Помощь в написании студенческих работ
Антистрессовый сервис

Масс-спектрометрическое de novo секвенирование природных дисульфидсодержащих пептидов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

ВЭЖХ-МС/МС хроматограммы кожных секретов Rana temporaria получены на гибридном приборе LTQ Orbitrap Velos (Thermo Fisher Scientific, Бремен, Германия), оборудованным ионной ловушкой и Орбитрэп с источником ионизации наноэлектрораспылением (Proxeon Biosystems, Оденсе, Дания). Масс-спектрометр был соединен с системой нанопоточной ВЭЖХ (Agilent 1100, Санта Клара, США). ВЭЖХ проводили аналогично… Читать ещё >

Масс-спектрометрическое de novo секвенирование природных дисульфидсодержащих пептидов (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений
  • 1. Обзор литературы
    • 1. 1. Пептиды из кожных секретов лягушек
    • 1. 2. «Традиционные» методы секвенирования пептидов
      • 1. 2. 1. Деградация по Эдману
      • 1. 2. 2. Леддерное секвенирование
      • 1. 2. 3. Анализ кДНК
    • 1. 3. Методы ионизации пептидов
      • 1. 3. 1. Метод электрораспыления
      • 1. 3. 2. Матрично-активированная лазерная десорбция/ионизация
      • 1. 3. 3. Другие методы ионизации пептидов
    • 1. 4. Масс-анализаторы в протеомике
      • 1. 4. 1. Масс-спектрометр ИЦР ФП
      • 1. 4. 2. Масс-спектрометр с орбитальной ионной ловушкой (Орбитрэп)
    • 1. 5. Тандемная масс-спектрометрия пептидов
      • 1. 5. 1. Номенклатура фрагментных ионов
      • 1. 5. 2. Диссоциация, активированная соударениями (ДАС)
      • 1. 5. 3. Диссоциация при захвате электрона (ДЗЭ)
      • 1. 5. 4. Диссоциация при переносе электрона (ДПЭ)
      • 1. 5. 5. Другие методы активации фрагментации
      • 1. 5. 6. Фрагментация в МАЛДИ
    • 1. 6. Масс-спекгрометрическое секвенирование и дисульфидная связь
      • 1. 6. 1. Прямое масс-спектрометрическое секвенирование дисульфидсодержащих пептидов
      • 1. 6. 2. Химические методы разрушения дисульфидной связи
  • 2. Обсуждение результатов
    • 2. 1. Определение последовательностей немодифицированных дисульфидсодержащих пептидов с помощью ДАС
    • 2. 2. Определение последовательностей немодифицированных дисульфидсодержащих пептидов с помощью ДЗЭ
    • 2. 3. Сравнение ДАС и ДАСПЭ для de novo секвенирования дисульфидсодержащих пептидов
    • 2. 4. Сравнение эффективности двух процедур модифицирования S—S-связей масс-спектрометрического de novo секвенирования дисульфидсодержащих пептидов
      • 2. 4. 1. Новые побочные реакции, протекающие при модифицировании дисульфидсодержащих пептидов кожного секрета
      • 2. 4. 2. Сравнение эффективности карбоксамидометилирования и окисления S—S-связей для автоматического секвенирования дисульфидсодержащих компонентов кожного секрета Rana lessonae
      • 2. 4. 3. Сравнение эффективности карбоксамидометилирования и окисления
  • S—S-связей для ручного секвенирования дисульфидсодержащих компонентов кожного секрета Rana lessonae
    • 2. 4. 4. Сравнение эффективности двух процедур модифицирования S—S-связей для МС определения С-концевой последовательности и сиквенсов аргининсодержащих пептидов
    • 2. 4. 5. Эффективность секвенирования по сумме процедур
    • 2. 5. Фрагментация пептидов, алкилированных новыми цистеинмодифицирующими реагентами
    • 2. 5. 1. Использованные пептиды
    • 2. 5. 2. Синтез цистеинмодифицирующих реагентов и дериватизация пептидовЮб
    • 2. 5. 3. Эффективность алкилирования пептидов
    • 2. 5. 4. Фрагментация модифицированных пептидов при ЭРИ-ДАС
    • 2. 5. 5. Фрагментация модифицированных пептидов при электрораспылении в условиях ДЗЭ/ДПЭ
    • 2. 5. 6. Комплементарность фрагментации ДАС и ДЗЭ/ДПЭ
    • 2. 5. 7. Общая характеристика фрагментации модифицированных пептидов при ЭРИ-МС/МС
    • 2. 5. 8. Воспроизводимость фрагментации в МАЛДИ-РПИ и усреднение результатов
    • 2. 5. 9. Фрагментация восстановленных пептидов в МАЛДИ-РПИ
    • 2. 5. 10. Фрагментация алкилированных пептидов в МАЛДИ-РПИ
  • Выводы
    • 3. Экспериментальная часть

За последние два десятилетия масс-спектрометрия превратилась в важнейший инструмент науки о живом. Это произошло благодаря открытию и широкому внедрению двух новых методов ионизации: элекгрораспыления (ЭРИ) и матрично-активированной лазерной десорбции/ионизации (МАЛДИ), которые позволили приступить к изучению строения макромолекул, в том числе белков и пептидов. По сути, именно эти два революционных метода привели к появлению протеомикинауки о белках, их функциях и взаимодействиях в живых организмах.

Получило развитие масс-спектрометрическое секвенирование — установление аминокислотных последовательностей по данным спектров фрагментации белков и пептидов. Благодаря постоянно совершенствующемуся приборному оформлению, метод в настоящее время значительно потеснил классическое секвенирование путем деградации по Эдману. Постепенное накопление сведений о процессах, протекающих в условиях масс-спектрометрических экспериментов, подталкивает ученых к созданию теории фрагментации полипептидных цепей при различных способах активации. Существующая теория мобильного протона удовлетворительно описывает распад, в частности, триптических пептидов при диссоциации, активированной столкновениями (ДАС), однако она не всегда способна объяснить различия в интенсивностях сигналов фрагментных ионов. Единая теория механизмов процессов, протекающих при захвате или переносе электрона (ДЗЭ/ДПЭ), в настоящее время находится еще в стадии формирования. Эти знания необходимы для понимания, и, что особенно важно, предсказания направления фрагментации широкого круга пептидов. Учёт специфических направлений разрыва полипептидных цепей при различных условиях активации способно значительно повысить эффективность процедуры масс-спектрометрического de novo секвенирования с помощью автоматических программ по обработке тандемных даннх («автоматических секвенаторов»). Полная автоматизация процесса секвенирования пептидов и белков при сохранении высокой достоверности, надежности и чувствительности процедуры является актуальной задачей масс-спектрометрии.

Настоящая работа выполнена на длинных природных пептидах с С-терминальным дисульфидным циклом («Rana box»), выделенных из кожных секретов лягушек рода Rana, населяющих территорию России. Некоторые из них являются антибиотиками широкого спектра действия. Существующая проблема устойчивости многих патогенных организмов к синтетическим антибиотикам заставляет ученых постоянно вести поиски новых биоактивных препаратов с механизмом действия, затрудняющим привыкание к ним бактерий, вирусов и грибов. Умение идентифицировать в кожных секретах амфибий еще не описанные пептиды и устанавливать их первичные структуры является важным инструментом в направленном поиске потенциально-активных объектов, привлекательных с позиций фармакологии.

Современные базы данных не содержат исчерпывающих наборов кожных пептидов амфибий, что исключает возможность определения первичных структур дисульфидсодержащих пептидов ранидных лягушек с помощью процедуры трипсинолиза с последующим автоматическим масс-спектрометрическим секвенированием протеолитических фрагментов. С другой стороны, присутствующая в структуре таких пептидов внутримолекулярная S—S-связь препятствует масс-спектрометрическому определению их полной аминокислотной последовательности.

Целью настоящей работы явилось изучение особенностей фрагментации длинных (17−46 аминокислот) дисульфидных пептидов ранидных лягушек, протекающей при использовании ряда способов активации распада связей, а также влияния на фрагментацию цистеинмодифицирующих реагентов, как традиционных, так и вновь синтезированных. Впервые проводится изучение влияния на фрагментацию традиционных методов модифицирования тиольных групп дисульфидсодержащих пептидов. В работе предложен способ дериватизации таких компонентов в составе кожных секретов, который существенно повышает эффективность их масс-спектрометрического секвенирования.

1. Обзор литературы.

Выводы.

1. Показано, что в условиях ВЭЖХ-МС/МС анализа при захвате электронов в немодифицированиых дисульфидсодержащих пептидах происходит разрыв внутримолекулярной S—S-связи с фрагментацией амидных связей внутри цистеинового цикла, что следует учитывать как при ручном, так и при автоматическом секвенировании. Наличие С-терминальных остатков лизина усиливает фрагментацию внутри дисульфидного цикла таких пептидов в условиях захвата электронов.

2. Обнаружена новая фрагментация немодифицированиых дисульфидсодержащих пептидов, протекающая при активации столкновениями в условиях ВЭЖХ-МС/МС анализа. Образующийся при разрыве С-концевой амидной связи линейный молекулярный ион исходного пептида распадается далее по амидным связям с образованием фрагментных ионов, позволяющих установить С-концевую последовательность пептида. Учет нового направления распада повышает эффективность масс-спектрометрического секвенирования дисульфидсодержащих пептидов.

3. Показано, что применение высокоэнергетической активации столкновениями (ДАСПЭ) усложняет процедуру масс-спекрометрического de novo секвенирования пролинсодержащих пептидов, поскольку провоцирует интенсивную вторичную фрагментацию, что усложняет интерпретацию результирующих масс-спектров. Для целей de novo секвенирования пролинсодержащих пептидов ее необходимо использовать в дополнение к низкоэнергетической активации фрагментации (ДАС).

4. Впервые на природной пептидной смеси показана эффективность дополнительного окисления S—S-связей по сравнению с традиционно используемым восстановлением/алкилированием для целей масс-спектрометрического обнаружения и секвенирования дисульфидсодержащих компонентов при ВЭЖХ-МС/МС. Полученные результаты доказывают эффективность процедуры окисления как для ручного, так и автоматического секвенирования, и, в первую очередь, аргининсодержащих дисульфидных пептидов. Использование обеих процедур позволяет определять последовательности нетриптических пептидов полностью. Предложена методика подготовки природных пептидных смесей с дисульфидсодержащими компонентами для их последующего эффективного масс-спектрометрического секвенирования.

5. Протестировано влияние 12 цистеинмодифицирующих, в том числе девяти новых, реагентов на характер фрагментации дисульфидсодержащих бревининов-1Е и -2Ес в различных условиях масс-спектрометрического эксперимента. Показано, что при использовании ДАС/ДАСПЭ и ДЗЭ/ДПЭ цистеинмодифицирующие реагенты на основе производных малеимида (№М, №М-3, ИВМ) и йодацетамида (1АА-1) являются более эффективными, чем традиционные малеимид и йодацетамид, и позволяют определять последовательности длинных бревининов-1Е и -2Ес практически полностью.

3. Экспериментальная часть.

