Помощь в написании студенческих работ
Антистрессовый сервис

Моделирование управляемых систем с запаздывающей обратной связью

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Ещё более сложной задачей является задача об оптимальной стабилизации нелинейной системы. Для систем, моделируемых обыкновенными дифференциальными уравнениями (ОДУ) помимо рассмотрения линейного приближения, упомянутого выше, предлагались также другие способы решения такого уравнения: для нелинейных систем при малых возмущениях по степеням этих возмущений, квазиоптимальной стабилизации для систем… Читать ещё >

Моделирование управляемых систем с запаздывающей обратной связью (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Математические основы моделирования управляемых систем с разрывным запаздывающим управлением
    • 1. 1. Модель управляемой системы с обратной связью
    • 1. 2. Динамические свойства функционально-дифференциальных уравнений с разрывной правой частью
    • 1. 3. Развитие метода функционалов Ляпунова
  • Глава 2. Стабилизация управляемых систем
    • 2. 1. Постановка задачи о стабилизации управляемых систем
    • 2. 2. Управляемая система, моделируемая уравнением типа Воль-терра
    • 2. 3. Задача об управлении механической системой
  • Глава 3. Программа для численного решения функционально-дифференциальных уравнений
    • 3. 1. Внутреннее устройство программы
    • 3. 2. Модуль численных методов
    • 3. 3. Сравнение с другими программами и компьютерное моделирование управляемых механических систем, физических и экономических процессов

Бурное развитие в 50-х годах XX века промышленного производства, его автоматизация стимулировали интенсивные исследования по теории автоматического управления (ТАУ) и её приложениям, по моделированию систем управления. Применявшиеся до этого времени методы моделирования посредством линейных систем теряли свою эффективность.

Получило широкое развитие синтезирование в системах автоматического регулирования (САР). Это развитие началось ещё в линейной ТАУ с разработки методов и средств улучшения динамки таких систем (их устойчивости и качества) — корректирующих устройств последовательных связей, основным из которых стало ПИД-звено (пропорционально-интегрально-дифференциальное), и корректирующих обратных связей — гибких, инерционных и т. д. [85].

Следующим качественно новым этапом решения проблемы синтеза САР стала разработка теории и методов структурного синтеза таких систем в виде решения задачи синтеза алгоритмов управления для заданного объекта управления. В начале они находились как функции времени, т. е. для реализации в виде систем программного управления, а затем — как функции выходных переменных объекта управления, т. е. в виде замкнутой системы с обратными связями.

Основу этих разработок составила теория оптимального управления, сформировавшаяся прежде всего на базе классического вариационного исчисления, принцип максимума Л. С. Понтрягина и динамического программирования Р. Беллмана [21, 63].

Задача синтеза алгоритма управления для заданного объекта управления требует, прежде всего, знания его математической модели. Отсюда возникла проблема идентификации, включая определение структуры объекта и оценка его параметров по экспериментальным данным, и соответствующая теория и методика.

Завершением развития методов синтеза оптимальных систем управления для линейных объектов стал «Метод аналитического конструирования оптимальных регуляторов» (метод АКОР) Летова—Калмана [35, 40, 46].

По мере становления теории автоматического управления постепенно на первый план стало выходить моделирование нелинейных систем управления и разработка методов их проектирования, поскольку все реальные системы заведомо нелинейны.

Фундаментальной основой теории нелинейных систем управления явились труды A.M. Ляпунова, создавшего теорию устойчивости движения — прямой метод Ляпунова (метод функций Ляпунова) [47]. Эта теория составляет основу современной нелинейной теории САР, включая помимо устойчивости исследование качества процессов управления и методы структурного синтеза.

Исследование нелинейных систем управления началось с моделирования и анализа влияния отдельных типовых нелинейностей в линейных в остальном системах, разработке способов ослабления влияния и нейтрализации нежелательных нелинейностей (компенсация статических нелинейностей, вибрационная линеаризация зон нечувствительности и лифтов и т. д.). Затем появились работы о введении специальных нелинейностей для улучшения динамических свойств систем, их моделирования.

Были разработаны методы исследования нелинейных систем — анализа устойчивости, качества, методы параметрического синтеза, в частности, гармоническая линеаризация, использование фазовой плоскости, компьютерное моделирование.

