Развитие и применение методов расчета термодинамических свойств газообразных соединений
Диссертация
Рассчитанные значения термодинамических свойств использованы для выявления закономерных взаимосвязей между строением и свойствами органических соединений. На основе установленных зависимостей разработаны структурно-аддитивные методы для прогнозирования термодинамических свойств через их аддитивные составляющие. Очевидно, что рассчитать термодинамические свойства всех практически важных соединений… Читать ещё >
Список литературы
- Грязное В.М., Фрост А. В. Статистические методы расчета термодинамических величин. — М: Моск. отд. ВХО им. Д. И. Менделеева, 1949.-152 с.
- Годнее КН. Вычисление термодинамических функций по молекулярным данным. М.: Гостехтеориздат, 1956. — 419 с.
- Смирнова Н.А. Методы статистической термодинамики в физической химии. -М.: Высш. шк., 1982.-456 с.
- Кабо Г. Я., Розанов Г. Н., Френкель M.JI. Термодинамика и равновесия изомеров. Минск: Университетское, 1986. — 224 с.
- Ягодовский В.Д. Статистическая термодинамика в физической химии. М.: Бином. Лаборатория знаний, 2005. — 495 с.
- Ландау Л.Д., Лившиц Е. М. Статистическая физика. М.: Наука, 1964. — 568 с.
- Термодинамические свойства индивидуальных веществ. / Гурвич Л. В., Вещ КВ., Медведев В. А.,. Дорофеева О. В., Демидова М.С.- под ред. Глушко В. П. М.: Наука, 1978. — Т. I, Кн. 1.- 496 е.- Кн. 2.- 328 с.
- Термодинамические свойства индивидуальных веществ. / Гурвич Л. В., Вещ КВ., Медведев В. А.,. Дорофеева О. В. и др.- под ред. Глушко В. П. М.: Наука, 1979. — Т. II, Кн. 1 — 440 е.- Кн. 2, — 344 с.
- Термодинамические свойства индивидуальных веществ. / Гурвич Л. В., Вейц КВ., Медведев В. А.,. Дорофеева О. В., и др.- под ред. Глушко В. П. М.: Наука, 1981. — Т. III, Кн. 1.- 472 е.- Кн. 2.- 400 с.
- Термодинамические свойства индивидуальных веществ. / Гурвич Л. В., Вейц КВ., Медведев В. А.,. Дорофеева О. В., и др.- под ред. Глушко В. П. М.: Наука, 1982. — Т, IV. Кн. 1.- 623 е.- Кн. 2.- 560 с.
- Pitzer K.S. Thermodynamics of gaseous hydrocarbons: ethane, ethylene, propane, propylene, «-butane, isobutene, 1-butene, cis and trans 2-butenes, isobutene, and neopentane (tetramethylmethane). // J. Chem. Phys. 1937. — V. 5, № 6. — P. 473 479.
- Aston J.G., Szasz G., Woolley H. W., Brickwedde F.G. Thermodynamic properties of gaseous 1,3-butadiene and the normal butenes above 25 °C equilibria in the system 1,3-butadiene, „-butenes, and „-butane. // J. Chem. Phys. 1946. — V. 14, № 2. — P. 67−79.
- Pitzer K.S., Gwinn W.G. Energy levels and thermodynamic functions for molecules with internal rotation. I. Rigid frame with attached tops. // J. Chem. Phys. 1942. -V. 10,№ 7.-P. 428−440.
- Kopuui B.C. Новый метод расчета термодинамических функций молекул с внутренним вращением. // Докл. АН СССР. 1975. — Т. 229, № з. с. 659 662.
- Yorish V.S. The partition function of free internal rotation. Combined direct and transformed expressions numerical study. // Chem. Phys. Lett. 1994. — V. 219, № 3−4. — P. 279−282.
- Новиков В.П. Конформация молекул и динамическая модель в газовой электронографии: дис. докт. хим. наук. М., 2001. — 370 с.
- Pitzer K.S. Energy levels and thermodynamic functions for molecules with internal rotation. II. Unsymmetrical tops attached to a rigid frame. // J. Chem. Phys. -1946.-V. 14, № 4.-P. 239−243.
- Dorofeeva O.V., Iorish V.S., Novikov V.P., Neumann D.B. NIST-JANAF Thermochemical tables. II. Three molecules related to atmospheric chemistry: HN03, H2SO4, and H202. // J. Phys. Chem. Ref. Data. 2003. — V. 32, № 2. — P. 879−901.
- Dorofeeva O.V., Novikov V.P., Neumann D.B. NIST-JANAF Thermochemical Tables. I. Ten organic molecules related to atmospheric chemistry. // J. Phys. Chem. Ref. Data. -2001. -V. 30, № 2. P. 475−513.
- Dorofeeva O.V., Tolmach P.I. Estimation of the thermodynamic properties of nitroguanidine, hexahydro-l, 3,5-trinitro-l, 3,5-triazine and octahydro-1,3,5,7-tetranitro-l, 3,5,7-tetrazocine in the gas phase. // Thermochim. Acta. 1994.- V. 240.-P. 47−66.
- Дорофеева О.В., Моисеева Н. Ф. Стандартные термодинамические свойства нитробензола в состоянии идеального газа. // Ж. физ. химии. 2008. — Т. 82, № 1. — С. 151−153.
- Thermodynamic properties of individual substances. / Gurvich L. V., Veyts I. V., Medvedev V.A.,. Dorofeeva O.V., Demidova M.S.- eds. Gurvich L.V., Veytz I.V., Alcock C.B. New York: Hemisphere, 1989. -V. 1, Pt. I. — 551 p.- Pt. II. — 340 p.
- Thermodynamic properties of individual substances. / Gurvich L.V., Veyts I.V., Medvedev V.A.,. Dorofeeva O.V. et al. eds. Gurvich L.V., Veytz I.V., Alcock C.B. New York: Hemisphere, 1990. -V. 2, Pt. I. — 569 p.- Pt. II. — 372 p.
- Thermodynamic properties of individual substances. / Gurvich L.V., Veyts I.V., Medvedev V.A.,. Dorofeeva O.V. et al. eds. Gurvich L.V., Veytz I.V., Alcock C.B. New York: CRC Press, 1993. — V. 3, Pt. I. — 707 p.- Pt. II. — 448 p.
- Gurvich L.V., Iorish VS., Yungman VS., Dorofeeva O. V Thermodynamic properties as a function of temperature. // In: CRC Handbook of Chemistry and Physics- ed. D.R.Lide, 76lh Edition, 1995−1996. New York: CRC Press, 1995. P. 5−48−5-71.
- Dorofeeva О. V., Gurvich L. V., Jorish VS. Thermodynamic properties of twenty one monocyclic hydrocarbons. // J. Phys. Chem. Ref. Data. -1986 V. 15, № 2. -P. 437−464.
- Dorofeeva O.V. Ideal gas thermodynamic properties of oxygen heterocyclic compounds. Part 1. Three-membered, four-membered and five-membered rings. // Thermochim. Acta. 1992 — V. 194. — P. 9−46.
- Dorofeeva O.V. Ideal gas thermodynamic properties of oxygen heterocyclic compounds. Part 2. Six-membered, seven-membered and eight-membered rings. // Thermochim. Acta.- 1992.-V. 200.-P. 121−150.
- Dorofeeva O. V, Gurvich L. V Ideal gas thermodynamic properties of sulphur heterocyclic compounds. // J. Phys. Chem. Ref. Data. 1995. — V. 24, № 3. — P. 1351−1375.
- Вилков JI.В., Мастрюков B.C., Дорофеева О. В., Зарипов Н. М. О закономерностях в конформациях моноциклических свободных молекул. // Ж. структ. химии. 1985. — Т. 26, № 5. — С. 51−57.
- Kilpatrick J.E., Pitzer K.S., Spitzer R. The thermodynamics and molecular structure of cyclopentane. // J. Am. Chem. Soc. 1947. — V. 69, № 10. — P. 2483−2488.
- Pitzer K.S., Donath W.E. Conformations and strain energy of cyclopentane and its derivatives. //J. Am. Chem. Soc. 1959. -V. 81, № 13. -P. 3213−3218.
- Mastryukov VS., Dorofeeva O. V, Vilkov L.V. Electron diffraction study of 3-methyl-diaziridine. // J. Chem. Soc. Chem. Comm. 1974. — № 10 — P. 397b.
- Mastryukov VS., Dorofeeva O. V, Vilkov L. V, Golubinskii A. V An electron diffraction study of 3-methyldiaziridine and 1,2-dimethyl-diaziridine. // J. Mol. Struct.-1976.-V. 32,№ l.-P. 161−172.
- Dorofeeva O. V, Mastryukov VS., Vilkov L. V, Hargittai I. Ring puckering of azetidine: an electron diffraction study. // J. Chem. Soc. Chem. Comm. 1973. -№ 20.-P. 772a.
- Мастрюков B.C., Вилков Л. В., Дорофеева О. В. Нарушение локальной симметрии групп, образующих четырехчленные циклы. // Ж. структ. химии. -1975.-Т. 16, № 5.-С. 922−923.
- Mastryukov VS., Dorofeeva O. V, Vilkov L. V, Hargittai I. Electron diffraction determination of the vapor phase molecular structure of azetidine, (CH2)3NH. // J. Mol. Struct. 1976. — V. 34. — P. 99−112.
- Shen Q., Dorofeeva O.V., Mastryukov V.S., Almenningen A. Molecular structure of methylenecyclobutane, C5H8, as determined by combined analysis of electron diffraction and microwave data. // J. Mol. Struct. 1991. — V. 246. — P. 237−245.
- Mastryukov V.S., Osina E.L., Dorofeeva O.V., Popik M.V., Vilkov L.V., Belikova N.A. An electron diffraction study of the molecular structure of gaseous bicyclo3.3.1 .nonane. // J. Mol. Struct. 1979. — V. 52. — P. 211−224.
- Dorofeeva O.V., Mastryukov V.S., Allinger N.L., Almenningen A. The molecular structure and conformation of cyclooctane as determined by electron diffraction and molecular mechanics calculations. // J. Phys. Chem. 1985. — V. 89, № 2. — P. 252−257.
- Дорофеева O.B., Мастрюков B.C., Сиам К., Юбэнк Дж. Д., Аллинжер H.JI., Шефер Л. О конформационном составе циклооктана, CsHie, в газовой фазе. // Ж. структ. химии. 1990. — Т. 31, № 1. — С. 167−169.