Анилин, 2,4-диметиланштин, 2,5-диметиланилин, 2,6-диметиланилин, 2,4,6-триметиланилин, орто-анизидин (2-метоксианилин), пара-анизидин (4-метоксианилин), бензиламин, антраниловую (2-аминобензойную) кислоту, бензиламин, малеиновый и уксусный ангидриды, тионил хлорид, концентрированный водный раствор аммиака, йодуксусную кислоту, карбонат натрия, ледяную уксусную кислоту (все марки «х.ч.») приобретали в фирме Реахим. Ацетат натрия и серную кислоту марки «х.ч.» приобретали в компании Химмед. 2,2,3,3,3-трифторпропиламин, диэтиловый эфир, и тетрагидрофуран, 2,5-дигидроксибензойную кислоту, трифторуксусную кислоту, дитиотреитол (все 99% чистоты), йодоацетамид (98%), этанол (96%), ацетонитрил «для ВЭЖХ» были приобретены в фирме Acros. Гидрокарбонат аммония («extra pure»), метанол и этанол «для ВЭЖХ», триэтиламин (98%), гексан «для газовой хроматографии» произведены Merck.

Анилины, бензиламин и этанол перед использованием перегоняли в вакууме. Йодуксусную кислоту перекристаллизовывали из гексана непосредственно перед использованием. Все остальные реагенты использовали без дополнительной очистки.

Получение кожных секретов.

Спинные кожные железы лягушек вида Rana ridibiinda, Rana lessonae, Rana esculenta, Rana arvalis и Rana temporaria, пойманных в Московской области, стимулировали в течение 40 секунд биполярным платиновым электродом, присоединенным к электростимулятору ЭСЛ-1. Напряжение на электродах равнялось 15 В, длина импульса 3 мсек и частота 50 Гц [306]. Выделяющийся при этом секрет смывали 50 мл деионизованной воды в контейнер, содержащий равный объем метанола. Полученный раствор центрифугировали, отфильтровывали через мембранный фильтр (Millex-FH, размер пор 0.45мкм), упаривали на роторном испарителе до 1 мл при температуре 35 °C и лиофилизовывали. Высушенные секреты хранили при -26 °С.

Синтез новых цистеинмодифицирующих реагентов.

Синтез метил антранилата: 0.22 моль (30 г) антраниловой кислоты, 1 моль (40 мл) метанола и 0.7 моль (37 мл) серной кислоты перемешивали при нагревании на водяной бане в течение 10 ч, затем отгоняли остаток метанола и добавляли 30 г горячего 20% раствора Ка2С03. Продукт экстрагировали толуолом трижды 20 мл, экстракт упаривали и перегоняли в вакууме. Получили 7.1 г (27%) бесцветной жидкости — метилового эфира антраниловой кислотыйшп = 138 °С/19 торр.

Замещенные малеимиды синтезировали по общей двухстадийной схеме, действуя на замещенный анилин (или бензиламин) малеиновым ангидридом с последующей дегидратацией образующегося полупродукта (рис. 3.1): о.

ЫВМ МРМ-1 ЫРМ-2 ЫРМ-З с" ,.

ИРМ-4 ЫРМ-5 ЫРМ-6 ЫРМ-7.

Рисунок 3.1. Схема синтеза производных малеимида.

50 ммоль перегнанного анилина или бензиламина медленно прибавляли к раствору 53 ммоль малеинового ангидрида в 50 мл диэтилового эфира и перемешивали 1 ч. Образовавшийся осадок отфильтровывали, дважды промывали эфиром и высушивали на воздухе. Полученный полупродукт смешивали с уксусным ангидридом и безводным ацетатом натрия в количествах 250 ммоль (23 мл) и 25 ммоль (2.0 г) соответственно на 50 ммоль исходного анилина. Реакционную смесь перемешивали в течение 2-х ч при температуре ~ 70 °C. Образовавшийся раствор выливали в холодную воду и перемешивали. Водный слой декантировали. Оставшееся черно-коричневое маслянистое или твердое вещество еще раз промывали водой, после чего перекристаллизовывали из 10 мл этанола. Образовавшиеся кристаллы малеимидов сушили под вакуумом.

Для синтеза ІУ-замещенного йодоацетамида ІАА-1 18.6 г (0.1 моль) йодуксусной кислоты и 11 мл (0.15 моль) БОСЬ нагревали на водяной бане в течение.

2 ч. Избыток тионилхлорида отгоняли в вакууме. 4.1 г полученного хлорангидрида йодукеусной кислоты прибавляли при перемешивании и охлаждении (О °С) к смеси 20 ммоль 2,2,3,3,3-трнфторпропиламина и 4 г (20 ммоль) триэтиламина в 50 мл СН2С1г и перемешивали 30 мин. Затем реакционную смесь обрабатывали водой, отделяли органическую фазу, промывали её водой и сушили над безводным Na2S04. Растворитель упаривали, продукт очищали методом колоночной хроматографии (элюент — смесь бензол-этилацетат 2:1). Выход составил 79%.

Выделенные соединения исследовали методами ГХ-МС (квадрупольный хроматомасс-спектрометр Finnigan TSQ 7000, оборудованный колонкой DB-5 длиной.

1 13.

30 метров, энергия ионизующих электронов 70 эВ), Ни С ЯМР (VARIAN XR-400, рабочая частота 400 МГц на протонахпробы растворяли в CDC13 с остаточным СНС1з в качестве стандарта) и элементного анализа (Н, С, Ы-анализатор Vario MICRO CUBE фирмы Elementar). Все исследованные вещества имели один пик на хроматограмме по полному ионному току, полученной при проведении хроматомасс-спектрометрического анализа. Элементный анализ повторяли 2 раза для каждого соединения и усредняли результаты.

N-фенилмалеимид (NPM): выход по исходному анилину — 48%- мол. масса 173- осн. сигналы в масс-спектре {m/z (% инт. от наиболее интенсивного)}: 173 (100) — 145 (5.5) — 129 (33.4) — 117 (22.7) — 103 (17.5) — 91 (10.0) — 77 (8,6) — данные элементного анализа, % масс, содержания (в скобках — рассчитанные значения): С— 69.46 (69.36), Н—3.97 (4.07), N — 8,15 (8,09).

Г2,4-диметил (ЬенилЪ1алеимид Í-NPM-П: 40%: 'н-ЛМР: 2.12 (с, ЗН, Me-), 2.36 (с, ЗН, Me-), 6.85 (с, 2Н, -СН=СН-), 7.00 (д, J= 7.9Гц, 1Н, -СН=), 7.10 (д, J= 7.9Гц, Н, -СН=), 7.15 (с, Н, -СН=) — мол. масса 201- масс-спектр: 201 (100) — 202 (14.1) — 183 (54.8) — 182 (35.3) — 172 (14.1) — 158 (14.8) — 156 (13.3) — 144 (23.7) — 130 (14.8) — 91 (10.4) — 77 (10.4) — данные элементного анализа: С—71.85 (71.63), Н—5.44 (5.51), N —6.98 (6.96).

Г2,5-диметил (Ьенил)малеимид (NPM-2): 24%- Н-ЯМР: 2.11 (с, ЗН, Me-), 2.34 (с, ЗН, Me-), 6.85 (с, 2Н, -СН=СН-), 6.93 (с, И, -СН=), 7.15 (д, J= 7.8Гц, 1Н, -СН=), 7.21 (д, J= 7.8Гц, Н, -СН=) — мол. масса 201- масс-спектр: 201 (100) — 202 (13.3) — 183 (49.6) — 182 (31.8) — 172 (13.3) — 158 (20) — 144 (23.7) — 130 (15.5) — 91 (10.4) — 77 (9.6) — данные элементного анализа: С— 71.55 (71.63), Н— 5.51 (5.51), N — 6.88 (6.96).

М-(«2,6-диметил (|)енил)малеимид (NPM-3): 44%- мол. масса 201- масс-спектр: 201 (76.0) — 183 (100) — 154 (25.5) — 144 (37.6) — 130 (26.4) — 91 (20.1) — 77 (26.0) — данные элементного анализа: С— 71.58 (71.63), Н— 5.46 (5.51), N — 6.90 (6.96).

М-(2.4.6-триметил (Ьенил1малеимид INPM-4): 38%- 'н-ЯМР: 2.07 (с, 6Н, 2 Ме-),.

2.31 (с, ЗН, Ме-), 6.87 (с, 2Н, -СН=СН-), 6.97 (с, 2Н, 2 -СН=) —С-ЯМР: 17.44. 20.68, 125.93. 128,90. 133.90. 136.15. 139.05. 169.34- мол. масса 215- масс-спектр: 215 (100) — 216 (14.8) — 197 (68,1) — 196 (20.0) — 182 (45.9) — 172 (18,5) — 158 (20.0) — 144 (18,5) — 91 (12.6) — 77 (7.4) — данные элементного анализа: С— 72.38 (72.54), Н— 6.08 (6.09), N — 6.42 (6.51).

М-Г2-метоксжЬенил)малеимид (NPM-5): 41%- 'н-ЯМР: 3.78 (с, 3II, МеО-), 6.83 (с, 2Н, -СН=СН-), 7.00−7.06 (м, 2Н, 2 -СН=), 7.17 (д д, J= 8,0Гц, 1.5Гц, Н, -СН=), 7.40 (т д, J= 7.8Гц, 1.4Гц, Н, -СН=) — мол. масса 203- масс-спектр: 203 (100) — 204 (12.6) — 185 (17.0) — 174 (15.5) — 160 (12.6) — 121 (34.8) — 120 (42.2) — 106 (12.6) — 78 (13.3) — 54 (11.1) — данные элементного анализа: С— 64.98 (65.02), Н— 4.37 (4.46), N — 6.91 (6.89).

К-(4-метоксис1)енил')малеимид INPM-6): 42%- 'н-ЯМР: 3.83 (с, ЗН, МеО-), 6.84 (с, 2Н, -СН=СН-), 6.97−7.00 (м, 2Н, 2 -СН=), 7.22−7.24 (м, 2Н, 2 -СН=) — мол. масса 203- масс-спектр: 203 (100) — 204 (12.6) — 188 (35.3) — 160 (21.5) — 135 (8.1) — 134 (10.4) — 132 (9.6) — 106 (7.4) — 78 (5.9) — 54 (5.5) — данные элементного анализа: С— 64.98 (65.02), Н— 4.40 (4.46), N —6.81 (6.89).

Ш2-метоксикарбонил)малеимид INPM-7): 42%- 'н-ЛМР: 3.81 (с, ЗН, МеООС-), 6.89 (с, 2H, -СН=СН-), 7.31 (д д, J= 7.8 Гц, 1.0 Гц, 1H, -СН=), 7.52 (т д, J= 7.8 Гц, 1.0 Гц, Н, -СН=), 7.66 (т д, J= 7.6 Гц, 1.5 Гц, Н, -СН=), 8.12 (д д, J= 7.8 Гц, 1.5 Гц, Н,.

СН=) — 13С-ЛМР: 52.09. 127.41. 128.78, 130.08, 130.91. 131.30. 133.00. 134.18, 164.83. 169.37- мол. масса 231- масс-спектр: 231 (71.1) — 231 (9.6) — 200 (100) — 201 (14.8) — 172 (19.2) — 146 (13.3) — 144 (12.6) — 116 (6.7) — 90 (14.8) — 54 (8.1) — данные элементного анализа: С— 62.06 (62.34), Н— 3.87 (3.92), N — 5.98 (6.06).