Конечная цель разработки САР, т. е. их моделирования и проектирования, состоит в получении документации для изготовления (производства) и применения (эксплуатации) такой системы, которая удовлетворяла бы заданным техническим требованиям. Последние включают функциональное назначение системы, требования к качеству функционирования (точность, быстродействие, энергопотребление, надёжность и т. д. вплоть до стоимости). Особенность моделирования и проектирования САР заключается в том, что первостепенное значение из всех требований имеют показатели именно процесса управления (алгоритмы, численное значение параметров, качественные показатели процесса управления) по сравнению с конструктивными и другими данными.

Перечисленные выше методы моделирования линейных и нелинейных САУ позволили разработать различные методы такого синтеза на соответствие заданным требованиям. Однако при создании САУ, как и других технических систем, весьма желательно иметь представление об их теоретически предельных возможностях. Это важно для того, чтобы оценить технический уровень разработанной системы по степени её близости к теоретически предельному уровню и, конечно, для того, чтобы, прежде всего, убедиться в принципиальной реализуемости системы с требуемыми свойствами.

Для решения этой задачи во второй половине XX века в ТАУ сформулировался специальный раздел оптимальных САР. В нём содержатся математические методы структурного и параметрического синтеза систем управления на оптимум критериев, дающих количественную оценку их основных характеристик. По существу, этот раздел ТАУ является чисто математическим, т. е. разделом математики, и входящие в него методы разработаны математиками.

Для предельно простого линейного приближения, но дающего зато строго аналитическое решение этой задачи, разработаны методы такого синтеза оптимальных САУ, основанные на перечисленных выше методах исследования линейных систем.

Для нелинейных САУ с одной нелинейностью были разработаны методы синтеза на основе прямого метода Ляпунова. В общем случае нелинейной системы применяется классическое вариационное исчисление, которое и было создано в своё время по запросам практики, хотя и без связи с проблемой управления. В середине XX века были разработаны методы оптимизации, позволяющие численно на ЭВМ решать значительно более сложные задачи. Это, прежде всего, уже упомянутые принцип Л. С. Понтрягина [63], метод динамического программирования Р. Беллмана [21]. На основе этих общих математических методов были разработаны уже инженерные методы синтеза САУ, ориентированные на свойства конкретных объектов управления — метод АКОР Летова—Калмана [35, 40, 46], метод функционала обобщённой работы (ФОР) А. А. Красовского, синергетический подход А. А. Колесникова, методы самоорганизующихся систем, в том числе с использованием технологий искусственного интеллекта, и т. д. (см. [85]).

Актуальность работы. Усложнение управляемых технических систем и процессов, необходимость создания более адекватных их моделей с учетом нелинейности, нестационарности и других факторов требует дальнейшего развития новых методов их моделирования, качественного и численного анализа соответствующих моделей.

Для моделируемых управляемых систем появляется важная необходимость учёта запаздывания, возникающего при передаче измерительных и управляющих сигналов, при воздействии на управляющие механизмы [39, 44]. К моделям с распределённым запаздыванием приводятся также системы с ПИи ПИД-управлениями [6, 57].

В конструировании автоматических систем широко используется разрывное управление. Их эффективность состоит в декомпозиции системы, реализации требуемого движения при конечных управляющих воздействиях за конечное время [1, 2, 23, 82]. Однако задачи качественного и численного обоснования применения таких управлений, их моделирование с учётом запаздывания в структуре обратной связи являются до сих пор малоисследованными.

Цели и задачи диссертационной работы. Цель состоит в разработке математических моделей непрерывных и релейных управлений с запаздыванием, выводе новых методов качественного анализа и компьютерного моделирования управляемых систем с последействием.

Для достижения этой цели были поставлены и решены следующие задачи:

1. Разработка математической модели позиционного релейного управления с запаздыванием в структуре обратной связи.

2. Развитие методов качественной теории функционально-дифференциальных уравнений с разрывной правой частью.

3. Вывод достаточных условий стабилизируемости управляемой системы с запаздыванием при гарантированной оценке качества управления, их численный анализ.

4. Разработка алгоритмов и программного комплекса для численного моделирования управляемых систем с учётом запаздывания в структуре обратной связи.

5. Компьютерное моделирование различных управляемых систем с непрерывным и релейным запаздывающим управлением.

Научная новизна. Разработаны новые качественные и численные методы моделирования нелинейных нестационарных управляемых систем.

Построены новые модели управляемых систем с непрерывными и релейными регуляторами. Разработаны эффективные алгоритмы и программы нахождения параметров таких управлений.

Практическая значимость. Результаты, изложенные в диссертации, могут быть использованы для теоретических и практических разработок в конструировании управлений для нелинейных нестационарных управляемых систем, в том числе, робототехнических.