- Ruehrwein R.A., Powell Т.М. The heat capacity, vapor pressure, heats of fusion and vaporization of cyclopropane. Entropy and density of the gas. // J. Am. Chem. Soc. -1946.-V. 68,№ 6.-P. 1063−1066.
- Kistiakowsky G.B., Rice W. W. Gaseous heat capacities. II. // J. Chem. Phys. 1940. -V. 8, № 8.-P. 610−618.
- Giauque W.F., Gordon J. The entropy of ethylene oxide. Heat capacity from 14 to 285 K. Vapor pressure. Heats of fusion and vaporization. // J. Am. Chem. Soc. -1949. -V. 71, № 6. P. 2176−2182.
- Chao J., Hall K.R., Marsh K.N., Wilhoit R.C. Thermodynamic properties of key organic oxygen compounds in the carbon range CI to C4. Part 2, Ideal gas properties. // J. Phys. Chem. Ref. Data. 1986. — V. 15, № 4. — P. 1369−1436.
- Kistiakowsky G.B., Rice W.W. Gaseous heat capacities. III. // J. Chem. Phys. -1940. V. 8, № 8. — P. 618−622.
- Rathjens G. W., Jr., Gwinn W.D. Heat capacities and entropy of cyclobutane. II J. Am. Chem. Soc. 1953. — V. 75, № 22. — P. 5629−5633.
- Стал Д., Вестрам Э&bdquo- Зинке Г. Химическая термодинамика органических соединений. -М: Мир, 1971. 807 с.
- Hossenlopp J. A., Scott D.W. Vapor heat capacities and enthalpies of vaporization of six organic compounds. // J. Chem. Thermodyn. 1981. — V. 13, № 5. — P. 405 414.
- Takabayashi F., Kambara H., Kuchitsu K. Structure and puckering potential of cyclobutane studied by gas electron diffraction. // 7lh Austin symposium on gas molecular structure, Austin, Texas, USA. 1978. — P. 63−64.
- Miller F.A., Capwell R.J. The ring-puckering vibration of cyclobutane and cyclobutane-^ in their gas phase Raman and infrared spectra. // Spectrochim. Acta. Part A. 1971. — V. 27, № 7. — P. 947−956.
- Miller F.A., Capwell R.J., Lord R.C., Rea D.G. Infrared and Raman spectra of cyclobutane and cyclobutane-^-11 Spectrochim. Acta. Part A. 1972. — V. 28, № 4.-P. 603−618.
- Rathjens G.W., Jr., Freeman N.K., Gwinn W.D., Pitzer K. Infrared absorption spectra, structure and thermodynamic properties of cyclobutane. // J. Am. Chem. Soc. 1953. — V. 75, № 22. — P. 5634−5642.
- Spitzer R., Pitzer K.S. The heat capacity of gaseous cyclopentane, cyclohexane and methylcyclohexane. // J. Am. Chem. Soc. 1946. — V. 68, № 12. — P. 2537−2538.
- Beckett G.W., Freeman N.K., Pitzer K.S. The thermodynamic properties and molecular structure of cyclopentene and cyclohexene. // J. Am. Chem. Soc. 1948. -V. 70, № 12.-P. 4227−4230.
- Grant C.J., Walsh R, Reversibility in the gas-phase decomposition of cyclopentene. The entropy of cyclopentadiene. // J. Chem. Soc. D: Chem. Comm. 1969. -№ 12. -P. 667b-668.
- Lebedev B.V., Rabinovich I.B., Milov V.I., Lityagov V.Y. Thermodynamic properties of tetrahydrofuran from 8 to 322 K. // J. Chem. Thermodyn. 1978. — V. 10, № 4. -P. 321−329.
- Guthrie G.B., Jr., Scott D. W, Hubbard W.N., Katz С., McCullough J.P., Gross M.E., Williamson K.D., Waddington G. Thermodynamic properties of furan. // J. Am. Chem. Soc. 1952. -V. 74, № 18. — P. 4662−4669.
- Clegg G.A., Melia T.P. Thermodynamics of polymerization of heterocyclic compounds part V. The heat capacity, entropy, enthalpy and free energy of 1,3-dioxolan and poly-l, 3-dioxolan. // Polymer. 1969. — V. 10. — P. 912−922.
- Waddington G“ Knowlton J.W., Scott D.W., Oliver G.D., ToddS.S., Hubbard W.N., Smith J.C., Huffman H.V. Thermodynamic properties of thiophene. // J. Am. Chem. Soc. 1949. — V. 71, № 3. — P. 797−808.
- Benson S.W. Thermochemical Kinetics, Second Ed. New York: Wiley, 1976. -320 p. (имеется перевод на русский язык предыдущего издания: Бенсон С. Термохимическая кинетика. — М.: Мир, 1971. — 308 с.)
- Beckett G.W., Pitzer K.S., Spitzer R. The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes. // J. Am. Chem. Soc. 1947. — V. 69, № 10. — P. 24 882 495.
- Beckett G.W., Freeman N.K., Pitzer K.S. The thermodynamic properties and molecular structure of cyclopentene and cyclohexene. // J. Am. Chem. Soc. 1948. — V. 70, № 12. — P. 4227−4230.
- McCullough J.P., Finke H.L., Hubbard W.N., Good W.D., Pennington R.E., Messerly J.F., Waddington G. The chemical thermodynamic properties of thiacyclohexane from 0 to 1000 K. // J. Am. Chem. Soc. 1954. — V. 76, № 10. -P. 2661−2669.
- Dillen J., Geise H.J. The molecular structure of cycloheptane: An electron diffraction study. // J. Chem. Phys. 1979. — V. 70, № 1. — P. 425−428.
- Dorofeeva O.V., Gurvich L.V., Mastryukov V.S. On conformations of cycloheptane and cyclooctane in the gas phase. // J. Mol. Struct. 1985. — V. 129. — P. 165−168.
- Clegg G.A., Melia Т.Р. Thermodynamics of polymerization of heterocyclic compounds: Part 6. The heat capacity, entropy, enthalpy and free energy of 1,3-dioxepan and poly-l, 3-dioxepan. // Polymer. 1970. — V. 11, № 5. — P. 245−252.
- Pakes P.W., Rounds T.C., Strauss H.L. Conformations of cyclooctane and some related oxocanes. // J. Phys. Chem. 1981. — V. 85, № 17. — P. 2469−2475.
- Scott D.W., Gross M.E., Oliver G.D., Huffman H.M. Cyclooctatetraene: low-temperature heat capacity, heat of fusion, heat of vaporization, vapor pressure and entropy. // J. Am. Chem. Soc. 1949. — V. 71, № 5. — P. 1634−1636.
- Clegg G.A., Melia T.P. Thermodynamics of polymerization of heterocyclic compounds. Part III. The heat capacity, entropy, enthalpy and free energy of tetroxan. // Makromol. Chem. 1969. — V. 123. — P. 184−193.
- Lay Т.Н., Yamada Т., Tsai P.-L., Bozzelli J.W. Thermodynamic parameters and group additivity ring corrections for three- to six-membered oxygen heterocyclic hydrocarbons. // J. Phys. Chem. A. 1997. — V. 101, № 13. — P. 2471−2477.
- Snyder R.G., Schactschneider J.H. A valence force field for saturated hydrocarbons. // Spectrochim. Acta.- 1965. -V. 21, № 1. -P. 169−195.
- Neto N., Di Lauro C., Castellucci E., Califano S. Vibrational assignment and valence force field of cyclohexene and cyclohexene-dio. I I Spectrochim. Acta. Part A. 1967. — V. 23, № 6. — P. 1763−1774.
- Neto N“ Di Lauro C., Califano S. Infrared and Raman spectra, normal coordinate analysis and conformation of cycloheptene. // Spectrochim. Acta. Part A. 1970. -V. 26, № 7.-P. 1489−1501.
- Di Lauro C» Neto N., Califano S. Vibrational spectrum and normal-mode analysis of 1,3- cyclohexadiene. // J. Mol. Struct. 1969. — V. 3, № 3. — P. 219−226.
- Ansmann A., Schrader B. Raman and infrared spectra, normal coordinate analysis and conformation of 1,3-cycloheptadiene. // J. Raman Spectrosc. 1976. — V. 5, № 3.-P. 281−293.
- Новиков В.П., Малышев A.M. Программа для уточнения валентно-силового поля молекул по методу наименьших квадратов. // Ж. прикл. спектр. 1980. -Т. 33, № 3. — С. 545−549.
- Dorofeeva O.V., Gurvich L.V. Thermodynamic properties of linear carbon chain molecules with conjugated triple bonds. Part 2. Free radicals CnH (n = 2−12), and CnN (n = 2−11). // Thermochim. Acta. 1992.- V. 197, № 1. — P. 53−68.
- Murakami A., Kawaguchi K., Saito S. A quantum chemical calculation of the hexatriynyl radical. //Publ. Astron. Soc. Japan. 1987-V. 39, № 1. — P. 189−192.
- Pauzat F., Ellinger Y. The lowest two electronic states of the hexatriynyl radical: C6H. // Astron. Astrophys. 1989.- V. 216, № 1−2. — P. 305−309.
- Stein S.E., Golden D.M., Benson S.W. Predictive scheme for thermochemical properties of polycyclic aromatic hydrocarbons. // J. Phys. Chem. 1977. — V. 81, № 4.-P. 314−317.
- Shaw R., Golden D.M., Benson S. W. Thermochemistry of some six-membered cyclic and polycyclic compounds related to coal. // J. Phys. Chem. 1977. — V. 81, № 18.-P. 1716−1729.
- Kudchadker S.A., Paranjape P.K., Kudchadker A.P. Chemical thermodynamic properties of coal chemicals: aromatic hydrocarbons. // Proc. 7-th Int. CODATA Conf. (Data Sci. Technol), Kyoto, Japan. 1981. — P. 394−398.
- Chen S.S., Kudchadker S.A., Wilhoit R.C. Thermodynamic properties of normal and deuterated naphthalenes. // J. Phys. Chem. Ref. Data. 1979. — V. 8, № 2. — P. 527 535.
- Kudchadker S.A., Kudchadker A.P., Zwolinski B.J. Chemical thermodynamic properties of anthracene and phenathrene. I I J. Chem. Thermodyn. 1979. — V. 11,№ 11.-P. 1051−1059.
