282 291.
  520. YongP.R., Vacante D.A., Synder W.R. Protein-induced aggregation of lipid vesicles. Mechanism of the myelin basic protein-myelin interaction. // J Am Chem Soc 1982 — V. 104 -P. 7287−7291
  521. Yu A.C., Lee Y.L., EngL.F. Inhibition of GFAP synthesis by antisense RNAiin as318trocytes. // J. Neurosci. Res. 1991 — V. 30(1) — P. 72−79.
  522. Yu A.C., Lee Y.L., Eng L.F. Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. // J. Neurosci. Res. 1993 -V. 34-P. 295−303.
  523. Zecevic N., Andjelkovic A., Matthieu J. Myelin basic protein immunoreactivity in the human embryonic CNS. // Brain Res Dev Brain Res 1998 — V. 14 — № 105 (1) — P. 97−108.
  524. Zehetbauer B., Massacesi L. et al. Myelin basic protein in lipid-bound form induces experimental allergic ancephalomyelitis and demyelination in Lewis rat. // Acta Neurol — 1991 — V. 13(2)-P. 121−132.
  525. Zeltzer P.M., Marangos P. J., Evans A.E. et al. Serum neuron-specific enolase in children with neuroblastoma. Relationship to stage and disease course. // Cancer. 1986 — V. 57(6) — 1230−1234.
Заполнить форму текущей работой