Разработанный комплекс программ 1юзр может быть использован для численного анализа и компьютерного моделирования управляемых и других систем, описываемых функционально-дифференциальными уравнениями с запаздывающим аргументом.

Основные положения, выносимые на защиту:

1. Модель релейного управления с запаздыванием в структуре обратной связи.

2. Новые результаты качественного анализа функционально-дифференциальных уравнений.

3. Методика решения задачи о стабилизации нелинейной управляемой системы с оценкой качества переходного процесса.

4. Численный метод с модификацией для моделирования процессов управления.

5. Комплекс программ численного анализа процесса управления с непрерывной и релейной запаздывающей обратной связью.

6. Компьютерные модели некоторых управляемых систем с запаздыванием.

В первой главе диссертации представлены исследования по математическим основам моделирования управляемых систем с запаздыванием в структуре обратной связи.

Как указывалось, основные исследования по моделированию управляемых систем с обратной связью были начаты в рамках проблемы аналитического конструирования регуляторов, поставленной А. М. Летовым [46]. Большую 9 роль сыграли также многочисленные исследования по развитию и применению принципа максимума Л. С. Понтрягина [63], динамического программирования Р. Беллмана [21]. Широкие исследования по этой проблеме были проведены Н. Н. Красовским и его школой, результатом которых стала теория оптимальной стабилизации управляемых движений [42−44], тесно связанная с теорией устойчивости.

Была исследована задача о существовании стабилизирующего управления для линейных уравнений возмущенного движения. При этом выяснилась существенная роль условий управляемости линейных систем. Показано, что если существует стабилизирующее воздействие, то задача об оптимальной стабилизации таких систем разрешима. В соответствии с теорией устойчивости по первому приближению развита теория стабилизации по первому приближению установившихся движений, выделены критические случаи стабилизации и указаны способы построения стабилизирующих воздействий в критических случаях. Эти и иные результаты приведены в [42].

Большое применение на практике получили системы с разрывным управлением. Исследования качественной теории систем с релейными управлениями привели к необходимости развития теории дифференциальных уравнений с разрывными правыми частями. Исследованию этих уравнений были посвящены работы многих математиков [76, 77, 86, 90, 92]. В этих работах было показано, что многие утверждения классической теории дифференциальных уравнений остаются справедливыми и для уравнений с разрывными правыми частями. Обосновано применение к таким уравнениям известных методов исследования, конечно с определенными ограничениями. Рассмотрены те свойства решений, которые обусловлены разрывностью правой части уравнения. Достаточно полно исследования по качественной теории дифференциальных уравнений с разрывной правой частью представлены в монографии [78]. Новые результаты по топологической динамике таких уравнений получены в работах [И, 13].

Для построения математических моделей разрывных управлений с запаздывающей обратной связью в первой главе проводится соответствующее развитие метода функционалов Ляпунова в исследовании устойчивости функционально-дифференциальных уравнений с конечным запаздыванием. Выводимые результаты включаются в общую теорию устойчивости следующим образом.

Функционально-дифференциальные уравнения (ФДУ) применяются в моделировании многих сложных систем и процессов, в том числе управляемых [22, 24, 28, 29, 39, 52, 80, 81]. Исследование устойчивости таких уравнений является значительно более сложной задачей по сравнению с обыкновенными дифференциальными уравнениями. Развитие прямого метода Ляпунова для этих уравнений является ещё более актуальным по сравнению с обыкновенными, так как применение линейного приближения менее эффективно.

Классические теоремы об исследовании устойчивости ФДУ на основе функционалов Ляпунова из [39, 41, 69, 81] получили развитие в монографиях [8, 37, 54, 62, 84] и других работах (см. [10]).

Построением топологической динамики неавтономных непрерывных ФДУ и выводом на этой основе свойства квазиинвариантности [8, 17] получены новые эффективные методы исследования устойчивости с применением функционалов Ляпунова [8, 54, 62].

Во втором параграфе первой главы проводится построение топологической динамики неавтономных ФДУ с разрывной правой частью при конечном запаздывании.

Это построение позволяет развить применение функционалов Ляпунова в задачах устойчивости для указанных уравнений, что излагается в третьем параграфе первой главы.

Исследованиям по управлению системами с учетом запаздывания в структуре обратной связи посвящено сравнительно малое количество работ. Они проводились для линейных уравнений или на основе линейного приближения [10, 20, 27], в автономном случае с применением классической теоремы Ляпунова-Красовского [41]. Развитие прямого метода Ляпунова позволило значительно расширить круг решаемых задач [8, 37, 53, 54, 57, 62, 73, 74].