N-бензилмалеимид fNBM): 40%- мол. масса 187- масс-спектр: 187 (100) — 169.

14.0) — 159 (15.2) — 130 (30.5) — 106 (47.3) — 91 (13.6) — 77 (15.9) — данные элементного анализа: С— 70.69 (70.58), И— 4.78 (4.85), N — 7.39 (7.48).

Ы-(2.2.3.3.3-пентафторпропил" Шодоацетамид (IAA-1): 79%- мол. масса 317- масс-спектр: 317 (15.0) — 190 (100) — 169 (24.5) — 162 (26.2) — 141 (17.7) — 127 (17.9) — данные элементного анализа: С— 18.78 (18.95), Н— 1.57 (1.59), N —4.48 (4.42).

Восстановление-алкилирование пептидов.

Навеску 1.0 мг смеси пептидов (кожного секрета) растворяли в 100 мкл 0.1 М водного раствора NH4HCO3 (pH 8) и добавляли 4.2 мкл 0.1 М раствора дитиотреитола в воде до конечной концентрации 4 мМ. Смесь активно перемешивали в термошейкере в течение 1 ч при температуре 40 °C.

Для проведения дериватизации производными малеимида pH полученного раствора доводили уксусной кислотой до 5.5 (~0.6 мкл) и добавляли 100 мкл ацетонитрила (до соотношения № 0:ACN ~ 1:1). К полученному раствору приливали 22.6 мкл 0.1 М раствора модифицирующего реагента в ацетонитриле. Смесь активно перемешивали в шейкере в течение часа при комнатной температуре.

Дериватизацию тиольных связей пептидов йодуксусной кислотой проводили свежеприготовленным 0.1 М раствором реагента в воде, pH которого был предварительно доведен до 8.0 раствором аммиака. Для карбоксамидометилирования (модификации йодоацетамидом) готовили 0.1 М раствор йодоацетамида в воде. Далее 11.6 мкл полученного раствора добавляли к реакционной смеси пептидов после их восстановления дитиотреитолом. Смесь перемешивали в шейкере в течение часа в темноте при комнатной температуре.

Полноту прохождения реакции в случае новых реагентов контролировали с помощью МАЛДИ.

Окисление пептидов.

Муравьиную кислоту смешивали с 30% раствором перекиси водорода в соотношении 19:1 и выдерживали в течение часа при комнатной температуре. Кожный секрет растворяли в муравьиной кислоте и прибавляли трёхкратный объем полученной надмуравьиной кислоты. Растворы до смешения охлаждали до 5 °C и выдерживали при этой температуре в течение часа. После окончания реакции прибавляли пятикратный избыток' дистиллированной воды и лиофилизовывали полученный субстрат.

Восстановление на мишени МАЛДИ.

Для восстановления на мишени 0.5 мкл раствора смеси пептидов Rana ridibunda (1.0 мг смеси пептидов в 100 мкл 0.1 М водного раствора NH4HCO3) наносили на мишень из полированной стали, прибавляли 0.5 мкл 0.1 М раствора дитиотреитола в воде, перемешивали и оставляли реакционную смесь при комнатной температуре на воздухе до полного высыхания (5 минут).

Очистка модифицированных секретов Rana lessonae с помощью ZipTip.

Носитель в 10 мкл наконечниках для ZipTip (Millipore, micro-C18) однократно промывали 10 мкл 50%-го водного раствора ацетонитрила и уравновешивали в течение следующих 5 минут таким же объемом 0.1% водной трифторуксусной кислоты. Образец после дериватизации разбавляли равным объемом 0.1% водной трифторуксусной кислоты, после чего производили 10-кратный медленный отбор-сброс раствора через наконечник с подготовленным носителем. Затем носитель аналогичным образом промывали 0.1% водной трифторуксусной кислоты. Сорбированные на носителе дериватизованные пептиды элюировали 3 мкл 50%-го водного ацетонитрила, помещенного в пластиковый эппендорф. Для этого проводили 10-кратный последовательный отбор-сброс растворителя через наконечник с адсорбированным материалом.

Разделение смеси алкилированных пептидов с помощью ВЭЖХ (для выделения модифицированных бревининов-1Е и -2Ес).

ВЭЖХ разделение образцов модифицированных кожных секретов Rana ridibunda проводилось на обращенно-фазовой колонке С18 (150×4 мм, 110 А, 5 мкм) (Биохиммак, Россия), уравновешенной раствором 10%-ного ацетонитрила в 0.1%-ной водной трифторуксусной кислоте в следующем режиме элюирования: первые 5 минизократический режим с содержанием от 10 до 25% ацетонитрила в зависимости от модифицирующего реагента, далее — линейное возрастание градиента со скоростью 1.5% ацетонитрила в минуту до 70% ацетонитрила при скорости потока 0.8 мл/мин. Элюирование проводили на жидкостном хроматографе ThermoSeparation Products, снабженном насосом ThermoSystem Р2000. Элюат анализировали при Х=214 им (УФ-детектор Spectra System UV3000). Фракции, содержащие модифицированные бревшшн-1Е и бревинин-2Ес, собирали, концентрировали на роторном испарителе, лиофильно высушивали.

Анализ методом МАЛДИ-ВП.

Реакционные смеси, а также собранные фракции модифицированных пептидов и восстановленные на мишени смеси анализировали методом МАЛДИ-ВП. Спектры регистрировали в режиме положительных ионов на масс-спектрометре Autoflex II (Bruker Daltonics, Бремен, Германия), оборудованном азотным лазером с длиной волны 1=337 им. Ускоряющее напряжение равнялось 20 кВ, задержанная экстракция и рефлектрон включены, диапазон измеряемых m/z 1000 — 5000. Внешнюю калибровку проводили с помощью стандартной смеси PepMix-2 перед измерениями. Образцы наносили на подложку из полированной стали. В качестве матрицы использовали 2,5-дигидроксибензойную кислоту (DHB), в виде насыщенного раствора в смеси растворителей ацетонитрил/вода 1:1с добавкой 0.1 об. % трифторуксусной кислоты. 1,0 мкл матрицы наносили на подложку (либо использовали высохшую реакционную смесь после восстановления на мишени), сверху наносили 0.5 мкл раствора пептида и до высыхания пятна проводили их перемешивание на подложке методом in-out (многократный отбор-нанесение пробы из пипетки). Результирующий спектр получали сложением сигналов, полученных в режиме положительных ионов за 400 импульсов лазера.

Тандемная масс-спектрометрия.

МАЛДИ-ВП/ВП.

Пробы, нанесенные на мишень и содержащие согласно МАЛДИ-ВП интересующие пептиды, исследовали с помощью тандемной масс-спектрометрии МАЛДИ-ВП/ВП на приборе Ultraflex (Bruker Daltonics, Бремен, Германия) с азотным лазером (Х=337 нм) в режиме положительных ионов. Использовали метод LIFT, рефлектрон включен, дополнительная активация столкновениями отключена, диапазон m/z иона-предшественника 500−4500, фрагментных ионов — от m/z 50. Запись тандемных спектров проводили в ручном режиме. Внешнюю калибровку проводили с помощью стандартной смеси PepMix-2 перед измерениями, калибровка масс фрагментов осуществлялась по точной вычисленной массе иона-предшественника. Для каждого модифицированного пептида записывали независимо два спектра фрагментации.

ВЭЖХ-МС/МС с ИЦР ФП при электрораспылешш.

ВЭЖХ-МС/МС хроматограммы модифицированных и немодифицированных кожных секретов Rana lessonae получены на гибридном приборе LTQ FT Ultra (Thermo Fisher Scientific, Бремен, Германия), оборудованным ионной ловушкой и ИЦР с магнитом 7 Т с источником ионизации наноэлектрораспылением (Proxeon Biosystems, Оденсе, Дания). Масс-спектрометр был соединен с системой нанопоточной ВЭЖХ (Agilent 1100, Санта Клара, США). Использовалась наноколонка длиной 15 см с внутренним диаметром 75 мкм, наполненная фазой Reprosil-Pur Ci8-AQ (Dr. Maisch GmbH) с зернением 3 мкм. Предварительно лиофилизованные образцы модифицированных пептидов растворяли в смеси ацетонитрил/вода (1:1) с добавлением 0.1% муравьиной кислоты и вводили в наноколонку. Использовали градиентное элюирование в смеси вода-ацетонитрил с добавлением 0.5% уксусной кислоты при скорости потока 200 нл/мин. МС/МС анализ проводили в автоматическом режиме: масс-спектрометр переключался между записью спектров первого порядка и МС/МС спектров с последовательной активацией наиболее интенсивных ионов-предшественников с помощью ДЗЭ и ДАС. Диапазон масс в спектрах MC 150−2000, целевое разрешение — 100 000, в спектрах МС/МС — разрешение 25 000, время активации в ДАС — 30 мс, в ДЗЭ — 100 мс, динамическое исключение наиболее интенсивных сигналов включено или выключено.

ВЭЖХ-МС/МС с Орбитрэп при электрораспылешш.

ВЭЖХ-МС/МС хроматограммы кожных секретов Rana temporaria получены на гибридном приборе LTQ Orbitrap Velos (Thermo Fisher Scientific, Бремен, Германия), оборудованным ионной ловушкой и Орбитрэп с источником ионизации наноэлектрораспылением (Proxeon Biosystems, Оденсе, Дания). Масс-спектрометр был соединен с системой нанопоточной ВЭЖХ (Agilent 1100, Санта Клара, США). ВЭЖХ проводили аналогично предыдущему пункту. МС/МС анализ проводили в автоматическом режиме: масс-спектрометр переключался между записью спектров первого порядка и МС/МС спектров с последовательной активацией наиболее интенсивных ионов-предшественников с помощью ДПЭ и ДАСПЭ. Диапазон масс в спектрах МС составлял 300−2000; целевое разрешение — 60 000- в спектрах МС/МС — разрешение 7500- время активации в ДАСПЭ и ДПЭ — 100 мсдинамическое исключение наиболее интенсивных сигналов было включено (30 с). Флуорантен использовлся как газ-реагент.

МС/МС с ИЦР ФП при электрораспылении и прямом вводе Исследование модифицированных бревининов- 1Е и -2Ес проводили методом прямого ввода пробы в источник. Лиофилизованные образцы растворяли в смеси ацетонитрил/вода (1:1) при добавлении 0.1% уксусной кислоты. Объем пробы 5 мкл с помощью автоматической пипетки вводили внутрь металлизированного капилляра из кварцевого стекла (Proxeon Biosystems), который затем использовался в источнике наноэлектрораспыления. Запись спектров осуществляли в ручном режиме, выделяя наиболее интенсивные ионы и производя их активацию с помощью ДЗЭ или ДАС. Были использованы масс-спектрометры Thermo LTQ FT Ultra и Apex Ultra Q-FTMS (Bruker Daltonics, Бремен, Германия) с магнитом 12 Т. Время активации в ДАС и ДЗЭ и энергию столкновений варьировали вручную.

Спектры МС/МС Орбитрэп при электрораспылешш и прямом вводе Аналогичным методом прямого ввода бревинины-1Е и -2Ес анализировали на приборе LTQ Orbitrap Velos. Применяли активацию ДПЭ (время активации 50 — 100 мс), ДАС и ДАСПЭ. Параметры эксперимента подбирали вручную.