- Smith N.K., Stewart R.C., Jr., Osborn A.G., Scott D.W. Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties. // J. Chem. Thermodyn. 1980. — V. 12, № 10. — P. 919−926.
- Neto N., Scrocco M., Califano S. A simplified valence force field of aromatic hydrocarbons. I Normal coordinate calculations for СбНб, СбОб, СюНв, CioDg, Ci4H10 and C14D10. // Spectrochim. Acta. — 1966. — V. 22, № 12. — P. 1981−1998.
- Ohno К Normal coordinate calculations of benzenoid hydrocarbons: Theoretical models of simplified valence force fields. // J. Mol. Spectrosc. 1978. — V. 72, № 2.-P. 238−251.
- Ohno К. Normal coordinate calculations of benzenoid hydrocarbons: Classification and characterization of aromatic planar vibrations in polyacenes. // J. Mol. Spectrosc. 1979. — V. 77, № 3. — P. 329−348.
- Крайнее Е.П. Колебательные спектры ароматических соединений. XIX. Расчет и интерпретация колебательных спектров нафталина и некоторых дейтеронафталинов. // Опт. спектр. 1964. — Т. 16, № 5. — С. 763−767.
- Крайнее Е.П. Колебательные спектры ароматических соединений. XX. Расчет и интерпретация колебательных спектров антрацена и дейтероантрацена. // Опт. спектр. 1964. — Т. 16, № 6. — С. 984−986.
- Вакке A., Cyvin B.N., Whitmer J.C., Cyvin S.J., Gustavsen J.E., Klaeboe P. Condensed aromatics. Part II. The five-parameter approximation of the in-plane force field of molecular vibrations. // Z. Naturforsch. 1979. — V. 34a, № 5. — P. 579−584.
- Cyvin B.N., Neerland G., Brunvoll J., Cyvin S.J. Condensed aromatics. Part VI. Force-field approximation for the out-of-plane molecular vibrations. // Z. Naturforsch. 1980. — V. A35a, № 7. — P. 731−738.
- Cyvin S.J., Cyvin B.N., Brunvoll J., Whitmer J.C., Klaeboe P. Condensed aromatics. Part XX. Coronene. // Z. Naturforsch. 1982. — V. A37a, № 12. — P. 1359−1368.
- Dorofeeva O.V., Gurvich L.V., Cyvin S.J. On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons. // Thermochim. Acta. 1986, — V. 102.-P. 59−66.
- Дорофеева О.В., Гурвич JI.B. Термодинамические свойства полициклических ароматических углеводородов в газовой фазе. // Препринт № 1−238. М.: ИВТАН, 1988.-48 с.
- Lielmezs J., Bennett F., Jr., McFee D.G. Thermodynamic functions for naphthalene. // Thermochim. Acta. 1981- V. 47, № 3. — P. 287−308.
- Barrow G.W., McClellan A.L. The thermodynamic properties of naphthalene. // J. Am. Chem. Soc. 1951. — V. 73, № 2. — P. 573−575.
- Finke H.L., Messerly J.F., Lee S.H., Osborn A.G., Douslin D.R. Comprehensive thermodynamic studies of seven aromatic hydrocarbons. // J. Chem. Thermodyn. 1977. — V. 9, № 10. — P. 937−956.
- Gong X.-D., Xiao H.-M. Ab initio studies on the structures and thermodynamic functions of phenanthrene and anthracene. // J. Phys. Org. Chem. 1999. — V. 12, № 6.-P. 441−446.
- Дорофеева О.В., Гурвич JI.B. Термодинамические свойства гидрированных производных нафталина, антрацена и фенантрена в газовой фазе. // Препринт № 1−239. М.: ИВТАН, 1988. — 43 с
- Boyd R.H., Sanwal S.N., Shary-Tehrany S., McNally D. The thermochemistry, thermodynamic functions, and molecular structures of some cyclic hydrocarbons. //J. Phys. Chem. 1971. -V. 75, № 9. — P. 1264−1271.
- Miyazawa Т., Pitzer K.S. Thermodynamic functions for gaseous cis- and trans-decalins from 298 to 1000 K. // J. Am. Chem. Soc. 1958. — V. 80, № 1. — P. 6062.
- Lee-Bechtold S.H., Hossenlopp I.A., Scott D.W., Osborn A.G., Good W.D. A comprehensive thermodynamic study of 9,10-dihydrophenanthrene. // J. Chem. Thermodyn. 1979. — V. 11, № 5. — P. 469−482.
- Gammon B.E., Callanan J.E., Hossenlopp I.A., Osborn A.G., Good W.D. II Heat capacity, vapor pressure, and derived thermodynamic properties of octahydroanthracene. // Proc. 8-th Symp. Thermophys. Prop., Gaithersburg, MD, USA.-1982.-P. 402−408.
- Дорофеева O.B., Гурвич JI.B. Термодинамические свойства полициклических ароматических углеводородов, содержащих пятичленные кольца, в газовой фазе. // Препринт № 1−263. М.: ИВТАН, 1989. — 48 с.
- Stein S.E., Barton S.D. Chemical thermodynamics of polyaromatic compounds containing heteroatoms and five-membered rings. // Thermochim. Acta. 1981. -V. 44, № 3.-P. 265−281.
- Bree A., Kydd R.A., Mirsa T.N. A vibrational assignment of acenaphthene. // Spectrochim. Acta. Part A. 1969. — V. 25, № 11. — P. 1815−1829.
- Дорофеева О.В., Гурвич Л. В. Термодинамические свойства полихлорированных дибензо-я-диоксинов и дибензофуранов в газовой фазе. // Ж. физ. химии. 1996. — Т. 70, № 1. — С. 7−12.
- Chirico R.D., Gammon B.E., Knipmeyer S.E., Nguyen A., Strube M.M., Tsonopoulos C., Steele W. V. The thermodynamic properties of dibenzofuran. // J. Chem. Thermodyn. 1990. — V. 22, № 11.-P. 1075−1096.
- Ritter E.R., Bozzelli J.W. Pathways to chlorinated dibenzodioxins and dibenzofiirans from partial oxidation of chlorinated aromatics by OH radical: thermodynamic and kinetic insights. // Combust. Sci. Technol. 1994. — V. 101, № 1−6.-P. 153−169.
- Thompson D. Thermodynamic considerations in dibenzodioxin and dibenzofuran formation: concentrations of chlorinated dioxins and furans in model fuel-rich combustion gases. // Chemosphere. 1994. — V. 29, № 12. — P. 2583−2595.
- Thompson D. Enthalpies of formation and entropies of chlorinated dibenzo-p-dioxins and dibenzofiirans, selected data for computer-based studies. // Thermochim. Acta. 1995. — V. 261. — P. 7−20.
- Rordorf B.F. Prediction of vapor pressures, boiling points, and enthalpies of fusion for twenty-nine halogenated dibenzo-p-dioxins and fifty-five dibenzofurans by a vapor pressure correlation method. // Chemosphere. 1989. — V. 18, № 1−6. -P. 783−788.
- Shaub W.M. Estimated thermodynamic functions for some chlorinated benzenes, phenols and dioxins. // Thermochim. Acta. 1982. — V. 58, № 1. — P. 11−44.
- Murabayashi M., Moesta H. Thermodynamic study on the reduction of polychlorinated dibenzo-p-dioxins and dibenzofurans in incinerator exhausts. // Environ. Sci. Technol. 1992. — V. 26, № 4. — P. 797−802.
- Steele W. V. Fifty years of thermodynamics research at Bartlesville. The Hugh M. Huffman legacy. // J. Chem. Thermodyn. 1995. — V. 27, № 2. — P. 135−162.
- Rauhut G., Pulay P. Identification of isomers from calculated vibrational spectra. A density functional study of tetrachlorinated dibenzodioxins. // J. Am. Chem. Soc. 1995.-V. 117, № 14.-P. 4167−4172.
- Гурвич JI.В., Дорофеева О. В., Иориш B.C. Термодинамическое моделирование образования 2,3,7,8-тетрахлордибензо-я-диоксина в процессах горения. // Ж. физ. химии. 1993. — Т. 67, № 10. — С. 2030−2032.
- Иориш B.C., Дорофеева О. В., Моисеева Н. Ф. Термодинамические свойства изомерных групп газообразных полихлорированных дибензо-л-диоксинов и дибензофуранов. //Ж. физ. химии. 1997. -Т. 71, № 7. — С. 1159−1164.
- Iorish VS., Dorofeeva О. V. Thermodynamic functions of dibenzo-p-dioxin and its polychlorinated derivatives in the gaseous and condensed phases. // Organohalogen Compd. 1998. — V. 36. — P. 97−100.
- Дорофеева O.B., Иориш B.C., Моисеева Н. Ф. Базы термодинамические данных для решения экологических проблем. // Научные труды Института теплофизики экстремальных состояний ОИВТ ИТЭС РАН, Вып. 3−2000. М.: ОИВТРАН, 2001.-С. 107−114.
- Гурвич Л.В., Юнгман B.C., Дорофеева О. В., Горохов Л. Н., Мунвез С. С. Термодинамические свойства газообразной системы W-F. // Препринт № 10 019. -М.: ИВТАН, 1977.-66 с.
- Гурвич Л.В., Юнгман B.C., Дорофеева О. В., Горохов Л. Н., Мунвез С. С. Термодинамические свойства газообразной системы U-F. // Препринт № 1−0018.-М.: ИВТАН, 1977.-67 с.
- Бальхаузен К. Введение в теорию поля лигандов. М.: Мир, 1964. — 360 с.
- Берсукер И. Б. Электронное строение и свойства координационных соединений. — JL: Химия, 1986. 288 с.
- Герцберг Г. Электронные спектры и строение многоатомных молекул. М.: Мир, 1969.-772 с.
- Wadt W.R., Hay P. J. Ab initio studies of the electronic structure and geometry of uranium pentafluoride using relativistic effective core potentials. // J. Am. Chem. Soc. 1979. — V. 101, № 18. — P. 5198−5206.
- Hecht H.G., Malm J.G., Car nail W.T. Ал optical study of uranium fluoride polymorphs (a-UF5 and (3-UF5). // J. Less-Common Met. 1986. — V. 115, № 1. -P. 79−89.