Ещё более сложной задачей является задача об оптимальной стабилизации нелинейной системы. Для систем, моделируемых обыкновенными дифференциальными уравнениями (ОДУ) помимо рассмотрения линейного приближения, упомянутого выше, предлагались также другие способы решения такого уравнения: для нелинейных систем при малых возмущениях по степеням этих возмущений [32], квазиоптимальной стабилизации для систем с нелинейностью, зависящей от малого параметра [19, 36]. Широкое применение получил предложенный В. В. Румянцевым полуобратный метод [70], состоящий в определении части подынтегральной функции минимизируемого функционала по известной оптимальной функции Ляпунова, являющейся устойчивой функцией Ляпунова для системы без управления. Как развитие полуобратного метода в работах [12, 87] дана постановка задачи о стабилизации невозмущенного движения с гарантированной оценкой качества управления и ее решения на основе функции Ляпунова. Для систем, моделируемых ФДУ основные результаты по оптимальной стабилизации получены в работах А. В. Кима [37].

Во второй главе диссертации представлены результаты по решению задачи стабилизации нелинейных систем с запаздывающей обратной связью. В первом параграфе доказаны теоремы о стабилизации, об оптимальной стабилизации и стабилизации с гарантированной оценкой качества управления. В основе доказательства применение теорем об асимптотической устойчивости из первой главы.

Исследование многих задач о стабилизации движений с учётом запаздывания приводит к уравнению типа Вольтерра. Во втором параграфе второй главы приводятся результаты по решению задачи о стабилизации такой системы.

В третьем параграфе второй главы рассмотрена задача о построении релейного управления с запаздывающей обратной связью для механической системы, движение которой описывается уравнениями Лагранжа второго рода.

Эта задача вызывает в последнее время большой интерес. Содержание этой задачи состоит в следующем: требуется построить такой закон изменения управляющих сил и указать такую область допустимых начальных отклонений, что любая траектория возмущённой управляемой системы с начальной точкой из этой области через конечное время выйдет на номинальную траекторию и будет двигаться вдоль неё, каковы бы ни были возмущения, удовлетворяющие заданным ограничениям. Поставленная задача слежения решена на основе принципа декомпозиции и построении релейных управлений в работах Ф. Л. Черноусько, И. М. Ананьевского и С. А. Решмина [7, 82].

Известен [31] метод решения этой задачи, основанный на теории «замороженных» коэффициентов, который заключается в предположении, что параметры системы и сама отслеживаемая траектория изменяются достаточно медленно, чтобы этим изменением можно было пренебречь. Такой подход, развитый в работах М. С. Ефремова, А. Е. Полякова и В. В. Стрыгина [31, 75], не позволяет решать задачи слежения для механических систем, параметры которых изменяются со временем, и отслеживать быстрые движения таких систем. Кроме того, этот подход накладывает жесткие ограничения на спектр матриц, описывающих механическую систему. В работе [62] задача слежения решена с помощью построения вектор-функции Ляпунова с компонентами вида прямоугольной векторной нормы. Отметим, что методика работы [62] может быть применена к исследованию механических систем, моделируемых нестационарными нелинейными уравнениями, без наложения жестких ограничений на скорость изменения параметров системы и отслеживаемой траектории. Методика работы [31] использована в [30] для стабилизации углового положения космического аппарата с упругими динамическими элементами, обладающими диссипативными свойствами. Эффективные способы построения управления в системе с запаздывающей обратной связью на основе функционалов Ляпунова предложены в работах [53, 54, 56, 57].

Большое внимание методам управления нелинейными механическими системами уделяется в исследованиях научной школы академика Ф. Л. Черно-усько. Особое внимание при этом уделяется декомпозиции сложных управляемых систем, построению управлений при неизвестных инерционных параметрах, с учетом ограничений на управление и фазовые координаты, с приведением в терминальное состояние за конечный промежуток времени, динамике процесса управления. Определенная часть этих исследований подытожена в монографии [82]. В ней излагаются два подхода к декомпозиции управления системой. Первый подход основан на построении синтезирующего управления, исходя из решения задачи об оптимальном управлении одномерной механической системой в соответствии с принципом максимума Понтряги-на [63]. Другой подход основан на последовательном построении управления, которое вначале переводит движения всей системы за конечное время в заданную область, а затем из нее в терминальное состояние. Представлен алгоритм построения кусочно-линейной управляемой системы с помощью функции Ляпунова. Рассмотрены также другие общие и конкретные задачи. Приведение управляемой системы в заданное терминальное состояние невозможно при непрерывных обратных связях. Предлагается использовать для этого разрывные управления вида 11 — —/л ¦ sign (.