Обработка данных тандемной масс-спектрометрии, масс-спектрометрическое секвенирование МАЛДИ-ВП/ВП.

Спектры МАЛДИ-ВП/ВП обрабатывали с помощью программы Bruker FlexAnalysis 3.0. Спектры в виде набора сигналов «m/z — S/N» экспортировали в OpenOffice.org 3.3 Cale. Для увеличения надежности данных для каждого модифицированного пептида проводили геометрическое усреднение величин S/N каждого сигнала от двух параллельных спектров по формуле: где 1ср— усредненная интенсивность, п — номер эксперимента в серии, m — количество параллельных экспериментов. Усредненные таким образом спектры сравнивали с теоретическими спектрами фрагментных ионов. В расчет при сравнении принимали только интенсивные сигналы фрагментов с отношением S/N >10. вэжх-мс/мс.

ВЭЖХ-МС/МС данные секретов Rana lessonae анализировали либо вручную, просматривая .raw файлы с помощью программы Xcalibur 2.1, либо, после преобразования .raw файла в набор .dta файлов — с помощью алгоритма Михаила Савицкого [307] — компьютерной программы, выдающей по данным тандемных масс-спектров соответствующие возможные аминокислотные последовательности.

МС/МС модифицированных бревишшов-1Е и -2Ес и пептидов секрета Rana ridibunda при электрораспылении.

Спектры фрагментации пептидов из секрета Rana ridibunda, а также модифицированных бревининов-1Е и -2Ес, анализировали либо вручную (пептиды Rana ridibunda и некторые из модифицированных бревининов), либо в автоматизированном режиме (большинство модифицированных бревининов). Спектры просматривали в программах Xcalibur 2.1 (для приборов LTQ FT Ultra и LTQ Orbitrap Velos) или Bruker DataAnalysis 4.0 (для прибора Apex Ultra). Спектры фрагментов многозарядных ионов-предшественников подвергали зарядовой деконволюции. Деконволюированные спектры сравнивали с теоретическим набором фрагментных ионов. При автоматизированной обработке массивы данных «ш/zинтенсивность» деконволюированных тандемных масс-спектров экспортировали в OpenOffice.org 3.3 Cale и сравнивали с теоретическим набором фрагментов с помощью собственного макроса, написанного на OpenOffice Basic. Допуск массы устанавливали равным ± 0.02 Да. Полученные совпадения предсказанных и наблюдаемых сигналов отмечались, вычислялась доля определяемой последовательности.

При электрораспылении образовывались и подвергались фрагментации ионы 3+, 4+, 5+ для бревинина-1Е и 4+, 5+, 6+ для бревинина-2Ес. Среди полученных данных по фрагментации модифицированных пептидов для сравнения использовали данные по ДЗЭ и ДПЭ ионов 4+ для производных бревинина-1Е и 5+ для производных бревинина-2Ес, и данные по ДАС и ДАСПЭ для ионов 3+ для производных бревинина-1Е и 4+ для производных бревинина-2Ес.