- Fuji K., Miyake C., Imoto S. Magnetic susceptibility and electron spin resonance of uranium pentachloride. // J. Nucl. Sci. Technol. 1979. — V. 16, № 3. — P. 207 213.
- Selbin J., Ballhausen C.J., Durrett D.G. New theoretical and spectral studies of uranium (V) compounds. // Inorg. Chem. 1972. — V. 11, № 3. — P. 510−515.
- GruberJ.B" Hecht H.G. Interpretation of the vapor spectrum of UCI4. // J. Chem. Phys. 1973. — V. 59, № 4. — P. 1713−1720.
- CarnalI W.T., Liu G.K., Williams C.W., Reid M.F. Analysis of the crystal-field spectra of the actinide tetrafluorides. I. UF4, NpF4, and PUF4. // J. Chem. Phys. -1991.-V. 95, № 10.-P. 7194−7203.
- Osborn R., Boland B.C., Bowden Z.A., Taylor A.D., Hackett M.A., Hayes W., Hutchings M. T. A high-resolution neutron scattering investigation of the crystal field splittings of U02. // J. Chem. Soc., Faraday Trans. 2. 1987. — V. 83, № 7. -P. 1105−1107.
- Gajek Z., Mulak J. AOM reconciling of crystal field parameters for UCI3, иВгз, UI3 series. //J. Solid State Chem. 1990. -V. 87, № 1. — P. 218−221.1 г
- Meredith R.E., Jenney J.A. Absorption and Emission Spectrum of CaF2: U from 2.1 to 2.5 Microns. //J. Chem. Phys. 1963. -V. 39, № 11. — P. 3127−3130.
- Crosswhite H.M., Crosswhite H., CarnalI W.T., PaszekA.P. Spectrum analysis of U3 + :LaCl3. //J. Chem. Phys. 1980. — V. 72, № 9. — P. 5103−5117.
- Levin I.N. Quantum chemistry. Upper Saddle River, New Jersey 7 458: Prentice Hall, 2000. — 739 p.
- Foresman J.B., Frisch Ж Exploring chemistry with electronic structure methods. Pittsburgh, PA: Gaussian, Inc., 1996. — 302 p.
- East A.L.L., Radom L. Ab initio statistical thermodynamic models for the computation of third-law entropies. // J. Chem. Phys. 1997. — V. 106, № 16. — P. 6655−6674.
- DeTar D.F. Theoretical ab initio calculation of entropy, heat capacity, and heat content. // J. Phys. Chem. A. 1998. — V. 102, № 26. — P. 5128−5141.
- Vansteenkiste P., Van Speybroeck V., Marin G.B., Waroquier M. Ab initio calculation of entropy and heat capacity of gas-phase n-alkanes using internal rotations. // J. Phys. Chem. A. 2003. — V. 107, № 17. — P. 3139−3145.
- Guthrie J.P. Use of DFT methods for the calculation of the entropy of gas phase organic molecules: an examination of the quality of results from a simple approach. // J. Phys. Chem. A. 2001. — V. 105, № 37. — P. 8495−8499.
- Sun H., Bozzelli J.W. Structures, rotational barriers, and thermochemical properties of p-chlorinated ethyl hydroperoxides. // J. Phys. Chem. A. 2003. -V. 107, № 7.-P. 1018−1024.
- Yamada Т., Lay Т.Н., Bozzelli J.W. Ab initio calculations and internal rotor: contribution for thermodynamic properties S°298 and Cp (T)'s (300<1500): group additivity for fluoroethanes. // J. Phys. Chem. A. 1998. — V. 102, № 37. -P. 7286−7293.
- Yamada Т., Bozzelli J.W., Berry R.J. Thermodynamic properties (ДЩ298), S (298), and CP (T) (300
- Yamada Т., Bozzelli J. W. Thermodynamic properties AHf°298, S°29g, and CP (T) for 2-fluoro-2-methylpropane, AHf°298 of fluorinated ethanes, and group additivity for fluoroalkanes. // J. Phys. Chem. A. 1999. — V. 103, № 36. — P. 7373−7379.
- Jung D" Chen C.-J., Bozzelli J.W. Structures, rotation barrier, and thermodynamic properties AHf°298, S°298, and CP (T) of chloromethyl hypochlorites CH3OCI, CH2CIOCI, CHCI2OCI, and CCI3OCI. // J. Phys. Chem. A. 2000. — V. 104, № 42.-P. 9581−9590.
- Sebbar N., Bozzelli J.W., Bockhorn H. Thermochemical properties- rotation barriers, bond energies, and group additivity for vinyl, phenyl, ethynyl, and allyl peroxides. // J. Phys. Chem. A. 2004. — V. 108, № 40. — P. 8353−8366.
- Sebbar N. Bockhorn H" Bozzelli J.W. Thermodynamic properties (S298, Cp (7), internal rotations and group additivity parameters) in vinyl and phenyl hydroperoxides. // Phys. Chem. Chem. Phys. 2003. — V. 5, № 2. — P. 300−307.
- Sumathi R., Green W.H., Jr. Oxygenate, oxyalkyl and alkoxycarbonyl thermochemistry and rates for hydrogen abstraction from oxygenates. // Phys. Chem. Chem. Phys. 2003. — V. 5, № 16. — P. 3402−3417.
- Chen S.S., Wilhoit R.C., Zwolinski B.J. Ideal gas thermodynamic properties and isomerism of n-butane and isobutane. // J. Phys. Chem. Ref. Data. 1975. — V. 4, № 4.-P. 859−869.
- Aston J.G., Messerly G.H. The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-butane. // J. Am. Chem. Soc. 1940. -V. 62,№ 8.-P. 1917−1923.
- Aston J.G., Isserow S., Szasz G.J., Kennedy R.M. An empirical correlation and method of calculation of barriers hindering internal rotation. // J. Chem. Phys. -1944. V. 12, № 8. — P. 336−344.
- Dailey B.P., Felsing W.A. Heat capacities and hindered rotation in n-butane and isobutene. // J. Am. Chem. Soc. 1943. — V. 65, № 1. — P. 44−46.
- Smith G.D., Jaffe R.L. Quantum chemistry study of conformational energies and rotational energy barriers in n-alkanes. // J. Phys. Chem. 1996. — V. 100, № 48. -P. 18 718−18 724.
- Vansteenkiste P., van Speybroeck V., Marin G.B., Waroquier M. Ab initio calculation of entropy and heat capacity of gas-phase n-alkanes using internal rotations.//J. Phys. Chem. A.-2003.-V. 107,№ 17.-P. 3139−3145.
- Hafezi M.J., Sharif F. Study of the torsional potential energies of 2-methylpropane, n-butane, and 2-methylbutane with high-level ab initio calculations. // J. Mol. Struct. (Theochem). 2007. — V. 814, № 1. — P. 43−49.
- Iriknra K" Johnson R.D., III, Kacker R.N. Uncertainties in scaling factors for ab initio vibrational frequencies. // J. Phys. Chem. A. 2005. — V. 109, № 37. — P. 8430−8437.
- Sinha P., Boesch S.E., Gu C., Wheeler R.A., Wilson A.K. Harmonic vibrational frequencies: scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. // J. Phys. Chem. A. 2004. — V. 108, № 42. -P. 9213−9217.
- NIST, Computational Chemistry Comparison and Benchmark DataBase, National Institute of Standards and Technology: http://srdata.nist.gov/cccbdb/
- Katon J.E., Lippincott E.R. The vibrational spectra and geometrical configuration of biphenyl. // Spectrochim. Acta. 1959. — V. 15, № 8. — P. 627−650.
- Aleman H., Lielmezs J. Thermodynamic functions for biphenyl and the 4,4-dihalogenobiphenyls. // Thermochim. Acta. 1973. — V. 7, № 1. — P. 69−73.
- TRC Thermodynamic Tables Hydrocarbons. Thermodynamic Research Center, College Station, TX: Texas A & M University System, 2000. — P. 3520.
- Chirico R.D., Knipmeyer S.E., Nguyen A., Steele W.V. The thermodynamic properties of biphenyl. // J. Chem. Thermodyn. 1989. — V. 21, № 12. — P. 13 071 331.
- Hdfelinger G., Regelmann C. Refined ab initio 6−31G split-valence basis set optimization of the molecular structures of biphenyl in twisted, planar and perpendicular conformations. // J. Comput. Chem. 1987. — V. 8, № 7. — P. 10 571 065.
- Tsuzuki S., Tanabe K. Ab initio molecular orbital calculations of the internal rotational potential of biphenyl using polarized basis sets with electron correlation correction. //J. Phys. Chem. 1991. -V. 95, № 1. — P. 139−144.
- Karpfen A., Choi C.H., Kertesz M. Single-bond torsional potentials in conjugated systems: a comparison of ab initio and density functional results. // J. Phys. Chem. A. 1997. -V. 101, № 40. — P. 7426−7433.
- Tsuzuki S., Uchimaru Т., Matsumura K, Mikami M., Tanabe K. Torsional potential of biphenyl: Ab initio calculations with the Dunning correlation consisted basis sets. // J. Chem. Phys. 1999. — V. 110, № 6. — P. 2858−2861.
- Dorofeeva O.V., Moiseeva N.F., Yungman V.S., Novikov V.P. Ideal gas thermodynamic properties of biphenyl. // Thermochim. Acta. 2001 — V. 374, № l.-p. 7−11.
- Barrett R.M., Steele D. The vibrational spectra and dihedral angles of biphenyl and the 4,4'-dihalogenobiphenyls. // J. Mol. Struct. 1972. — V. 11, № 1. — P. 105−125.
- Green J.H.S. Thermodynamic properties of organic oxygen compounds. Part 5. Ethyl alcohol. // Trans. Faraday Soc. 1961. — V. 57, № 3. — P. 2132−2137.
- Counsell J.F., Fenwick J.O., Lees E. B Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-l-propanol, and 1-pentanol. // J. Chem. Thermodyn. 1970. -V. 2, № 3.-P. 367−372.
- Stromsoe E., Ronne H.G., Lydersen A.L. Heat capacity of alcohol vapors at atmospheric pressure. // J. Chem. Eng. Data. 1970. — V. 15, № 2. — P. 286−290.
- Kudchadker S.A., Kudchadker A.P., Wilhoit R.C., Zwolinski B.J. Ideal gas thermodynamic properties of phenol and cresols. // J. Phys. Chem. Ref. Data. -1978.-V. 7, № 2.-P. 417−423.