Третья глава посвящена разработанному программному комплексу tosp. В первом параграфе даётся подробное описание tosp, приводятся диаграммы статической структуры компонентов программы, грамматика синтаксического анализатора, описание графического интерфейса, а также формат файлов, используемых для хранения систем.

Во втором параграфе третьей главы описывается модуль численных методов в tosp. Приводится диаграмма статической структуры классов численных методов. Излагается проведённая модификация метода Дормана-Принса 5(4), которая адаптирует метод для анализа систем с разрывными правыми частями.

В третьем параграфе третьей главы проведено сравнение tosp с другими программами по возможностям численного моделирования запаздывающих функционально-дифференциальных уравнений, в том числе с разрывной правой частью. Представлены компьютерная модель манипуляционного робота в виде двухзвенного механизма, а также компьютерное моделирование процесса стабилизации программного поступательно-вращательного движения твёрдого тела, выполненные с помощью программного комплекса tosp.

Апробация работы. Основные результаты диссертации докладывались на следующих конференциях:

1. XV Международная конференция «Моделирование динамических систем и исследование устойчивости». Киев, Украина. 25−27 мая, 2011 г.

2. Всероссийский семинар «Аналитическая механика, устойчивость и управление движением». Ульяновск. 15−18 июня, 2010 г.

3. Всероссийский семинар «Аналитическая механика, устойчивость и управление движением». Ульяновск. 9−12 июня, 2011 г.

4. Семинары кафедры Информационной безопасности и теории управления Ульяновского государственного университета.

Публикации. Материалы диссертации опубликованы в 8 [4, 26, 51, 5861, 83] печатных работах, из них 4 [26, 51, 58, 61] статьи в рецензируемых журналах из списка ВАК.

Личный вклад автора. Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Подготовка к публикации полученных результатов проводилась совместно с соавторами, причем вклад диссертанта был определяющим. Все представленные в диссертации результаты получены лично автором.

Структура и объем диссертации

Диссертация состоит из введения, 3 глав, заключения, приложения и библиографии. Текст диссертации изложен на 246 страницах, из них 106 страниц основного текста и 140 страниц приложения. Диссертация содержит 32 рисунка и 92 библиографические ссылки.

Основные результаты, полученные в диссертационной работе:

1. Разработана математическая модель управляемой системы с разрывным управлением при учете запаздывания в структуре обратной связи. Моделирование проведено посредством построения функционально-дифференциальных уравнений с разрывной правой частью.

2. Дано развитие качественной теории функционально-дифференциальных уравнений с разрывной правой частью. Описана динамика таких уравнений, получены новые результаты по методу функционалов Ляпунова в исследовании их устойчивости. Соответствующие результаты развивают ряд известных результатов [8, 14−16, 41, 44, 53−57, 71].

3. Решены задачи по оценке качества управления управляемых систем с запаздыванием. Разработаны алгоритмы построения стабилизирующих управлений запаздывающего типа, в том числе, с оценкой качества управления, для системы, моделируемой уравнением типа Вольтерра, для механической системы, моделируемой уравнениями Лагранжа.

4. Разработан комплекс программ для численного моделирования систем, описываемых запаздывающими функционально-дифференциальными уравнениями.

5. Проведено компьютерное моделирование процесса управления с учетом запаздывания в структуре обратной связи для следующих систем:

• некоторых моделей ядерного реактора;

• робототехнических систем в виде двухзвенного манипулятора и свободного твердого тела;

• взаимодействие двух экономических агентов.

Заключение

.