Показать весь текст

Список литературы

  1. Samgina T.Yu., Artemenko K.A., Gorshkov V.A., Ogourtsov S.V., Zubarev RA. and A.T. Lebedev. De novo sequencing of peptides secreted by the skin glands of the Caucasian Green Frog Rana ridibunda. 11 Rapid Commun. Mass Spectrom. 2008. V. 22. P. 3517−3525.
  2. Pukala T.L., Bowie J.H., Maselli V.M., Musgrave I.F. and Tyler M.J. Host-defence peptides from the glandular secretions of amphibians: structure and activity. // Nat. Prod. Rep. 2006. V. 23. № 3. P. 368−393.
  3. Conlon J.M., Kolodziejek J. and Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. //Biochim. Biophys. Acta. 2004. V 1696. № 1. P. 1−14.
  4. Duda T. R Jr., Vanhoye D. and Nicolas P. Roles of diversifying selection and coordinated evolution in the evolution of amphibian antimicrobial peptides. // Mol. Biol. Evol. 2002. V. 19. № 6. P. 858−864.
  5. Mangoni M.L., Saugar J.M., Dellisanti M., Barra D., Simmaco M. and Rivas L. Temporins, small antimicrobial peptides with leishmanicidal activity. // J. Biol. Chem. 2005. V. 280. № 2. P. 984−990.
  6. Chinchar V. G, Bryan L., Silphadaung U., Noga E., Wade D. and RollinS—Smith L. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. // Virology. 2004. V. 323. № 2. P. 268−275.
  7. Conlon J.M. and Aronsson U. Multiple bradykinin-related peptides from the skin of the frog, Rana temporaria. II Peptides. 1997. V. 18. № 3. P. 361−365.
  8. Sanger F. The free amino acid groups of insulin. II Biochem. J. 1945. V. 39. № 5. P. 507 515.
  9. Sanger F. The terminal peptides of insulin. // Biochem. J. 1949. V. 45. № 5. P. 563−574.
  10. Edman P. A method for the determination of amino acid sequence in peptides. // Arch. Biochem. 1949. V. 22. № 3. P. 475−476.
  11. Edman P. Method for determination of the amino acid sequence in peptides. //Acta Chem. Scand. 1950. V. 4. P. 283−293.
  12. Edman P. and G Begg. A protein sequenator. // Eur. J. Biochem. 1967. V. 1. № l.P. 80
  13. Thiede В., Wittmann-Liebold B, Bienert M and Krause E. MALDI-MS for C-terminal sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. // FEBS Lett. 1995. V. 357. № 1. P. 65−69.
  14. Itano II.A. and Robinson E.A. 4-Thialaminine, a strongly basic chemical modification of cysteine. // J. Biol. Chem. 1972. V. 247. № 15. P. 4819−4824.
  15. A.C. и Г.А. Севастьянова, Молекулярная биология: учебник для студентов педагогических ВУЗов. 2003, М: Академия. 400 с.
  16. Chen Т., Scott C.' Tang L., Zhoua M. and Shawa C. The structural organization of aurein precursor cDNAs from the skin secretion of the Australian green and golden bell frog, Litoria aurea. // Regul. Pept. 2005. V. 128. № 1. P. 75−83.
  17. Biemann K., Seibl J. and Gap F. Mass spectrometric identification of amino acids. // Biochem. Biophys. Res. Commun. 1959. V. 1. № 6. P. 307−311.
  18. Morris H.R., D.H. Williams and R.P. Ambler. Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry. // Biochem. J. 1971. V. 125. № l.P. 189−201.
  19. Beckey H.D. Field desorption mass spectrometry: A technique for the study of thermally unstable substances of low volatility. // Int. J. Mass Spectrom. Ion Phys. 1969. V. 2. № 6. P. 500−502.
  20. Winkler H.U. and H.D. Beckey. Field desorption mass spectrometry of peptides. // Biochem. Biophys. Res. Commun. 1972. V. 46. № 2. P. 391−398.
  21. Г. Д. и E.H. Николаев. Образование кластеров при ионной бомбардировке пленок замороженных полярных веществ. // Письма в ЖЭТФ. 1971. Т. 13. № 9. С. 473−477.
  22. Г. Д. и I-I.A. Клейменов. Применение атомно-ионной эмиссии для масс-спектрометрального анализа фторполимеров. // ДАН СССР. 1973. Т. 213. № 3. С. 649−652.
  23. Benninghoven A., D. Jaspers and W. Sichtermann. Secondary-ion emission of amino acids. //Appl. Phys. A: Materials Science & Processing. 1976. V. 11. № 1. P. 35−39.
  24. Benninghoven, A. and W.K. Sichtermann. Detection, identification, and structural investigation of biologically important compounds by secondary ion mass spectrometry. //Anal. Chem. 1978. V. 50. № 8. P. 1180−1184.
  25. Amster I.J. and F.W. McLafferty. Tandem mass spectrometry with fast atom bombardment ionization of cobalamins. //Anal. Chem. 1985. V. 57. № 7. P. 1208−10.
  26. Haddon W.F. and F.W. McLafferty. Metastable ion characteristics. VII. Collision-induced metastables. // J. Am. Chem. Soc. 1968. V. 90. № 17. P. 4745−4746.3 б Jennings K.R. Collision-induced decompositions of aromatic molecular ions. // Int. J.
  27. Mass Spectrom. Ion. Phys. 1968. V. 1. № 3. P. 227−235.
  28. Biemann K. Mass spectrometric methods for protein sequencing. // Anal. Chem. 1986. V. 58. № 13. P. 1288A-1300A.
  29. Dole M., Mack L.L., Hines R.L., Mobley R.C., Ferguson L. D. and Alice M. B. Molecular Beams ofMacroions. //J. Chem. Phys. 1968. V. 49. № 5. P. 2240−2249.
  30. M.JI., Галль Л. Н., Краснов H.B., Николаев В. И. и В.А. Шкуров. Экстракция ионов из растворов при атмосферном давлении новый метод масс-спекгрометрического анализа. // ДАН СССР. 1984. Т. 277. № 2. С. 379−383.
  31. Yamashita М. and J.B. Fenn. Electrospray Ion-Source Another Variation on the FreeJet Theme. // J. Phys. Chem. 1984. V. 88. № 20. P. 4451−4459.
  32. Yamashita M. and J.B. Fenn. Negative-Ion Production with the Electrospray Ion-Source. // J. Phys. Chem. 1984. V. 88. № 20. P. 4671−4675.
  33. Fenn J.B., Mann M., Meng C.K., Wong S.F. and Whitehouse C.M. Electrospray ionization for mass spectrometry of large biomolecules. // Science. 1989. V. 246. № 4926. P. 64−71.
  34. Fluids. 1994. V. 6. № 1. P. 404−414. 45 Cole R.B. Some tenets pertaining to electrospray ionization mass spectrometry. // J.
  35. Mass Spectrom. 2000. V. 35. P. 763−772. 4 б Kebarle P. and Peschke M. On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. //Anal. Chim. Acta. 2000. P. 406. P. 11−35.
  36. Thomson B.A. and Iribarne J.V. Field induced ion evaporation from liquid surfaces at atmospheric pressure. // J. Chem. Phys. 1979. V. 71. P. 4451−4463.
  37. Zhou S. and Cook K.D. A mechanistic study of electrospray mass spectrometry: charge gradients within electrospray droplets and their influence on ion response. // J. Am. Soc. Mass Spectrom. 2001. V. 12. № 2. P. 206−214.
  38. Crotti S., Seraglia R. and Traldi, P. Some thoughts on electrospray ionizationmechaniisms. //Eur. J. Mass Spectrom. 2011. V. 17. P. 85−100.
  39. Iavarone A.T., Jurchen J.C. and Williams E.R. Effects of solvent on the maximum charge state and charge state distribution of protein ions produced by electrospray ionization. // J. Am. Soc. Mass Spectrom. 2000. V. 11. № 11. P. 976−985.
  40. Samalikova M. and Grandori R. Role of opposite charges in protein electrospray ionization mass spectrometry. //J. Mass Spectrom. 2003. P. 38. № 9. P. 941−947.
  41. Shevchenko A., Wilm M., Vorm O. and Mann M. Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. //Anal. Chem. 1996. V. 68. P. 850 858.
  42. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T. and Mann M. Femtomole sequencing of proteins from Polyacrylamide gels by nano-electrospray mass spectrometry. //Nature. 1996. V. 379. P. 446−469.
  43. Hillenkamp F., Kaufmann R., Nitsche R. and Unsold E. Laser microprobe mass analysis of organic materials. //Nature. 1975. V. 256. P. 119−120.
  44. Karas M. and Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. //Anal. Chem. 1988. P. 60. P. 2299−3201.
  45. Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y. and Yoshida T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. // Rapid Commun. Mass Spectrom. 1988. V. 2. P. 151−153.
  46. Hillenkamp F. and Peter-Katalinic J. MALDI MS: A Practical Guide to Instrumentation, Methods and Applications. 2007, Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. 362 p.
  47. Knochenmuss R. and Zenobi R. MALDI Ionization: The Role of In-Plume Processes. // Chem. Rev. 2003. V. 103. № 2. P. 441−452.
  48. Karas M. and Kruger R. Ion formation in MALDI: the cluster ionization mechanism. // Chem. Rev. 2003. V. 103. № 2. P. 427−440.
  49. Chang W.C., Huang L.C., Wang Y.S., Peng W.P., Chang H.C., Hsu N.Y., Yang W.B. and Chen C.H. Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited. // Anal. Chim. Acta. 2007. V. 582. № 1. P. 1−9.
  50. Zhang J. and Zenobi R. Matrix-dependent cationization in MALDI mass spectrometry. // J. Mass Spectrom. 2004. V. 39. № 7. P. 808−816. ^
  51. Karas M., Gluckmann M. and Schafer J. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. // J. Mass Spectrom. 2000. V. 35. № 1. P. 1−12.
  52. Jaskolla T.W. and Karas M. Compelling evidence for Lucky Survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. // J. Am. Soc. Mass Spectrom. 2011. V. 22. № 6. P. 976−988.
  53. Trimpin S., Inutan E.D., Herath T.N. and McEwen C.N. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. // Anal. Chem. 2010. V. 82. № 1. P. 11−15.
  54. Robb D.B. and Blades M.W. State-of-the-art in atmospheric pressure photoionization for LC/MS. //Anal. Chim. Acta. 2008. P. 627. № 1. P. 34−49.
  55. Delobel A., Halgand F., Laffranchise-Gosse В., Snijders H. and Laprevote O. Characterization of hydrophobic peptides by atmospheric pressure photoionization-mass spectrometry and tandem mass spectrometry. //Anal. Chem. 2003. V. 75. № 21. P. 5961−5968.
  56. Robb D.B., Rogalski J.C., Kast J. and Blades M.W. A new ion source and procedures for atmospheric pressure-electron capture dissociation of peptides. // J. Am. Soc. Mass Spectrom. 2011. V. 22. № 10. P. 1699−1706.
  57. Debois D., Giuliani A. and Laprevote O. Fragmentation induced in atmospheric pressure photoionization of peptides. // J. Mass Spectrom. 2006. V. 41. № 12. P. 15 541 560.
  58. Bagag A., Giuliani A. and Laprevote O. Atmospheric pressure photoionization of peptides. // Int. J. Mass Spectrom. 2011. V. 299. P. 1−4.
  59. Keski-Rahkonen P., I-Iaapala M., Saarela V., Franssila S., Kotiaho Т., Kostiainen R. and Auriola S. Atmospheric pressure thermospray ionization using a heated microchip nebulizer. //Rapid Commun. Mass Spectrom. 2009. V. 23. № 20. P. 3313−3322.
  60. Desai M.J. and Armstrong D.W. Analysis of native amino acid and peptide enantiomers by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. // J. Mass Spectrom. 2004. V. 39. № 2. P. 177−187.
  61. Tang N., Tornatore P. and Weinberger S.R. Current developments in SELDI affinity technology. // Mass Spectrom. Rev. 2004. V. 23. № 1. P. 34−44.
  62. A.T. Масс-спектрометрия в органической химии. 2003, М.: БИНОМ. Лаборатория знаний. 493 с. С. 124−141.
  63. Brunnee С. The ideal mass analyzer: fact or fiction? // Int. J. Mass Spectrom. Ion Proc. 1987. V. 76. P. 125−237.
  64. Han X., Aslanian A. and Yates J.R. III. Mass spectrometry for proteomics. // Curr. Opin. Chem. Biol. 2008. V. 12. P. 483−490.
  65. March R.E. Quadrupole Ion Trap Mass Spectrometer, in Encyclopedia of Analytical Chemistry. Ed. R.A. Meyers. 2000. Chichester: John Wiley & Sons Ltd. P. 1 184 811 872.
  66. .А., Каратаев В. И., Шмикк Д. В. и Загулин В.А. Масс-рефлекгрон. Новый безмагнитный времяпролетный масс-спектрометр с высокой разрешающейспособностью. // ЖЭТФ. 1973. Т. 64. № 1. С. 82−89.
  67. Verentchikov A.N. Multi-reflecting time-of-flight mass spectrometer with orthogonal acceleration. United States Patent 7 772 547. 2010.