- Counsell J.F., Lee D.A., Martin J.F. Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether. // J. Chem. Soc. Part A. 1971. -№ 2.-P. 313−316.
- Miller A., Scott D.W. Chemical thermodynamic properties of ethylbenzene. // J. Chem. Phys. 1978. — V. 68, № 3. — P. 1317−1319.
- Baker J., Jarzecki A.A., Pulay P. Direct scaling of primitive valence force constants: an alternative approach to scaled quantum mechanical force fields. // J. Phys. Chem. A.- 1998.-V. 102, № 8.-P. 1412−1424.
- Andersson M.P., Uvdal P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-^ basis set 6−311+G (d, p). // J. Phys. Chem. A. -2005. V. 109, № 12. — P. 2937−2941.
- Curtiss L.A., Raghavachari K" Redfern P.C., Pople J.A. Investigation of the use of B3LYP zero-point energies and geometries in the calculation of enthalpies of formation. // Chem. Phys. Lett. 1997. — V. 270, № 5−6. — P. 419−426.
- Dworkin A., Figuiere P., Ghelfenstein M" Szware H. Heat capacities, enthalpies of transition, and thermodynamic properties of the three solid phases of p-dichlorobenzene from 20 to 330 K. // J. Chem. Thermodyn. 1976. — V. 8, № 9. -P. 835−844.
- Furukawa G.T., Reilly M.L., Piccirelli J.H., Tenenbaum M. Thermodynamic properties of some methylphosphonyl dihalides from 15 to 335 K. // J. Res. Nat. Bur. Stand. 1964. — V. A68, № 4. — P. 367−379.
- Andrews J.T.S., Westrum E.F., Jr. Vapor pressure and third-law entropy of ferrocene. // J. Organomet. Chem. 1969. — V. 17, № 2. — P. 349−352.
- Kassaee M.H., Keffer D.J., Steele W.V. A comparison between entropies of aromatic compounds from quantum mechanical calculations and experiment. // J. Mol. Struct. (Theochem). 2007. — V. 802, № 1−3 — P. 23−34.
- Njegic В., Gordon M.S. Exploring the effect of anharmonicity of molecular vibrations on thermodynamic properties. // J. Chem. Phys. 2006. — V. 125, № 22.-P. 224 102−1-224 102−12.
- Marenich A.V., Boggs J.E. The molecular structure, spin-vibronic energy levels, and thermochemistry of CH30. // J. Mol. Struct 2006. — V. 780−781. — P. 163 170.
- TRC Thermodynamic Tables Non-Hydrocarbons. Monochloro-, Dichlorobiphenyls and Trichlorobiphenyls. // Thermodynamic Research Center, College Station, TX: Texas A & M University System, 1987. — P. 7340- 1988. -P. 7342.
- Holmes D.A., Harrison B.K., Dolfing J. Estimation of Gibbs free energies of formation for polychlorinated biphenyls. // Environ. Sci. Technol. 1993. — V. 27,№ 4.-P. 725−731.
- Saito N., Fuwa A. Prediction for thermodynamic function of dioxin for gas phase using semi-empirical molecular orbital method with PM3 Hamiltonian. // Chemosphere. 2000. — V. 40, № 2. — P. 131−145.
- Dorofeeva O.V., Moiseeva N.F., Yungman V.S. Thermodynamic properties of polychlorinated biphenyls in the gas phase. // J. Phys. Chem. A. 2004. — V. 108, № 40.-P. 8324−8332.
- Дорофеева О.В., Новиков В. П., Моисеева Н. Ф., Юнгман B.C. Расчет конформаций и потенциалов внутреннего вращения полихлорированных бифенилов методом функционала плотности. // Ж. структ. химии. 2005. -Т. 46, № 2. — С. 245−250.
- Romming C., Seip H.M., Oymo I.A. Structure of gaseous and crystalline 2,2-dichlorobiphenyl. // Acta Chem. Scand. A. 1974. — V. 28, № 5. — P. 507−514.
- Andersson P.L., Haglund P., Tysklind M. The internal barriers of rotation for the 209 polychlorinated biphenyls. // Environ. Sci. Pollut. Res. 1997. — V. 4, № 2. -P. 75−81.
- Arulmozhiraja S., Selvin P.C., Fujii T. Structures, potential energy curves, and torsional barrier heights for selected polychlorinated biphenyls: a density functional theory study. // J. Phys. Chem. A. 2002. — V. 106, №> 9. — P. 17 651 769.
- Zhai Z.-C., Wang Z-Y., Chen X.-H., Wang, L.-S. DFT calculation on 204 polychlorinated biphenyls: their thermodynamic function and implication of CI substitute position. // J. Mol. Struct. (Theochem). 2005. — V. 714, № 2−3. — P. 123−131.
- Дорофеева O.B., Юнгман B.C., Дружинина А. И., Варущенко P.M. Термодинамические функции этил-трет-бутилового и этш-трет-амилового эфиров в газовой фазе. // Ж. физ. химии. 2004. — Т. 78, № 12. -С. 2154−2160.
- Druzhinina A.I., Dorofeeva O.V., Varushchenko R.M., Krasnykh E.L. The low-temperature heat capacity and ideal gas thermodynamic properties of isobutyl tert-butyl ether. // J. Chem. Thermodyn. 2006. — V. 38, № 1. — P. 10−19.
- Efimova A.A., Druzhinina A.I., Varushchenko R.M., Dorofeeva O.V., Krasnyh E.L. Thermodynamics of phase equilibria of diisobutyl ether. // J. Chem. Thermodyn. 2008. — in press.
- Andon R.J.L., Martin J.F. Thermodynamic properties of organic oxygen compounds. 40. Heat capacity and entropy of six ethers. // J. Chem. Thermodyn. -1975. V. 7, № 6. — P. 593−606.
- Andon R.J.L., CounselI J.F., Lee D.A., Martin J.F. Thermodynamic properties of organic oxygen compounds. 39. Heat capacity of n-propyl ether. // J. Chem. Thermodyn. 1975. — V. 7, № 6. — P. 587−592.
- Andon R.J.L., Counsell J.F., Lee D.A., Martin J.F. Thermodynamic properties of organic oxygen compounds. Part 36. Heat capacity of isopropyl ether. // J. Chem. Soc. Faraday Trans. 2. 1974. — V. 70. — P. 1914−1917.
- Dorofeeva O.V., Ryzhova O.N., Zverev V.G. Computational study of the thermodynamic properties of organophosphorus (V) compounds. // J. Mol. Struct. (Theochem). 2007. — V. 811, № 1−3. — P. 267−279.
- Дорофеева O.B., Рыжова O.H., Моисеева Н. Ф. Термодинамические свойства фосфорорганических соединений: использование квантово-химических расчетов для определения групповых вкладов. // Ж. физ. химии. 2008. — Т. 82, № 5.
- Cohen N., Benson S. W. Estimation of heats of formation of organic compounds by additivity methods. // Chem. Rev. 1993. — V. 93, № 7. — P. 2419−2438.
- Stewart E.L., Nevins N" Allinger N.L., Bowen J.P. Hartree-Fock and Moller-Plesset (MP2) treatment of oxygen-containing phosphorus compounds. // J. Org. Chem. 1997. — V. 62, № 15. — P. 5198−5207.
- Дорофеева O.B., Варущенко P. M. Стандартные термодинамические функции этил-, формил- и бензоилферроцена в состоянии идеального газа. // Ж. физ.химии.-2006.-Т. 80,№ 11.-С. 1955−1959.
- Haaland A., Nilsson J.E. The determination of barriers to internal rotation by means of electron diffraction. Ferrocene and Ruthenocene. // Acta Chem. Scand. -1968. V. 22, № 8. — P. 2653−2670.
- Berces A., Ziegler Т., Fan L. Density functional study of the harmonic force fields of Cp~, LiCp, and ferrocene. // J. Phys. Chem. 1994. — V. 98, № 6. — P. 15 841 595.
- Hohm U., Goebel D., Grimme S. Experimental and theoretical study of the dipole polarizability of ferrocene Fe (C5H5)2. // Chem. Phys. Lett. 1997. — V. 272, № 56.-P. 328−334.
- Mayor-Lopez M.J., Weber J. DFT calculations of the binding energy of metallocenes. // Chem. Phys. Lett. 1997. — V. 281, № 1−3. — P. 226−232.
- Edwards J. W, Kington G.L. Thermodynamic properties of ferrocene. Part 3. -Thermodynamic functions from 0 to 300 K. // Trans. Faraday Soc. 1962. — V. 58, № 7.-P. 1334−1340.
- Turnbull A.G. Thermochemistry of biscyclopentadienyl metal compounds. // Aust. J. Chem. 1967. — V. 20, № 10. — P. 2059−2067.
- Haaland A. Internal rotation and third law entropy of ferrocene. // Acta Chem. Scand. 1969. — V. 23, № 5. — P. 1836−1837.
- Рабинович И.Б., Нистратов В. П., Тельной В. И., Шегшап М. С. Термодинамика металлоорганических соединений. Н. Новгород.: Изд-во ННГУ им. Н. И. Лобачевского, 1996. — 297 с.
- Корякин Н.В., Козлова М. С., Шейман М. С., Камелова Г. П., Ларина В. Н. И Ж. физ. химии. 2003. — Т. 77, № 8. — С. 1375−1382.
- TRC Thermodynamic Tables Selected Values of Properties of Chemical Compounds. Thermodynamic Research Center, College Station, TX: Texas A & M University System. (Loose-leaf data sheets, extent 1997).
- Ambrose D., Connett J.E., Green J.H.S., Hales J.L., Head A.J., Martin J.F. Thermodynamic properties of organic oxygen compounds. 42. Physical and thermodynamic properties of benzaldehyde. // J. Chem. Thermodyn. 1975. — V.7, № 12.-P. 1143−1157.
- Krol O.V., Druzhinina A.I., Varuschenko R.M., Dorofeeva O.V., Reshetova M.D., Borisova N.E. The heat capacities and thermodynamic functions of some derivatives of ferrocene. // J. Chem. Thermodyn. 2008. — in press
- Haworth N.L., Bacskay G.B. Heats of formation of phosphorus compounds determined by current methods of computational quantum chemistry. // J. Chem. Phys.-2002.-V. 117, № 24.-P. 11 175−11 187.