Показать весь текст

Список литературы

  1. М. А., Пятницкий Е. С. Основы теории разрывных систем. 1.// Автоматика и телемеханика. 1974. № 7. С. 33−47.
  2. М. А., Пятницкий Е. С. Основы теории разрывных систем. II // Автоматика и телемеханика. 1974. № 8. С. 39−61.
  3. В. В., Болтянский В. Г., Лемак С. С. и др. Оптимизация динамики управляемых систем. М.: МГУ, 2000. 303 с.
  4. Анализ и оптимальный синтез на ЭВМ систем управления, Под ред. А. А. Воронова, И. А. Орурка. М.: Наука, 1984. 344 с.
  5. И. М., Колмановский В. Б. О стабилизации некоторых регулируемых систем с последействием // Автоматика и телемеханика. 1989. № 9. С. 34−42.
  6. И. М., Решмин С. А. Метод декомпозиции в задаче об отслеживании траекторий механических систем // Известия РАН. Теория и системы управления. 2002. № 5. С. 25−32.
  7. А. С. Устойчивость неавтономных функционально-дифференциальных уравнений. Ульяновск: УлГУ, 2005. 328 с. ISBN: 5−88 866−192−9.
  8. А. С. Метод функционалов Ляпунова в задаче об устойчивости функционально-дифференциальных уравнений // Автоматика и телемеханика. 2009. № 9. С. 4−55.
  9. А. С., Артемова А. О., Габунов Р. С. О математическом моделировании релейных управлений // Обозрение прикладной и промышленной математики. 2011. Т. 18, № 1. С. 99−100.
  10. А. С., Безгласный С. П. О стабилизации управляемых систем с гарантированной оценкой качества управления // ПММ. 1997. Т. 61, № 1. С. 44−51.
  11. А. С., Дмитриева О. Г., Петровичева Ю. В. Об устойчивости нулевого решения системы с разрывной правой частью // Научно-технический вестник Поволжья. 2011. № 1. С. 15−21.
  12. А. С., Павликов С. В. Незнакоопределенные функционалы Ляпунова в задаче об устойчивости функционально-дифференциальных уравнений с конечным запаздыванием // Механика твёрдого тела. 2004. № 34. С. 112−118.
  13. А. С., Румянцев В. В. О стабилизации движения нестационарной управляемой системы // Автоматика и телемеханика. 2007. № 8. С. 18−31.
  14. А. С., Хусанов Д. X. К методу функционалов Ляпунова в задаче об устойчивости и неустойчивости // Дифференциальные уравнения. 1998. Т. 34, № 7. С. 876−885.
  15. А. С., Хусанов Д. X. Предельные уравнения в задаче об устойчивости функционально-дифференциального уравнения // Дифференциальные уравнения. 1998. Т. 34, № 4. С. 435−440.
  16. Е. А., Колмановский Е. В., Шайхет Л. Е. Управление системами с последействием. М.: Наука, 1992. 336 с.
  17. В. Н., Колмановский В. В., Носов В. Р. Математическая теория конструирования систем управления. М.: Высшая школа, 2003. 615 с.
  18. Н. В., Габасов Р., Кириллова Ф. М. Синтез оптимальной обратной связи и стабилизация систем с запаздыванием по управлению // ПММ. 1998. Т. 62, № 1. С. 139−150.
  19. Р., Кук К. Дифференциально-разностные уравнения. М.: Мир, 1967. 548 с.
  20. Ю. А., Юнгер И. Б. Автоматические системы с разрывным управлением. Л.: Энергоатомиздат. Ленингр. отделение, 1986. 168 с.
  21. В. Математическая теория борьбы за существование. М.: Наука, 1976. 288 с.
  22. В. Д. Методы исследования устойчивости ядерных реакторов. М.: Атомиз-дат, 1977. 296 с.
  23. О. Г., Шепелев Г. А. О методах стабилизации движений управляемых механических систем // Вестник Нижегородского университета им. Н. И. Лобачевского. 2011. № 4 Часть 2. С. 122−123.
  24. Ю. Ф. К стабилизации линейных автономных систем дифференциальных уравнений с распределенным запаздыванием // Автоматика и телемеханика. 2007. № 10. С. 92−105.
  25. С. В. Избранные труды по теории управления. М.: Наука, 2006. 450 с. ISBN: 5−02−35 338−8.
  26. С. В., Коровин С. К. Новые типы обратной связи. Управление при неопределённости. М.: Наука, 1997. 352 с.
  27. М. С. Алгоритм активной стабилизации космического аппарата с вязкоупру-гими элементами в условиях неопределенности // ПММ. 2006. Т. 70, № 5. С. 801−812.
  28. М. С., Поляков А. Е., Стрыгин В. В. Новый алгоритм слежения для некоторых механических систем // ПММ. 2005. Т. 69, № 1. С. 30−41.