  68. Hippie J.A., Sommer H. and Thomas H.A. A Precise Method of Determining the Faraday by Magnetic Resonance. // Phys. Rev. 1949. V. 76. № 12. P. 1877.
  69. Comisarow M.B. and Marshall A.G. Fourier Transform Ion Cyclotron Resonance Spectroscopy. // Chem. Phys. Lett. 1974. V. 25. № 2. P. 282−283.
  70. Glish G.L. and Burinsky DJ. Hybrid Mass Spectrometers for Tandem Mass Spectrometry. //J.Am. Soc. Mass Spectrom. 2008. V. 19. № 2. P. 161−172.
  71. Makarov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. //Anal. Chem. 2000. V. 72. P. 1156−1162.
  72. Hu Q., Noll R.J., Li II., Makarov A., Iiardman M. and Cooks R. G The Orbitrap: a new mass spectrometer. // J. Mass Spectrom. 2005. V. 40. P. 430−443.
  73. Makarov A., Denisov E., Kholomeev A., Balschun W., Lange O., Strupat K. and Horning S. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. // Anal. Chem. 2006. V. 78. № 7. P. 2113−2120.
  74. Makarov A., Denisov E. and Lange O. Performance Evaluation of a High-field Orbitrap Mass Analyzer. // J. Am. Soc. Mass Spectrom. 2009. V. 20. № 8. P. 1391−1396.
  75. Makarov A. and Scigelova M. Coupling liquid chromatography to Orbitrap mass spectrometry. // J. Chromatogr. A. 2010. V. 1217. № 25. P. 3938−3945.
  76. Kelleher N.L., Lin H.Y., Valaskovic GA., Aaserud D.J., Fridriksson E.K. and McLafferty F.W. Top down versus bottom up protein characterization by tandem highresolution mass spectrometry. // J. Am. Chem. Soc. 1999. V. 121. P. 806−812.
  77. Chait B.T. Mass Spectrometiy: Bottom-up or Top-Down? // Science. 2006. V. 314. P. 65−66.
  78. Perkins D.N., Pappin D.J., Creasy D.M. and Cottrell J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. // Electrophoresis. 1999. V. 20. № 18. P. 3551−67.
  79. Eng J.K., McCormack A.L. and Yates III J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. // J. Am. Soc. Mass Spectrom. 1994. V. 5. № 11. P. 976−989.
  80. Craig R. and Beavis R.C. TANDEM: matching proteins with tandem mass spectra. // Bioinformatics 2004. V. 20. №. 9. P. 1466−1467.
  81. KelleherN.L. Top-down proteomics. //Anal. Chem. 2004. V. 76. P. 197A-203A.
  82. Kinter M. and Sherman N.E. Protein Sequencing and Identification Using Tandem Mass Spectrometiy. Wiley-Interscience Series on Mass Spectrometiy ed. D.M. Desiderio and N.M.M. Nibbering. 2000, New York (NY): John Wiley & Sons Inc.
  83. RoepstorffP. and Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. //Biomed. Mass Spectrom. 1984. V. 11. № 11. P. 601.
  84. Biemann K. Contributions of mass spectrometiy to peptide and protein structure. // Biomed. Environ. Mass Spectrom. 1988. V. 16. № 1−12. P. 99−111.
  85. McLuckey S.A. Principles of collisional activation in analytical mass spectrometry. // J. Am. Soc. Mass Spectrom. 1992. V. 3. № 6. P. 599−614.
  86. Shukla A.K. and Futrell. J.H. Tandem mass spectrometry: dissociation of ions by collisional activation. // J. Mass Spectrom. 2000. V. 35. P. 1069−1090.
  87. Jennings K.R. The changing impact of the collision-induced decomposition of ions on mass spectrometry. // Int. J. Mass Spectrom. 2000. V. 200. № 1−3. P. 479−493.
  88. McCormack A.L., Somogyi A., Dongre A.R. and Wysocki V.H. Fragmentation of protonated peptides: surface-induced dissociation in conjunction with a quantum mechanical approach. //Anal. Chem. 1993. V. 65. № 20. P. 2859−2872.
  89. Dongre A.R., Jones J.L., Somogyi A. and Wysocki V.H. Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model. // J. Am. Chem. Soc. 1996. V. 118. P. 8365−8374.
  90. Bleiholder C., Suhai S., Paizs B. Revising the proton affinity scope of the naturally occuring a-amino acids. // J. Mass Spectrom. 2006. V. 17. № 9. P. 1275−1281.
  91. Nair H., Wysocki V.H. Are peptides without basic residues protonated primarily at the amino terminus? // Int. J. Mass Spectrom. Ion Proc. 1998. V.174. P. 95−100.
  92. Dongre A.R., Somogyi A. and Wysocki V.H. Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. //J. Mass Spectrom. 1996. V. 31. № 4. P. 339−350.
  93. Wysocki V.H., Tsaprailis G., Smith L.L. and Breci L.A. Mobile and localized protons: a framework for understanding peptide dissociation. // J. Mass Spectrom. 2000. V. 35. № 12. P. 1399−1406.
  94. Vaisar T. and Urban J. Gas-phase fragmentation of protonated mono-N-methylated peptides. Analogy with solution-phase acid-catalyzed hydrolysis. // J. Mass Spectrom. 1998. V. 33. № 6. P. 505−524.
  95. Paizs B. and Suhai S. Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG I. Cis-trans isomerization around protonated amide bonds. // Rapid Commun. Mass Spectrom. 2001. V. 15. № 23. P. 2307−2323.
  96. Harrison A. G To b or not to b: the ongoing saga of peptide b ions. // Mass Spectrom. Rev. 2009. V. 28. № 4. P. 640−654.
  97. Li X., Huang Y., O’Connor P.B. and Lin C. Structural heterogeneity of doubly-charged peptide b-ions. // J. Am. Soc. Mass Spectrom. 2011. V. 22. P. 245−254.
  98. Morgan D. G and Bursey M.M. A Linear Free-Energy Correlation in the Low-Energy Tandem MasS—Spectra of Protonated Tripeptides Gly-Gly-Xxx. // Org. Mass Spectrom. 1994. V. 29. № 7. P. 354−359.
  99. Paizs B. and Suhai S. Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage. // J. Am. Soc. Mass Spectrom. 2004. V. 15. № l.P. 103−113.
  100. Harrison A.G. and Young A.B. Fragmentation of protonated oligoalanines: amide bond cleavage and beyond. // J. Am. Soc. Mass Spectrom. 2004. V. 15. № 12. P. 1810−1819.
  101. Tabb D.L., Smith L.L., Breci L.A., Wysocki V.H., Lin D. and Yates III J.R. Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. //Anal. Chem. 2003. V. 75. P. 1155−1163.
  102. Dong N.-P., Zhang L.-X. and Liang Y.-Z. A comprehensive investigation of proline fragmentation behavior in low-energy collision-induced dissociation peptide mass spectra. // Int. J. Mass Spectrom. 2011. V. 308. P. 89−97.
  103. Savitski M.M., Faith M., Fung Y.M., Adams C.M. and Zubarev R.A. Bifurcating fragmentation behavior of gas-phase tiyptic peptide dications in collisional activation. // J.Am. Soc. Mass Spectrom. 2008. V. 19. № 12. P. 1755−1763.
  104. Perkins B.R., Chamot-Rooke J., Yoon S.FI., Gucinski A.C., Somogyi A. and Wysocki V.H. Evidence of Diketopiperazine and Oxazolone Structures for I-IA b2+ Ion. // J. Am. Chem. Soc. 2009. V. 131. № 48. P. 17 528−17 529.
  105. Gu C., Tsaprailis G, Breci L.A. and Wysocki V.H. Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Aspcontaining peptides. //Anal. Chem. 2000. V. 72. P. 5804−5813.
  106. Falick A.M., Hines W.M., Medzihradszky K.F., Baldwin M.A. and B.W. Gibson. Low-mass ions produced from peptides by high-energy collision-induced dissociation in tandem mass spectrometry. // J. Am. Soc. Mass Spectrom. 1993. V. 4. № 11. P. 882 -893.
  107. Zaia J., Biemann K. Comparison of charged derivatives for high energy collision-induced dissociation tandem mass spectrometry. // J. Am. Soc. Mass Spectrom. 1995. V. 6. № 5. P. 428−436.
  108. Wells J.M. and McLuckey S.A. CollisionDInduced Dissociation (CID) of Peptides and Proteins. // Methods Enzymol. 2005. V. 402. P. 148−185.
  109. Papayannopoulos I.A. The interpretation of collision-induced dissociation tandem mass spectra of peptides. // Mass Spectrom. Rev. 1995. V 14. № 1. P. 49−73.
  110. Papayannopoulos I.A. Use of low-and high-energy collision-induced dissociation tandem mass spectrometry in the identification of an unusual amino acid in a semisynthetic polypeptide. // J. Am. Soc. Mass Spectrom. 1996. V. 7. № 10. P. 10 341 039.
  111. Wolf S.M. and Biemann K. Previously uncharacterized ions observed in the high energycollision-induced dissociation mass spectra of peptides containing S-alkyl cysteine. // Int. J. Mass Spectrom. Ion Proc. 1997. V. 160. № 1−3. P. 317−329.
  112. Olsen J.V., Macek B., Lange O., Makarov A., Horning S. and Mann M. Higher-energy C-trap dissociation for peptide modification analysis. // Nat. Methods. 2007. V. 4. № 9. P. 709−712.
  113. Zhang Y., Ficarro S.B., Li S. and Marto J.A. Optimized Orbitrap IICD for quantitative analysis of phosphopeptides. // J. Am. Soc. Mass Spectrom. 2009. V. 20. P. 1425−1434.
  114. Dayon L., Pasquarello C., Hoogland C., Sancheza J.-C. and Scherl A. Combining low-and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. // J. Proteomics. 2010. V. 73. P. 769−777.
  115. Hart-Smith G and Raftery M.J. Detection and characterization of low abundance glycopeptides via higher-energy C-trap dissociation and orbitrap mass analysis. // J. Am. Soc. Mass Spectrom. 2012. V. 23. № 1. P. 124−140.
  116. Chi IT, Sun R.-X., Yang B., Song C.-Q., Wang L.-H., Liu C., Fu Y., Yuan Z.-F., Wang H.-P., He S.-M. and Dong M.-Q. pNovo: de novo peptide sequencing and identification using IICD spectra. I I J. Prot. Res. 2010. V. 9. P. 2713−2724.
  117. Thakur S.S. and Balaram P. Fragmentation of Peptide Disulfides under Conditions of Negative Ion Mass Spectrometry: Studies of Oxidized Glutathione and Contryphan. // J. Am. Soc. Mass Spectrom. 2008. V. 19. P. 358−366.
  118. Cooks R. G, Terwilliger D.T., Ast T., Beynon J.H. and Keough T. Surface Modified Mass Spectrometry. // J. Am. Chem. Soc. 1975. V. 97. № 6. P. 1583−1585.
  119. Cooks R.G., Ast T. and Mabud Md.A. Collisions of polyatomic ions with surfaces. // Int. J. Mass Spectrom. Ion Proc. 1990. V. 100. P. 209−265.
  120. Laskin J., Denisov E. and Futrell J.H. Fragmentation energetics of small peptides from multiple-collision activation and surface-induced dissociation in FT-ICR MS. // Int. J. Mass Spectrom. 2002. V. 219. P. 189−201.
  121. Laskin J. and Futrell J.H. Surface-Induced Dissociation of Peptide Ions: Kinetics and Dynamics. // J. Am. Soc. Mass Spectrom. 2003. V. 14. P. 1340−1347.
  122. Laskin J. and Yang Z. Energetics and dynamics of dissociation of deprotonated peptides: Fragmentation of angiotensin analogs. // Int. J. Mass Spectrom. 2011. V. 308. P. 275−280.
  123. McLafTcrty F. Tandem mass spectrometry of large molecules. In McNeal C. (ed.) Mass spectrometry in the analysis of large molecules. 1986. New York. Wiley. P. 107−120.
  124. Zubarev R.A., Kelleher N.L. and McLafferty F.W. Electron capture dissociation of multiply charged protein cations. A non-ergodic process. // J. Am. Chem. Soc. 1998. V.120. P. 3265−3266.
  125. Zubarev R.A. Electron capture dissociation of peptides In: Silberring J, Ekman R, editors. Mass spectrometry and hyphenated techniques in neuropeptide research. New York: 2002. John Wiley & Sons.
  126. Cooper H.J. Investigation of the presence of b ions in electron capture dissociation mass spectra. //J.Am. Soc. Mass Spectrom. 2005. V. 16. P. 1932−1940.
  127. Chan T.-W.D., Ip, W.H.H. Optimization of Experimental Parameters for Electron Capture Dissociation of Peptides in a Fourier Transform Mass Spectrometer. // J. Am. Soc. Mass Spectrom. 2002. V. 8. P. 1396 -1406.
  128. Polfer N.C., I-Iaselmann K.F., Zubarev R.A., Langridge-Smith P.R.R. Electron Capture Dissociation of Polypeptides Using a 3 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. // Rapid Commun. Mass Spectrom. 2002. V. 16. P. 936 943.
  129. Iavarone A.T., Paech K., William E.R. Effects of Charge State and Cationizing Agent on the Electron Capture Dissociation of a Peptide. // Anal. Chem. 2004. V. 76. P. 22 312 238.