- Feller D., Peterson K.A., de Jong W.A., Dixon D.A. Performance of coupled cluster theory in thermochemical calculations of small halogenated compounds. // J. Chem. Phys. 2003. — V. 118, № 8. — P. 3510−3522.
- Breidung J., Cosleou J., Demaison J., Sarka K, Thiel W. Ab initio anharmonic force field, molecular parameters, equilibrium structure and enthalpy of formation of fluoroform. // Mol. Phys.-2004. V. 102, № 16−17. — P. 1827−1841.
- Nicolaides A., RaukA., Glukhovtsev M.N., Radom L. Heats of formation from G2, G2(MP2), and G2(MP2,SVP) total energies. // J. Phys. Chem. 1996. — V. 100, № 44.-P. 17 460−17 464.
- Hehre W.J., Radom L" Schleyer P.R. Ab initio molecular orbital theory. New York: Wiley, 1986.-548 p.
- Lau K.K.S., Gleason K.K., Trout B.L. Thermochemistry of gas phase CF2 reactions: a density functional theory study. // J. Chem. Phys. 2000. — V. 113, № 10.-P. 4103−4108.
- PedleyJ.B. Thermochemical data and structures of organic compounds. College Station, TX: Thermodynamic Research Center, 1994. — V. I. — 450 p.
- Martell J.M., Goddard J.D., Eriksson L.A. Assessment of Basis Set and Functional Dependencies in Density Functional Theory: Studies of Atomizationand Reaction Energies. // J. Phys. Chem. A. 1997. — V. 101, № 10. — P. 1927 -1934.
- Pople J.A., Luke B.T., Frisch M.J., Binkley J.S. Theoretical thermochemistry. Heats of formation of neutral AHn molecules (A Li to CI). // J. Phys. Chem. -1985. — V. 89, № 11. — P. 2198−2203.
- Feller D., Franz J.A. A theoretical determination of the heats of formation of furan, tetrahydrofiiran, THF-2-yl, and THF-3-yl. // J. Phys. Chem. A. 2000. — V. 104, № 39.-P. 9017−9025.
- Pollack L., Windus T.L., de Jong W.A. Thermodynamic properties of the C5, Сб, and Се и-alkanes from ab initio electronic structure theory. // J. Phys. Chem. A.2005.-V. 109,№ 31.-P. 6934−6938.
- Lau K.-C., Ng C.Y. Accurate ab initio predictions of ionization energies and heats of formation for the 2-propyl, phenyl, and benzyl readicals. // J. Chem. Phys.2006. V. 124, № 4. — P. 44 323−1 — 44 323−9.
- Curtiss L.A., Raghavachari K" Redfern P.C., Pople J.A. Assessment of Gaussian2 and density functional theories for the computation of enthalpies of formation. // J. Chem.Phys.-1997.-V. 106, № 3.-P. 1063−1079.
- Curtiss L.A., Raghavachari K., Redfern P.C., Rassolov V., Pople J.A. Gaussian-3(G3) theory for molecules containing first and second-row atoms. // J. Chem. Phys. -1998. V. 109, № 18. — P. 7764−7776.
- Baboul A.G., Curtiss L.A., Redfern P.C., Raghavachari K. Gaussian-3' theory using density functional geometries and zero-point energies. // J. Chem. Phys. -1999. V. 110, № 16. — P. 7650−7657.
- Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A. Gaussian-3 theory using scaled energies. // J.-Chem. Phys. 2000. — V. 112, № 3. — P. 1125−1132.
- Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A. Assessment of Gaussian3 and density functional theories for a larger experimental test set. // J. Chem. Phys.-2000.-V. 112,№ 17.-P. 7374−7383.
- Curtiss L.A., Redfern P.C., Raghavachari K., Pople J.A. Gaussian-3X (G3X) theory: use of improved geometries, zero-point energies, and Hartree-Fock basis sets.//J. Chem. Phys.-2001.-V. 114,№ l.-P. 108−117.
- Curtiss L.A., Redfern P.C., Raghavachari K" Pople J.A. Gaussian-3X (G3X) theory using coupled cluster and Brueckner energies. // Chem. Phys. Lett. 2002. -V. 359,№ 5−6.-P. 390−396.
- Henry D.J., Sullivan M.B., Radom L. G3-RAD and G3X-RAD: modified Gaussian-3 (G3) and Gaussian-3X (G3X) procedures for radical thermochemistry. // J. Chem. Phys.- 2003. V. 118, № 11. — P. 4849−4860.
- Hehre W.J., Ditchfield R., Radom L., Pople J.A. Molecular orbital theory of the electronic structure of organic compounds.V. Molecular theory of bond separation. // J. Am. Chem. Soc. 1970. — V. 92, № 16. — P. 4796−4801.
- Raghavachari K., Stefanov B.B., Curtiss L.A. Accurate thermochemistry for larger molecules: Gaussian-2 theory with bond separation energies. // J. Chem. Phys. -1997. -V. 106, № 16. P. 6764−6767.
- Notario R" Castano O., Gomperts R., Frutos L.M., Palmeiro R. Organic thermochemistry at high ab initio levels. 3. A G3 study of cyclic saturated and unsaturated hydrocarbons (including aromatics). // J. Org. Chem. 2000. — V. 65, № 14.-P. 4298−4302.
- George P., Trachtman M., Bock C. W., Brett A.M. An alternative approach to the problem of assessing stabilization energies in cyclic conjugated hydrocarbons. // Theor. Chim. Acta. 1975. — V. 38, № 2. — P. 121−129.
- George P., Trachtman M., Bock С. IV., Brett A.M. An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons. // Tetrahedron. 1976. — V. 32, № 3. — P. 317−323.
- Glukhovtsev M.N., baiter S. High level ab initio stabilization energies of benzene. // Theor. Chim. Acta. 1995. — V. 92, № 6. — P. 327−332.
- Redfern P.C., Zapol P., Curtiss L.A., Raghavachari K. Assessment of Gaussian-3 and density functional theories for enthalpies of formation of Ci-Ci6 alkanes. // J. Phys. Chem. A. 2000. — V. 104, № 24. — P. 5850−5854.
- Sumathi R., Green W.H., Jr. Thermodynamic properties of ketenes: group additivity values from quantum chemical calculations. // J. Phys. Chem. A. -2002. V. 106, № 34. — P. 7937−7949.
- Sumathi R., Green W.H., Jr. Missing thermochemical groups for large unsaturated hydrocarbons: contrasting predictions of G2 and CBS-Q. // J. Phys. Chem. A. -2002. V. 106, № 46. — P. 11 141−11 149.
- Lee E.P.F., Dyke J.M., Chow W.-K., Chau F.-T., Мок D.K.W. The heat of formation of 2-H heptafluoropropane by ab initio calculations. // Chem, Phys. Lett. 2005. — V. 402, № 1. — P. 32−36.
- Dorofeeva О. V., Yungman V.S. Enthalpies of formation of biphenyl, 2,2'- and 4,4-dichlorobiphenyls: density functional calculations. // Fluid Phase Equilib. 2002. -V. 199,№ 1−2.-P. 147−151.
- Manion J.A. Evaluated enthalpies of formation of the stable closed shell CI and C2 chlorinated hydrocarbons. // J. Phys. Chem. Ref. Data. 2002. — V. 31, № 1. -P. 123−172.
- Платонов В.А., Симулин Ю. Н. Стандартные энтальпии образования 1,2,3-трихлорбензола, 1,2,4,5-тетрахлорбензола и гексахлорбензола. // Ж. физ. химии.- 1983.-V. 57,№ 6.-Р. 1387−1391.
- Платонов В.А., Симулин Ю. Н. Экспериментальное определение стандартных энтальпий образования полихлорбензолов. II. Стандартные энтальпии образования дихлорбензолов. // Ж. физ. химии. 1984. — V. 58, № 11.-Р. 2682−2686.
- Платонов В.А., Симулин Ю. Н., Розенберг М. М. Стандартная энтальпия образования пентахлорбензола. Расчет ДсН°(г) и AfH°® полихлорбензолов методом Татевского. //Ж. физ. химии. 1985. -V. 59, № 6. — Р. 1378−1383.
- Yan Н&bdquo- Gu J. An X. Ни R. II Huaxue Xuebao. 1987. — 45. — P. 1184- NIST Chemistry WebBook: http://webbook.nist.gov/chemistry.
- Leon L. A., Notario R., Quijano J., Sanchez C. Structures and enthalpies of formation in the gas phase of the most toxic polychlorinated dibenzo-p-dioxins. A DFT study. // J. Phys. Chem. A. 2002. — V. 106, № 28. — P. 6618−6627.
- Колесов В.П., Папина Т. С. Термохимия галогензамещенных этана. // Успехи химии. 1983. — V. 52, № 5. — Р. 754−776.
- Ribeiro da Silva М. А. V., Ferrao М. L. С. С. Н, Jiye F. Standard enthalpies of combustion of the six dichlorophenols by rotating-bomb calorimetry. // J. Chem. Thermodyn. 1994. — V. 26, № 8. — P. 839−846.
- Папина T.C., Колесов В. П. Стандартная энтальпия образования 1,1,2-трихлорэтана. //Ж. физ. химии. 1987. — V. 61, № 8. — Р. 2236−2238.
- Sabbah R., An X. Etude thermodynamique des chlorobenzenes. // Thermochim. Acta.- 1991.- V. 179.-P. 81−88.
- Gomes J. R. В., Ribeiro da Silva M. A. V. Gas-phase thermodynamic properties of dichlorophenols determined from density functional theory calculations. // J. Phys. Chem. A. 2003. — V. 107, № 6. — P. 869−874.
- Лукьянова B.A., Колесов В. П., Авраменко H.B., Воробьева В. П., Головков В. Ф. Стандартная энтальпия образования дибензо-п-диоксина. // Ж. физ. химии. 1997. — Т. 71, № 3. — С. 406−408.
- Pimenova S. М., Melkhanova S. V, Kolesov V P., Demyanov P. I., Fedotov A. N., Vorobieva, V. P. Experimental determination of the enthalpy of formation of dibenzo-p-dioxin. // J. Chem. Thermodyn. 2002. — V. 34, № 3. — P. 385−390.
- Папина T.C., Колесов В. П., Лукьянова В. А., Головков В. Ф., Чернов С. А., Воробьева В. П. Стандартная энтальпия образования 1-хлордибензо-п-диоксина. // Ж. физ. химии. 1998. — Т. 72, № 1. — С. 7−10.