  29. В. И. Проблема устойчивости процессов управления. 2-е изд. СПб.: НИИ химии СПбГУ, 2001. 353 с. ISBN: 5−7997−0307−3.
  30. А. П. О свойствах решений основной задачи динамики в системах // ПММ. 2005. Т. 69, № 3. С. 372−385.
  31. А. П. Об устойчивости равновесия в системах с трением // ПММ. 2007. Т. 71, № 3. С. 427−438.
  32. Р., Фалб П., Арбиб М. Очерки по математической теории систем. М.: Мир, 1971. 400 с.
  33. В. А. Параметрическая стабилизация нелинейных систем управления с фазовыми ограничениями // Автоматика и телемеханика. 1996. по. 10. Рр. 65−71.
  34. Ким А. В. Прямой метод Ляпунова в теории устойчивости систем с последействием. Екатеринбург: Изд-во Уральского ун-та, 1992. 144 с.
  35. Ким А. В., Пименов В. Г. i-гладкий анализ и численные методы решения функционально-дифференциальных уравнений. М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2004. 256 с. ISBN: 5−93 972−379−9.
  36. В. В., Носов В. Р. Устойчивость и периодические режимы регулируемых систем с последействием. М.: Наука, 1981. 448 с.
  37. А. А., Буков В. Н., Шендрик В. С. Универсальные алгоритмы оптимального управления непрерывными процессами. М.: Наука, 1977. 272 с.
  38. Н. Н. Некоторые задачи теории устойчивости движения. М.: Физматгиз, 1959. 211 с.
  39. Н. Н. Проблемы стабилизации управляемых движений // Малкин И. Г. Теория устойчивости движения. Доп. 4. М.: Наука, 1966. С. 475−514.
  40. Н. Н. Теория управления движением. М.: Наука, 1968. 476 с.
  41. Н. Н., Осипов Ю. С. О стабилизации движений управляемого объекта с запаздыванием в системе регулирования // Известия академии наук СССР. Техническая кибернетика. 1963. № 6. С. 3−15.
  42. В. М., Лычак М. М. Синтез систем автоматического управления с помощью функций Ляпунова. М.: Наука, 1977. 400 с.
  43. А. М. Динамика полета и управления. М.: Наука, 1969. 360 с.
  44. А. М. Избранные труды: работы по теории устойчивости. М.: Наука, 2007. 574 с.
  45. И. Г. Теория устойчивости движения. М.: Наука, 1966. 530 с.
  46. В. И. Устойчивость движений манипуляционных роботов в режиме декомпозиции // Автоматика и телемеханика. 1989. № 3. С. 33−44.
  47. В. И. Универсальные законы управления механическими системами. М.: МАКС Пресс, 2001. 252 с.
  48. А. А., Шепелев Г. А. О динамической устойчивости вязкоупругих элементов // Научно-технический вестник Поволжья. 2011. № 4. С. 71−76.
  49. А. Д. Общая теория дифференциальных уравнений с запаздывающим аргументом // Успехи мат. наук. 1949. Т. 4, № 5. С. 99−141.
  50. С. В. О стабилизации движения управляемой системы с запаздыванием // Механика твёрдого тела. 2005. № 35. С. 212−216.
  51. C.B. Метод функционалов Ляпунова в задачах устойчивости. Набережные Челны: Изд-во института управления, 2006. 264 с. ISBN: 5−93 388−032−9.
  52. С. В. Знакопостоянные функционалы Ляпунова в задаче об устойчивости функционально-дифференциального уравнения // ПММ. 2007. Т. 71, № 3. С. 377−388.
  53. С. В. Метод знакопостоянных функционалов Ляпунова в исследовании устойчивости функционально-дифференциальных уравнений // Вестник ОГУ. 2007. № 3. С. 158−162.
  54. С. В. О стабилизации движений управляемых систем с запаздывающим регулятором // Доклады Академии Наук. 2007. Т. 412, № 2. С. 176−178.
  55. С. В., Шепелев Г. А. К задаче об оптимальной стабилизации управляемых систем // Труды Института системного анализа Российской академии наук (ИСА РАН). Динамика неоднородных систем. 2010. Т. 50(1). С. 26−35.
  56. С. В., Шепелев Г. А. Метод функционалов Ляпунова в задаче об устойчивости // Ученые записки Ульяновского государственного университета. Серия Математика и информационные технологии. 2010. № 1(2). С. 22−33.
  57. С. В., Шепелев Г. А. К методу функционалов Ляпунова в задаче об устойчивости функционально-дифференциальных уравнений с разрывной правой частью // Научно-технический вестник Поволжья. 2011. № 1. С. 163−165.
  58. О. А. Метод сравнения в задачах устойчивости и управления движениями механических систем. Ульяновск: Изд-во УлГУ, 2009. 253 с.