  130. Syrstad E.A., Turecek F. Toward a general mechanism of electron capture dissociation. // J. Am. Soc. Mass Spectrom. 2005. V. 16. P. 208−224.
  131. Jones J.W., Sasaki T., Goodlett D.R., Turecek F. Electron capture in spin-trap capped peptides. An experimental example of ergodic dissociation in peptide cation-radicals. /7 J. Am. Soc. Mass Spectrom. 2007. V. 18. P. 432−444.
  132. O’Connor P.B., Ling C., Cournoyer J.J., Pittman J.L., Belyayev M., Budman B.A.1.ng-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction. // J. Am. Soc. Mass Spectrom., 2006. V. 17. P. 576−585.
  133. Simons. J. Mechanisms for S-S and N-Ca bond cleavage in peptide ECD and ETD mass spectrometry. // Chem. Phys. Lett. 2010. V. 484. P. 81−95.
  134. Neff D. and Simons J. Analytical and computational studies of intramolecular electron transfer pertinent to electron transfer and electron capture dissociation mass spectrometry. // J. Phys. Chem. A. 2010. V. 114. № 3. P. 1309−1323.
  135. Zubarev R.A., Zubarev A.R. and Savitski M.M. Electron Capture/Transfer versus Collisionally Activated/Induced Dissociations: Solo or Duet? // J. Am. Soc. Mass Spectrom., 2008. V. 19. P. 753−761.
  136. Savitski M.M., Nielsen M.L. and Zubarev R.A. Side-Chain Losses in Electron Capture Dissociation To Improve Peptide Identification. // Anal. Chem. 2007. V. 79. P. 22 962 302.
  137. Fung Y.M.E. and Chan T.-W.D. Experimental and Theoretical Investigations of the Loss of Amino Acid Side Chains in Electron Capture Dissociation of Model Peptides. // J. Am. Soc. Mass Spectrom. 2005. V. 16. P. 1523−1535.
  138. Li X., Lin C., Han L., Costello C.E. and O’Connor P.B. Charge Remote Fragmentation in Electron Capture and Electron Transfer Dissociation. // J. Am. Soc. Mass Spectrom., 2010. V. 21. P. 646−656.
  139. Chalkley R.J., Brinkworth C.S. and Burlingame A.L. Side-chain fragmentation of alkylated cysteine residues in electron capture dissociation mass spectrometry. // J. Am. Soc. Mass Spectrom., 2006. V. 17. P. 1271−1274.
  140. Jensen O.N. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. // Curr. Opin. Chem. Biol. 2004. V. 8. № 1. P. 3341.
  141. Bakhtiar R. and Guan Z. Electron capture dissociation mass spectrometry in characterization of post-translational modifications. // Biochem. Biophys. Res. Commun. 2005. V. 334. № 1. P. 1−8.
  142. Haselmann K.F., Jorgensen T.J.D., Budnik B.A., Jensen F. and Zubarev R.A. Electron Capture Dissociation of Weakly Bound Polypeptide Polycationic Complexes. // Rapid. Commun. Mass Spectrom. 2002. V. 16. P. 2260−2265.
  143. Jackson S.N., Dutta S. and Woods A.S. The Use of ECD/ETD to Identify the Site of Electrostatic Interaction in Noncovalent Complexes. // J. Am. Soc. Mass Spectrom. 2009. V. 20. P. 176−179.
  144. Lee S., Ahn S., Parka S. and Oh H.B. Characterization of permethylated p-cyclodextrin-peptide noncovalently bound complexes using electron capture dissociation mass spectrometry (ECD MS). // Int. J. Mass Spectrom. 2009. V. 279. № 1. P. 47−52.
  145. Ben Hamidane Ii., Vorobyev A. and Tsybin Y.O. Repeatability and reproducibility of product ion abundances in electron capture dissociation mass spectrometry of peptides. //Eur. J. Mass Spectrom. 2011. V. 17. № 4. P. 321−331.
  146. Breuker K., Oh II.B., Horn D.M., Cerda B.A. and McLafferty F.W. Detailed Unfolding and Folding of Gaseous Ubiquitin Ions Characterized by Electron Capture Dissociation.
  147. J. Am. Chem. Soc. 2002. V. 124. P. 6407−6420.
  148. Robinson E.W., Leib R.D. and Williams E.R. The Role of Conformation on Electron Capture Dissociation of Ubiquitin. // J. Am. Soc. Mass Spectrom. 2006. V. 17. P. 1469— 1479.
  149. Budnik B.A., Ilaselmann K.F. and Zubarev R.A. Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon. // Chem. Phys. Lett. 2001. V. 342. P. 299−302.
  150. Kjeldsen F., Silivra O.A., Ivonin I.A., Haselmann K.F., Gorshkov M. and Zubarev R.A. C alpha-C backbone fragmentation dominates in electron detachment dissociation of gas-phase polypeptide polyanions. // Chem. Eur. J. 2005. V. 11. № 6. P. 1803−1812.
  151. Anusiewicz I., Jasionowski M., Skurski P. and Simons J. Backbone and side-chain cleavages in electron detachment dissociation (EDD). // J. Phys. Chem. A. 2005. V. 109. № 49. P. 11 332−11 337.
  152. Kinet C., Gabelica V., Balbeur D. and De Pauw E. Electron detachment dissociation (EDD) pathways in oligonucleotides. // Int. J. Mass Spectrom. 2009. V. 283. № 1−3. P. 206−213.
  153. Ganisl B., Valovka T., I-Iartl M., Taucher M., Bister K. and Breuker K. Electron detachment dissociation for top-down mass spectrometry of acidic proteins. // Chem. Eur. J. 2011. V. 17. № 16. P. 4460−4469.
  154. Syka J.E.P., Coon J.J., Schroeder M.J., Shabanowitz J., Hunt D.F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 9528−9533.
  155. Compton P.D., Strukl J.V., Bai D.L., Shabanowitz J. and Hunt D.F. Optimization of electron transfer dissociation via informed selection of reagents and operating parameters. //Anal. Chem. 2012. V. 84. № 3. P. 1781−1785.
  156. Li W., Song C., Bailey D.J., Tseng G.C., Coon J.J. and Wysocki V.H. Statistical analysis of electron transfer dissociation pairwise fragmentation patterns. //Anal. Chem. 2011. V. 83. № 24. P. 9540−9545.
  157. Kim M.S. and Pandey A. Electron transfer dissociation mass spectrometry in proteomics. //Proteomics. 2012. V. 12. № 4−5. P. 530−542.
  158. Tsybin Y.O., Fornelli L., Stoermer C., Luebeck M., Parra J., Nallet S., Wurm F.M. and I-Iartmer R. Structural analysis of intact monoclonal antibodies by electron transfer dissociation mass spectrometry. //Anal. Chem. 2011. V. 83. № 23. P. 8919−8927.
  159. Coon J., Shabanowitz J., Hunt D. and Syka J. Electron transfer dissociation of peptide anions. // J. Am. Soc. Mass Spectrom. 2005. V. 16. P. 880−882.
  160. Rumachik N.G., McAlister GC., Russell J.D., Bailey D.J., Wenger C.D. and Coon J J. Characterizing Peptide Neutral Losses Induced by Negative Electron-Transfer Dissociation (NETD). // J. Am. Soc. Mass Spectrom. 2012. V. 23. P. 718−727.
  161. Laskin J. and Futrell J.H. Activation of large ions in FT-ICR mass spectrometry. // Mass Spectrom. Rev. 2005. V. 24. № 2. P. 135−167.
  162. Little D.P., Speir J.P., Senko M.W., O’Connor P.B. and McLafferty F.W. Infrared Multiphoton Dissociation of Large Multiply Charged Ions for Biomolecule Sequencing. //Anal. Chem. 1994. V. 66. № 18. P. 2809−2815.
  163. Brodbelt J.S. and Wilson J.J. Infrared multiphoton dissociation in quadrupole ion traps. //Mass Spectrom. Rev. 2009. V. 28. № 3. P. 390−424.
  164. Mikhailov V.A. and Cooper H.J. Activated Ion Electron Capture Dissociation (AI ECD) of proteins: synchronization of infrared and electron irradiation with ion magnetron motion. // J. Am. Soc. Mass Spectrom. 2009. V. 20. № 5. P. 763−771.
  165. Dunbar R.C. BIRD (blackbody infrared radiative dissociation): Evolution, principles, and applications. // Mass Spectrom. Rev. 2004. V. 23. № 2. P. 127−158.
  166. Bovvers W.D., Delbert S.S., Hunter R.L. and Mclver Jr. R.T. Fragmentation of oligopeptide ions using ultraviolet laser radiation and Fourier transform mass spectrometry. // J. Am. Chem. Soc. 1984. V. 106. № 23. P. 7288−7289.
  167. Parthasarathi R., He Y., Reilly J.M. and Raghavachari K. New Insights into the Vacuum UV Photodissociation of Peptides.// J.Am. Chem. Soc. 2010. V. 132.P. 1606−1610.
  168. Agarwal A., Diedrich J.K. and Julian R.R. Direct Elucidation of Disulfide Bond Partners Using Ultraviolet Photodissociation Mass Spectrometry. // Anal. Chem. 2011. P. 83. № 17. P. 6455−6458.
  169. Madsen J.A., Boutz D.R. and Brodbelt J.S. Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows. // J. Proteome Res. 2010. V. 9. № 8. P. 4205−4214.
  170. Madsen J.A., Kaoud T.S., Dalby K.N. and Brodbelt J.S. 193-nm photodissociation of singly and multiply charged peptide anions for acidic proteome characterization. // Proteomics. 2011. V. 11. P. 1329−1334.
  171. Kjeldsen F., Silivra O.A. and Zubarev, R.A. Zwitterionic states in gasphase polypeptide ions revealed by 157-nm ultra-violet photodissociation. // Chem. Eur. J. 2006. V. 12. P. 7920−7928.
  172. Brown R.S. and Lennon J.J. Sequence-Specific Fragmentation of Matrix-Assisted Laser-Desorbed Protein Peptide Ions. //Anal. Chem. 1995. V. 67. № 21. P. 3990−3999.
  173. Demeure K., Gabelica V. and De Pauw E.A. New advances in the understanding of the in-source decay fragmentation of peptides in MALDI-TOF-MS. // J. Am. Soc. Mass Spectrom. 2010. V. 21. № 11. P. 1906−1917.
  174. Smargiasso N., Quinton L. and De Pauw E. 2-Aminobenzamide and 2-aminobenzoic acid as new MALDI matrices inducing radical mediated in-source decay of peptides and proteins. // J. Am. Soc. Mass Spectrom. 2012. V. 23 № 3. P. 469−474.
  175. Asakawa D. and Takayama M. Fragmentation processes of hydrogen-deficient peptide radicals in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. // J. Phys. Chem. B. 2012. V. 116. № 13. P. 4016−4023.
  176. Asakawa D. and Takayama M. Ca-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices. // J. Am. Soc. Mass Spectrom. 2011. V. 22 № 7. P. 1224−1233.
  177. Suckau D. and Cornett D.S. Protein sequencing by ISD and PSD MALDI-TOF MS. // Analusis. 1998. V. 26. № 10. P. M18-M21.
  178. Calligaris D., Villard C., Terras L., Braguer D., Verdier-Pinard P. and Lafitte D. MALDI in-source decay of high mass protein isoforms: application to alpha- and beta-tubulin variants. //Anal. Chem. 2010. V. 82. № 14. P. 6176−6184.
  179. Asakawa D. and Takayama M. Mass spectrometric characterization of phosphorylated peptides using MALDI in-source decay via redox reactions. // J. Mass Spectrom. 2012. V.47.P. 180−187.
  180. Hanisch F. G Top-down sequencing of O-glycoproteins by in-source decay matrixassisted laser desorption ionization mass spectrometry for glycosylation site analysis. // Anal. Chem. 2011. V. 83. № 12. P. 4829−4837.
  181. Delvolve A. and Woods A.S. Ammonium sulfate and MALDI in-source decay: a winning combination for sequencing peptides. // Anal. Chem. 2009. V. 81. № 23. P. 9585−9589.
  182. Suckau D., Resemann A., Schuerenberg M., Hufnagel P., Franzen J. and Holle A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. // Anal. Bioanal. Chem. 2003. V. 376. P. 952−965.
  183. Liao P.-C., Fluang Z.-IL, Allison J. Charge remote fragmentation of peptides following attachment of a Fixed positive charge: a matrix-assisted laser desorption/ionization postsource decay study. // J. Am. Soc. Mass Spectrom. 1997. V. 8. P. 501−509.
  184. Sadagopan N., Watson J.T. Mass spectrometric evidence for mechanisms of fragmentation of charge-derivatized peptides. // J. Am. Soc. Mass Spectrom. 2001. V. 12. № 4. P. 399−409.
  185. Keough T., Youngquist R.S. and Lacey M.P. Sulfonic acid derivatives for peptide sequencing. //Anal. Chem. 2003. V. 75. P. 156−165.
  186. Clipston N.G., Jai-nhuknan J. and Cassady C.J. A comparison of negative and positive ion time-of-flight post-source decay mass spectrometry for peptides containing basic residues. // Int. J. Mass Spectrom. 2003. V. 222. P. 363−381.