- Papina Т. S., Kolesov V P., Vorobieva V. P., Golovkov V F. The standard molar enthalpy of formation of 2-chlorodibenzo-p-dioxin. // J. Chem. Thermodyn. -1996. V. 28, № 3. — P. 307−311.
- Papina T. S., Kolesov V P., Lukyanova V A., Golovkov V F., Chernov C. A., Vorobieva V. P. The standard molar enthalpy of formation of 2,3-dichlorodibenzo-p-dioxin. // J. Chem. Thermodyn. 1998. — V. 30, № 4. — P. 431 436.
- Lukyanova V A., Papina T. S., Kolesov V. P., Fedotov A. N" Dem’yanov P. I., Avramenko N. V. A new determination of the standard molar enthalpy of formation of 2-chlorodibenzo-p-dioxin. // J. Chem. Thermodyn. 2003. — V. 35, № 9.-P. 1507−1511.
- Лукьянова B.A., Папина T.C., Колесов В. П., Человская Н. В., Федотов А. Н., Демьянов П. И., Авраменко Н. В., Воробьева В. П. Стандартная энтальпия образования 1,2,3,4-тетрахлордибензо-и-диоксина. // Ж. физ. химии. 2007. -Т. 81,№ 1.-С. 7−10.
- Shaub W. M. Procedure for estimating the heats of formation of aromatic compounds: chlorinated benzenes, phenols and dioxins. // Thermochim. Acta. -1982.-V. 55, № 1. P. 59−73.
- Thompson D. An evaluation of the heat of formation of chlorinated dioxins and its application to isomer abundance prediction. // Chemosphere. 1994. — V. 29, № 12.-P. 2545−2554.
- Koester C. J., Hites, R. A. Calculated physical properties of polychlorinated dibenzo-p-dioxins and dibenzofurans. // Chemosphere. 1988. — V. 17, № 12. -P. 2355−2362.
- Dorofeeva О. V., Yungman V.S. Enthalpies of formation of dibenzo-p-dioxin and polychlorinated dibenzo-p-dioxins calculated by density functional theory. // J. Phys. Chem. A. 2003. — V. 107, № 16. — P. 2848−2854.
- Lee J. E., Choi W" Mhin B.J. DFT calculation on the thermodynamic properties of polychlorinated dibenzo-p-dioxins: intramolecular Cl-Cl repulsion effects and their thermochemical implications. // J. Phys. Chem. A. 2003. — V. 107, № 15. -P. 2693−2699.
- Wang Z.-Y., Zhai Z.-C., Wang L.-S. Prediction of gas phase thermodynamic properties of polychlorinated dibenzo-furans by DFT. // J. Mol. Struct. (Theochem). 2005. — V. 725, № 1−3. — P. 55−62.
- Zhai Z-C., Wang Z.-Y. Computational study on the relative stability and formation distribution of 76 polychlorinated naphthalene by density functional theory. // J. Mol. Struct. (Theochem). 2005. — V. 724, № 1−3. — P. 221−227.
- Иориш B.C., Белов Г. В., Юнгман B.C. Программный комплекс ИВТАНТЕРМО для WINDOWS и его использование в прикладном термодинамическом анализе. // Препринт № 8−415. М: ОИВТАН, — 1998. -56 с.
- Зайцев А.К., Леонтьев Л. И., Юсфин Ю. С. Анализ формирования экотоксикантов в термических процессах. // Препринт. Екатеринбург: Институт металлургии УрО РАН, — 1997. — 84 с.
- Bacher R" Swerew М., Ballschmiter К. Profile and pattern of monochloro-through octachlorodibenzodioxins and dibenzofurans in chimney deposits from wood burning’s. // Environ. Sci. Technol. 1992. — V. 26, № 8. — P. 1649−1655.
- Smith N. K., Gorin G., Good W. D., McCullough J. P. The heats of combustion, sublimation, and formation of four dihalobiphenyls. // J. Phys. Chem. 1964. — V. 68,№ 4.-P. 940−946.
- Pilcher G. Thermochemistry of phosphorus (III) compounds. // In: The Chemistry of Organophosphorus Compounds- ed. Hartley F.R. New York: Wiley, 1990. -V. 1, Ch. 5. — P. 127−136.
- LeroyG., Temsamani D.R., WilanteC., Dewispelaere J.-P. Determination of bond energy terms in phosphorus containing compounds. // J. Mol. Struct. (Theochem).- 1994.-V. 309,№ 2.-P. 113−119.
- Lau J.K.-C., Li W.-K. Thermochemistry of phosphorus fluorides: a Gaussian-3 and Gaussian-3X study. // J. Mol. Struct. (Theochem). 2002. — V. 578, № 1−3. -P. 221−228.
- Gardner P.J. The standard enthalpies of formation of hydrogen cyanide and tricyanophosphine by ab initio molecular orbital calculation. // Thermochim. Acta.- 1992. -V. 205.-P. 65−73.
- Davies R.H., Finch A., Gardner P.J., Hameed A., Stephens M. The standard enthalpies of hydrolysis and formation of tricyanophosphine. // J. Chem. Soc., Dal ton Trans. 1976. — № 6. — P. 556−557.
- Al-Maydama H.M.A., Finch A., Gardner P.J., Head A.J. The enthalpies of formation of bis (dimethylamino)cyanophosphine, (dimethylamino)-dicyanophosphine, and tricyanophosphine. II J. Chem. Thermodyn. 1995. — V. 27, № 6.-P. 575−584.
- Dorofeeva О. V., Moiseeva N.F. Computational study of the thermochemistry of organophosphorus (III) compounds. // J. Phys. Chem. A. 2006. — V. 110, № 28. -P. 8925−8932.
- Овчинников В.В., Макеева Т. Е., Лаптева Л. И., Коновалов А. И. Термохимия гетероатомных соединений. Энтальпия гидролиза и образования дихлоралкилфосфитов и -арсенитов. // Докл. Акад. наук. 1995. — Т. 343, № 2. — С. 207−209.
- Al-Maydama Н.М.А., Finch A., Gardner P.J., Head A.J. The enthalpies of formation of (dimethylamino)dichlorophosphine, bis (dimethylamino)-chlorophosphine, and tris (dimethylamino)phosphine. // J. Chem. Thermodyn. -1995. V. 27, № 3. — P. 273−279.
- Dewar M.J.S., Lo D.H., Ramsden C.A. Ground states of molecules. XXVIII. MIND0/3 calculations for compounds containing carbon, hydrogen, fluorine, and chlorine. // J. Am. Chem. Soc. 1975. -V. 97, № 6. — P. 1311−1318.
- Kirklin D.R., Domalski E.S. Enthalpies of combustion of triphenylphosphine and triphenylphosphine oxide. // J. Chem. Thermodyn. 1988. — V. 20, № 6. — P. 743 754. .
- Lao Y.R., Benson S. W. A new electronegativity scale for the correlation of heats of formation. 2. The differences in heats of formation between hydrogen and methyl derivatives. // J. Am. Chem. Soc. 1989. — V. 111, № 7. — P. 2480−2482.
- Cohen N. Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. // J. Phys. Chem. Ref. Data. 1996. — V. 25, № 6. — P. 1411−1481.
- Kercher J.P., Gengeliczki Z" Sztaray В., Baer T. Dissociation dynamics of sequential ionic reactions: heats of formation of tri-, di-, and monoethylphosphine. // J. Phys. Chem. A. 2007. — V. 111, № 1. — P. 16−26.
- Domalski E.S., Kirklin D.R. Estimation methods and combustion calorimetry on organic phosphorus compounds. U.S. Government Interagency Report. // Washington: National Bureau of Standards, 1984.
- Pedley J.B., Rylance J. Sussex-N.P.L. Computer Analyzed Thermochemical Data: Organic and Organometallic Compounds. Brighton: University of Sussex, 1977.
- Kirklin D.R., Chickos J.S., Liebman J.F. Enthalpy of formation of triphenylphosphine sulfide. // Struct. Chem. 1996. — V. 7, № 5−6. — P. 355−361.
- Kirklin D.R., Domalski E.S. Energy of combustion of triphenylphosphate. // J. Chem. Thermodyn. 1989. — V. 21, № 5. — P. 449−456.
- Цветков В.Г., Александров Ю. А., Глуишкова B.H., Скородумова Н. А., Кольякова Г. М. Термохимия реакции трифенилфосфора, -мышьяка и -сурьмы с гидроперекисью третичного бутила. // Ж. общ. химии. 1980. — Т. 50, № 2. -С. 256−258.
- Verevkin S.P. Improved Benson increments for the estimation of standard enthalpies of formation and enthalpies of vaporization of alkyl ethers, acetals, ketals, and ortho esters. // J. Chem. Eng. Data. 2002. — V. 47, № 5. — P. 10 711 097.
- Sabbah R" Perez J.A.G. Contribution a 1'etude thermochimique du ferrocene. // Thermochim. Acta. 1997. — V. 297, № 1−2. — P. 17−32.
- McMillen D.F., Golden D.M. Hydrocarbon bond dissociation energies. // Ann. Rev. Phys. Chem. 1982. -V. 33. — P. 493−532.
- Verevkin S.P. Thermochemistry of nitro compounds. Experimental standard enthalpies of formation and improved group-additivity values. И Thermochim. Acta.- 1997.-V. 307,№ 1.-P. 17−25.
- Rossini F.D., Pitzer K.S., Arnett R.L., Braun R.M., Pimentel G.C. Selected values of physical and thermodynamic properties of hydrocarbons and related compounds. Pittsburg: Carnegie Press, 1953. — 1050 p.
- Татевский B.M. Химическое строение углеводородов и закономерности в их физико-химических свойствах. М: Изд-во МГУ, 1953. — 316 с,
- Татевский В.М., Бендерский В. А., Яровой С. С. Методы расчета физико-химических свойств парафиновых углеводородов. М: Гостоптехиздат, 1960.-111 с.
- Татевский В.М. Классическая теория строения молекул и квантовая механика. М.: Химия, 1973. — 514 с. L
- Татевский В.М. Строение молекул. М.: Химия, 1977. — 512 с.
- Janz G.J. Thermodynamic properties of organic compounds: estimation methods, principles and practice. New York: Academic Press, 1967. — 249 p.
- Рид P., Праусииц Дэю., Шервуд Т. Свойства газов и жидкостей. JL: Химия, 1982.-591 с.