  59. Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов. 4-е изд. М.: Наука, 1983. 392 с.
  60. А. В. Динамические модели с запаздыванием и их приложения в экономике и инженерии: Учебное пособие. СПб.: Издательство «Лань», 2010. 192 с. ISBN: 978−5-8114−0931−0.
  61. Е. С. Синтез управления манипуляционными роботами на принципе декомпозиции // Известия АН СССР. Техническая кибернетика. 1987. № 3. С. 92−99.
  62. Е. С. Принцип декомпозиции в управлении механическими системами // ДАН СССР. 1988. Т. 300, № 2. С. 300−303.
  63. Е. С. Синтез иерархических систем управления механическими объектами на принципе декомпозиции. I // Автоматика и телемеханика. 1989. № 1. С. 87−99.
  64. Е. С. Синтез иерархических систем управления механическими объектами на принципе декомпозиции. I // Автоматика и телемеханика. 1989. № 2. С. 57−71.
  65. . С. Устойчивость эредитарных систем. М.: Наука, 1988. ISBN: 5−02−6 601-Х.
  66. В. В. Об оптимальной стабилизации управляемых систем // ПММ. 1970. № 3. С. 440−456.
  67. В. В., Андреев А. С. О стабилизации движения нестационарной управляемой системы // Доклады Академии наук. 2007. Т. 416, № 5. С. 627−629.
  68. Руш Н., Абетс П., Лалуа М. Прямой метод Ляпунова в теории устойчивости, Под ред.
  69. B. В. Румянцева. М.: Мир, 1980. 300 с.
  70. Н. О. Глобальная асимптотическая устойчивость и стабилизация в нелинейной каскадной системе с последействием // Изв. вузов. Математика. 2008. N2 11.1. C. 208−223.
  71. Н. О. Локальная и полуглобальная стабилизация в каскаде с запаздыванием // Автоматика и телемеханика. 2008. № 6. С. 70−81.
  72. В. В., Фридман Л. М., Поляков А. Е. Локальная стабилизация релейных систем с запаздыванием // Доклады Академии Наук. 2001. Т. 379, № 5. С. 603−605.
  73. В. И. Скользящие режимы в задачах оптимизации и управления. М.: Наука, 1981. 368 с.
  74. А. Ф. Дифференциальные уравнения с разрывной правой частью // Матем. сборн. 1960. Т. 51(93), № 1. С. 99−128.
  75. А. Ф. Дифференциальные уравнения с разрывной правой частью. М.: Физ-матгиз, 1985. 224 с.
  76. Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежёсткие задачи. М.: Мир, 1990. 512 с. ISBN: 5−03−1 179-Х.
  77. X. К. Нелинейные системы. М.-Ижевск: НИЦ «РХД», 2009. 832 с. ISBN: 978−5-93 972−724−2.
  78. Д. Теория функционально-дифференциальных уравнений. М.: Мир, 1984. 421 с.
  79. Ф. Л., Ананьевский И. М., Решмин С. А. Методы управления нелинейными механическими системами. М.: ФИЗМАТЛИТ, 2006. 328 с.
  80. А. А. Обобщённый прямой метод Ляпунова для систем с распределёнными параметрами. М.: Наука, 1990. 317 с. ISBN: 5−02−14 301−4.
  81. Е. И. Теория автоматического управления. 3-е изд. СПб.: БХВ-Петербург, 2007. 560 с.
  82. В. А. Периодические и почти периодические предельные режимы регулируемых систем с несколькими, вообще говоря, разрывными нелинейностями // ДАН. 1966. Т. 171, № 3. С. 533−536.
  83. Chang S., Peng Т. Adaptive guaranteed cost control of systems with uncertain parameters // IEEE Transactions on automatic control. 1972. Vol. 17. Pp. 474−483.
  84. Wolfram Research, Inc. Mathematica overview. Дата последнего обращения 24.10.2011. URL: http: //reference .wolfram, com/mathematica/tutorial/ NDSolveDelayDifferentialEquations.html.
  85. GNU. Octave: odepkg. Function reference. Дата последнего обращения 24.10.2011. URL: http://octave.sourceforge.net/odepkg/overview.html.
  86. Plis A. Measurable orientor fields // Bull. Acad. Polon. sci., ser. math., astr., phys. 1966. Vol. 13, no. 8. Pp. 565−569.
  87. The MathWorks, Inc. R2011b Documentation. MATLAB, 2011. Дата последнего обращения 24.10.2011. URL: http://www.mathworks.com/help/techdoc/ref/dde23. html.
  88. Turowicz A. Remarque sur la definition des quasitrajectoires d’un system de commande non-lineaire // Bull. Acad. Polon. sci., ser. math., astr., phys. 1963. Vol. 11, no. 6. Pp. 367−368.
Заполнить форму текущей работой