  187. Keough T., Youngquist R.S. and Lacey M.P. A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption/ionization mass spectrometry. // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 7131−7136.
  188. Purcella A.W. and Gorman J.J. The use of post-source decay in matrix-assisted laser desorption/ionisation mass spectrometry to delineate T cell determinants. // J. Immunol. Methods. 2001. V. 249. № 1−2. P. 17−31.
  189. Talbo GH., Suckau D., Malkoski M. and Reynolds E.C. MALDI-PSD-MS analysis of the phosphorylation sites of caseinomacropeptide. // Peptides. 2001. V.22. № 7. P. 10 931 098.
  190. Sickmann A. and Meyer H.E. Phosphoamino acid analysis. // Proteomics. 2001. V. 1. № 2. P. 200−206.
  191. Fedorova M., Frolov A. and Hoffmann R. Fragmentation behavior of Amadori-peptides obtained by non-enzymatic glycosylation of lysine residues with ADP-ribose in tandem mass spectrometry. // J. Mass Spectrom. 2010. V. 45. № 6. P. 664−669.
  192. Fahey R.C., Hunt J.S. and Windham GC. On the Cysteine and Cystine Content of Proteins Differences between Intracellular and Extracellular Proteins. // J. Mol. Evol.1977. V. 10. P. 155−160.
  193. Sevier C.S. and Kaiser C.A. Formation and transfer of disulphide bonds in living cells. //Nat. Rev. Мої. Cell Bio. 2002. V. 3. P. 836−847.
  194. Possani L.D., Becerril B., Delepierre M. and Tytgat J. Scorpion toxins specific for Na±channels. //Eur. J. Biochem. 1999.V. 264. № 2. P. 287−300.
  195. Yang S., Liu Z., Xiao Y., Li Y., Rong M., Liang S., Zhang Z., Yu H., King GF. and Lai R. Chemical punch packed in venoms makes centipedes excellent predators. // Мої. Cell Proteomics. 2012 May 17. Epub ahead of print.
  196. Brgles M., Bertosa B., Winkler W., Kurtovic T., Allmaier G., Marchetti-Deschmann M. and Halassy B. Chromatography, mass spectrometry, and molecular modeling studies on ammodytoxins. //Anal. Bioanal. Chem. 2012. V. 402. № 9. P. 2737−2748.
  197. Wells J.M., Stephenson Jr. J. L and McLuckey S.A. Charge dependence of protonated insulin decompositions. // Int. J. Mass Spectrom. 2000. V. 203. P. A1-A9.
  198. Lee Y. and Oh II.B. Collisionally-Activated Dissociation of Peptides with a Disulfide Bond: Confirmation of the Mobile-Proton Model Based Explanation. // Mass Spectrom. Lett. 2010. V. 1. № l.P. 5−8.
  199. Gunawardena H.P., OTIair R.A.J., McLuckey S.A. Selective disulfide bond cleavage in Gold (I) cationized polypeptide ions formed via gas-phase ion/ion cation switching. // J. Proteome Res. 2006. V. 5. P. 2087−2092.
  200. Mihalca R., van der Burgt Y.E.M., Heck A.J.R., Heeren R.M.A. Disulfide bond cleavages observed in Sori-Cid of three nonapeptides complexed with divalent transition-metal cations. // J. Mass Spectrom. 2007. V. 42. P. 450−458.
  201. Jones M.D., Patterson S. D and Lu H.S. Determination of disulfide bonds in highly bridged disulfide-linked peptides by matrix-assisted laser desorption/ionization mass spectrometiy with postsource decay. //Anal. Chem. 1998. V. 70. № 1. P. 136−143.
  202. Thakur S.S. and Balaram P. Rapid mass spectral identification of contryphans. Detection of characteristic peptide ions by fragmentation of intact disulfide-bonded peptides in crude venom. // Rapid Commun. Mass Spectrom. 2007. V. 21. P. 3420−3426.
  203. Chrisman P.A. and McLuckey S.A. Dissociations of disulfide-linked gaseous polypeptide/protein anions: ion chemistry with implications for protein identification and characterization. // J. Proteome Res. 2002. V. 1. P. 549−557.
  204. Zhang M. and Kaltashov I.A. Mapping of protein disulfide bonds using negative ion fragmentation with a broadband precursor selection. // Anal. Chem. 2006. V. 78. P. 4820^1829.
  205. Turecek F. and Syrstad E.A.Mechanism and energetics of intramolecular hydrogen transfer in amide and peptide radicals and cation-radicals. // J. Am. Chem. Soc. 2003. V. 125. P. 3353−3369.
  206. Leymarie N., Costello C.E. and O’Connor P.B. Electron Capture Dissociation Initiates a Free Radical Reaction Cascade. // J. Am. Chem. Soc. 2003. V. 125. P. 8949−8958.
  207. Cole S.R., Ma X., Zhang X., Xia Y. Electron Transfer Dissociation (ETD) of Peptides Containing Intrachain Disulfide Bonds. // J. Am. Soc. Mass Spectrom. 2012. V. 23. P. 310−320.
  208. Duan X., Engler F.A., Qu J. Electron transfer dissociation coupled to an Orbitrap analyzer may promise a straightforward and accurate sequencing of disulfide-bridged cyclic peptides: a case study. // J. Mass Spectrom. 2010. V. 45. № 12. P. 1477−1482.
  209. Mentinova M., Han II. and McLuckey S.A. Dissociation of disulfide-intact somatostatin ions: the roles of ion type and dissociation method. // Rapid Commun. Mass Spectrom. 2009. V. 23. P. 2647−2655.
  210. Chalkley R.J., Brinkworth C.S. and Burlingame A.L. Side-Chain Fragmentation of Alkylated Cysteine Residues in Electron Capture Dissociation Mass Spectrometry. // J. Am. Soc. Mass Spectrom. 2006. V. 17. № 9. P. 1271−1274.
  211. Lutz E., Wieser H. and Koehler P. Identification of disulfide bonds in wheat gluten proteins by means of mass spectrometry/electron transfer dissociation. // J. Agric. Food Chem. 2012. V. 60. № 14. P. 3708−3716.
  212. Zaikin V. and Halket. J. Soft Ionization Mass Spectrometry of Jarge Molecules: A Handbook of Derivatives for Mass Spectrometry. IM Publications LLP: Charlton, UK.2009. P. 299.
  213. Batista V.F., Scaloni A., Rigden D.J., Silva L.R., Romero A.R., Dukor R., Sebben A., Talamo F. and Bloch C. A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. // FEBS Lett. 2001. V. 494. P. 85−89.
  214. John II. and Forssmann W.-G Determination of the disulfide bond pattern of the endogenous and recombinant angiogenesis inhibitor endostatin by mass spectrometry. // Rapid Commun. Mass Spectrom. 2001. V. 15. P. 1222−1228.
  215. Tsarbopoulos A., Varnerin J., Cannon-Carlson S., Wylie D., Pramanik B., Tang J., Nagabhushan T.L. Mass spectrometric mapping of disulfide bonds in recombinant human interleukin-13. // J. Mass Spectrom. 2000. V. 35. P. 446−453.
  216. Yen T.-Y., Yan II. and Macher B.A. Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. // J. Mass Spectrom. 2002. V. 37. P. 15−30.
  217. Lappi D.A., Kapmeyer W., Beglau J.M. and Kaplan N.O. The disulfide bond connecting the chains of ricin. //Proc. Natl. Acad. Sci. USA. 1978. V. 75. P. 1096−1100.
  218. Krokhin O.V., Cheng K., Sousa S.L., Ens W., Standing K. G and Wilkins J.A. Mass spectrometric based mapping of the disulfide bonding patterns of integrin a-chains. // Biochem. 2003. V. 42. P. 12 950−12 959.
  219. Wu W.W.I-L, Wong J.P., Kast J. and Molday R.S. RSI, a discoidin domain-containing retinal cell adhesion protein associated with x-linked retinoschisis, exists as a novel disulfide-linked octamer. // J. Biol. Chem. 2005. V. 280. P. 10 721−10 730.
  220. Mhatre R., Woodard J. and Zeng C. Strategies for locating disulfide bonds in a monoclonal antibody via mass spectrometry. // Rapid Commun. Mass Spectrom. 1999. V. 13. P. 2503−2510.
  221. Pitt J.J., Da Silva E. and Gorman J.J. Determination of the disulfide bond arrangement of Newcastle disease virus hemagglutinin neuraminidase. // J. Biol. Chem. 2000. V. 275. P. 6469−6478.
  222. Bingham J.-P., Broxton N.M., Livett B.G., Down J. G, Jone A. and Moczydlowski E. G Optimizing the connectivity in disulfide-rich peptides: a-conotoxin SII as a case study. //Anal. Biochem. 2005. V. 338. P. 48−61.
  223. Odani S., Baba K., Tsuchida Y., Aoyagi Y., Wakui S. and Takahashi Y. Hepatic fatty acid-binding proteins of a teleost, Lateolabrax japonicus. The primary structures and location of a disulfide bond. // J. Biochem. 2001. V. 129. P. 69−76.
  224. Wang S. and Kaltashov I.A. A new strategy of using 018-labeled iodoacetic acid for mass spectrometry-based protein quantitation. // J. Am. Soc. Mass Spectrom. 2012 V. 23. № 7. P. 1293−1297.
  225. Geoghean K.F., Hoth L.R., Tan D.H., Borzilleri K.A., Withka J.M. and Boyd J.G. Cyclization of N-terminal S-carbamoylmethylcysteine causing Loss of 17 Da from peptides and extra peaks in peptide maps. // J. Proteome Res. 2002. V. 1. P. 181−187.
  226. Boja E.S. and Fales H.M. Overalkylation of a protein digest with iodoacetamide. // Anal. Chem. 2001. V. 73. P. 3576−3582.
  227. Lapko V.N., Smith D.L. and Smith J.B. Identification of an artifact in the mass spectrometry of proteins derivatized with iodoacetamide. // J. Mass Spectrom. 2000. V. 35. P. 572−575.
  228. Williams D.K., Meadows C.M., Bori I.D., Hawkridge A.M., Comins D.L. and Muddiman D.C. Synthesis, characterization, and application of iodoacetamide derivatives utilized for the ALiPHAT strategy. // J. Am. Chem. Soc. 2008. V. 130. P. 2122−2123.
  229. M., Нифантьев И. и Пшежецкий А. Новый метод количественного масс-спектрометрического анализа белковых смесей с использованием селективных изотопных меток на цистеин. // Масс-спектрометрия. 2007. Т. 4. № 3. С. 218−222
  230. Brune D.C. Alkylation of cysteine with aciylamide for protein sequence analysis. // Anal. Biochem. 1992. V. 207. P. 285−290.
  231. Friedman M., Krull L.H. and Cavins J.F. The chromatographic determination of cystine and cysteine residues in proteins as S-p-(4-pyridylethyl)cysteine. // J. Biol. Chem. 1970. V. 245. P. 3868−3871.
  232. Jakubowski A. and Sweedler J.V. Sequencing and mass profiling highly modified conotoxins using global reduction/alkylation followed by mass spectrometry. // Anal. Chem. 2004. V. 76. P. 6541−6547.
  233. Wu J. and Watson J.T. A novel methodology for assingment of disulfide bond pairings in proteins. // Prot. Sci. 1997. V. 6. P. 391−398.
  234. Zhang Y., Cui W., Zhang IT., Dewald H.D. AndChen H. Electrochemistry-Assisted Top-Down Characterization of Disulfide-Containing Peptides. //Anal. Chem. 2012. V. 84. P. 3838−3842.
  235. Takats Z., Wiseman J.M., Gologan B. and Cooks R.G. Mass Spectrometry Sampling Under Ambient Conditions With Desorption Electrospray Ionization. // Science. 2004. V. 306. № 5695. P. 471−473.
  236. Burlet О., Yang C-Y. and Gaskell S.J. Influence of cysteine to cystic acid oxidation on the collision-activated decomposition of protonated peptides: evidence for intraionic interactions. // J. Am. Soc. Mass Spectrom. 1992. V. 3. P. 337−344.
  237. Fonseca C, Domingues MR, Simoes C, Amado F and Domingues P. Reactivity of Tyr-Leu and Leu-Tyr dipeptides: identification of oxidation products by liquid chromatography-tandem mass spectrometry. // J Mass Spectrom. 2009. V. 44. № 5. P. 681−693.
  238. Fagerquist C.K. Collision-activated cleavage of a peptide/antibiotic disulfide linkage: possible evidence for intramolecular disulfide bond rearrangement upon collisional activation. // Rapid Commun. Mass Spectrom. 2004. V. 18. P. 685−700.
  239. Kovacic P. and Iiein R.W. Cross-linking of Polymers with Dimaleimides. // J. Am. Chem. Soc. 1959. V.81.P. 1187−1190
  240. Tyler M.J., Stone D.J. and Bowie J.H. A novel method for the release and collection of dermal, glandular secretions from the skin of frogs. // J. Pharmacol. Toxicol. Methods. 1992. V. 28. № 4. P. 199−200.
  241. Frank A.M., Savitski M.M., Nielsen M.L., Zubarev R.A. and Pevzner P.A. De Novo Peptide Sequencing and Identification with Precision Mass Spectrometry // J. Prot. Res. 2007. V. 6. P. 114−123.
Заполнить форму текущей работой