- Стал Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений. М.: Мир, 1971. — 807 с.
- Kupeee В.А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1970. — 519 с.
- Папулов Ю.Г., Смоляков В. М. Физические свойства и химическое строение. Калинин: Изд-во Калин, ун-та, 1981. — 88 с.
- Лебедев Ю.А., Мирошниченко Е. А., Кнобелъ Ю.К Термохимия нитросоединений. М.: Наука, 1970. — 168 с.
- Орлов Ю.Д., Лебедев Ю. А., Сайфуллин И. Ш. Термохимия органических свободных радикалов. М.: Наука, 2001. — 304 с.
- Benson S. W., Buss J.H. Additivity rules for the estimation of molecular properties. Thermodynamic properties. // J. Chem. Phys. 1958. — V. 29, № 3. — P. 546−572.
- Benson S.W., Criuckschank F.R., Golden D.M., Haugen G.R., O’Neal H.E., Rodgers A.S., Shaw R., Walsh R. Additivity rules for the estimation of thermochemical properties. // Chem. Rev. 1969. — V. 69, № 3. — P. 279−324.
- Eigenmann H.K., Golden D.M., Benson S.W. Revised group additivity parameters for the enthalpies of formation of oxygen-containing organic compounds. // J. Phys. Chem. 1973. -V. 77, № 13.-P. 1687−1691.
- O’Neal H.E., Benson S. W. Entropies and heat capacities of cyclic and polycyclic compounds. // J. Chem. Eng. Data. 1970. — V. 15, № 2. — P. 266−276.
- Shaw R. Heat capacities of liquids. Estimation of heat capacity at constant pressure and 25 using additivity rules. // J. Chem. Eng. Data. 1969. — V. 14, № 4.-P. 461−465.
- Shaw R. Heats of formation of nitroaromatics. Group additivity for solids. // J. Phys. Chem. 1971. -V. 75, № 26. — P. 4047−4049.
- Luria M, Benson S.W. Heat capacities of liquid hydrocarbons. Estimation of heat capacities at constant pressure as a temperature function, using additivity rules. // J. Chem. Eng. Data. 1977. — V. 22, № 1. — P. 90−100.
- Domalski E.S., Hearing E.D. Estimation of the thermodynamic properties of C-H-N-O-S-Halogen compounds at 298.15 K. // J. Phys. Chem. Ref. Data. 1993. -V. 22,№ 4.-P. 805−1159.
- Moffat J.B. Correlation of some thermodynamic properties of nitriles. // J. Chem. Eng. Data. 1968. — V. 13, № 1. — P. 36−38.
- Moiseeva N.F., Dorofeeva O.V., Jorish V.S. Development of Benson group additivity method for estimation of ideal gas thermodynamic properties of polycyclic aromatic hydrocarbons. // Thermochim. Acta. 1989 — V. 153. — P. 77−85.
- Moiseeva N.F., Dorofeeva O.V. Group additivity scheme for calculating the chemical thermodynamic properties of gaseous polycyclic aromatic hydrocarbons containing five-membered rings. // Thermochim. Acta. 1990. — V. 168. — P. 179 186.
- Dorofeeva O.V., Yungman V.S., Saks P. Enthalpies of formation for gaseous polychlorinated biphenyls: a modified group additivity scheme. // J. Phys. Chem. A. 2001. — V. 105, № 27. — P. 6621−6629.
- Sabbe M.K., Saeys M., Reyniers M.-F., Marin G.B. Group additive values for the gas phase standard enthalpy of formation of hydrocarbons and hydrocarbons radicals. // J. Phys. Chem. A. 2005. — V. 109, № 33. — P. 7466−7480.
- Dorofeeva O.V., Tolmach P.I. On the estimation of gas-phase thermodynamic properties of organic compounds. // Thermochim. Acta. 1993 — V. 219. — P. 361−364.
- Сагадеев Е.В., Сафина Ю. Г. Энтальпии испарения и образования производных фосфоновой и фосфорисой кислот. // Ж. физ. химии. 2002. -Т. 76, № 9.-С. 1565−1571.
- Сагадеев Е.В., Сафина Ю. Г. Использование функции «состав свойство» для определения термохимических характкеристик производных трехкоординированного атома фосфора. // Ж. физ. химии. — 2004. — Т. 78, № 12.-С. 2147−2153.
- Сагадеев Е.В., Сафина Ю. Г. Термохимия производных фосфорной кислоты: эмпирический подход. // Ж. физ. химии. 2005. — Т. 79, № 3. — С. 427−432.
- Овчинников В.В., Лаптева Л. И., Киреев М. Г. Термохимия гетероатомных соединений. Сообщение 19. Энтальпии сгорания и образования алкилфосфинов в различных фазовых состояниях. // Изв. Акад. наук. Сер. хим.-2004.-№ 8.-С. 1693−1694.
- Stein S.E., Fahr A. High-temperature stabilities of hydrocarbons. //J. Phys. Chem. 1985. — V. 89, № 17.-P. 3714−3725.
- Yu J., Sumathi R., Green W.H., Jr. Accurate and efficient method for predicting thermochemistry of polycyclic aromatic hydrocarbons bond-centered group additivity. // J. Am. Chem. Soc. — 2004. — V. 126, № 39. — P. 12 685−12 700.
- Green J.H.S. Thermodynamic properties of the normal alcohols, C1-C12. // J. Appl. Chem. 1961. -V. 11, № 10. — P. 397−404.
- Chermin H.A.G. Thermo data for petrochemicals. Part 27: gaseous normal aldehydes. // Hydrocarbon Process. Petrol. Refiner. 1961. — V. 40, № 3. — P. 181−184.
- Andon R.J.L., Counsell J.F., Herington E.F.G., Martin J.F. Thermodynamic properties of organic oxygen compounds. Part 7. Calorimetric study of phenol from 12 to 330 K. // Trans. Faraday Soc. 1963. — V. 59, № 4. — P. 830−835.
- Draeger J.A. The methylbenzenes. II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation. // J. Chem. Thermodyn. -1985. V. 17, № 3. — P. 263−275.
- С ha о J., Wilhoit R.C., Zwolinski B.J. Ideal gas thermodynamic properties of ethane and propane. // J. Phys. Chem. Ref. Data. 1973. — V. 2, № 2. — P. 427 438.
- Messerly J.F., Todd S.S., Finke H.L. Low-temperature thermodynamic properties of n-propyl- and n-butyl-benzene. // J. Phys. Chem. 1965. — V. 69, № 12. — P. 4304−4310.
- Scott D.W. Chemical thermodynamic properties of hydrocarbons and related substances. Properties of the alkane hydrocarbons, CI through C10 in the ideal gas state from 0 to 1500 K. Bulletin 666. Washington: U.S. Bureau of Mines, 1974.
- Frenkel ML, Kabo G.J., Marsh K.N., Roganov G.N., Wilhoit R.C. Thermodynamics of organic compounds in the gas state. College Station, TX: Thermodynamic Research Center, 1994. V. I.
- Banerjee S.C. Thermodynamic properties of the chloroacetic acid. // Br. Chem. Eng.- 1969.-V. 14,№ 5.-P. 671.
- Adams W.J., Geise H.J., Bartell L.S. Structure, equilibrium conformation, and pseudorotation in cyclopentane. An electron diffraction study. // J. Am. Chem. Soc. 1970. -V. 92, № 17. — P. 5013−5019.
- Aston J.G., Fink H.L., Schumann S.C. The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclopentane. Evidence for a non-planar structure. // J. Am. Chem. Soc. 1943. — V. 65, № 3. -P. 341−346.
- Geise H.J., Adams W.J., Bartell L.S. Electron diffraction study of gaseous tetrahydrofuran. // Tetrahedron. 1969. — V. 25, № 15. — P. 3045−3052.
- Almenningen A., Seip H.M., Willadsen T. Studies on molecules with five-membered rings. II. An electron diffraction investigation of gaseous tetrahydrofuran. I! Acta Chem. Scand. 1969. — V. 23, № 8. — P. 2748−2754.
- Smithson T.L., Wieser H. The far-infrared spectrum of tetrahydrothiophene. The bend/twist vibrations and associated barriers. // J. Mol. Spectrosc. 1983. — V. 99, № 1. — P. 159−166.
- Hendrickson J.B. Molecular Geometry. IV. The Medium Rings. // J. Am. Chem. Soc. 1964. — V. 86, № 22. — P. 4854−4866.
- Dorofeeva O.V., Mastryukov V.S., Allinger N.L., Almenningen A. Molecular structure and conformations of cyclononane as studied by electron diffraction and molecular mechanics. // J. Phys. Chem. 1990. — V. 94, № 21. — P. 8044−8048.
- Stepanian S.G., Reva I.D., Radchenko E.D., Rosado M.T.S., Duarte M.L.T.S., Fausto R., Adamowicz L. Matrix-isolation infrared and theoretical studies of the glycine conformers. // J. Phys. Chem. A. 1998. — V. 102, № 6. — P. 1041−1054.
- Stepanian S.G., Reva I.D., Radchenko E.D., Adamowicz L. Conformational behavior of a-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study. //J. Phys. Chem. A. 1998. — V. 102, № 24. — P. 4623−4629.
- Jarmelo S., Fausto R. Entropy effects in conformational distribution and conformationally dependent UV-induced photolysis of serine monomer isolated in solid argon. // J. Mol. Struct. 2006. — V. 786, № 2−3. — P. 175−181.
- Jesus A.J.L., Rosado M.T.S., Reva /., Fausto R., Eusebio M.E., Redinha J.S. Conformational study of monomeric 2,3-butanediols by matrix-isolation infrared spectroscopy and DFT calculations. // J. Phys. Chem. A. 2006. — V. 110, № 12. -P. 4169−4179.
- Дорофеева O.B., Шишков И. Ф., Харгиттаи И., Bivmoe JI.B. Структура молекулы метил-2-нитротолилсульфида по электронографическим данным и результатам квантово-механического расчета. // Ж. физ. химии. 2005. — Т. 79, № 10.-С. 1914−1916.
- Dorofeeva О. V., Shishkov I. К, Vilkov L. К, Hargittai I. Molecular structure and conformational composition of l-(methylthio)methyl.-2-nitrobenzene
- MTMNB): a theoretical and experimental study. // Struct. Chem. 2005. — V. 16, № 6.-P. 617−628.