Протеализин — новая протеиназа Serratia proteamaculans 94: структура, свойства и перспективы практического использования
Диссертация
Работа поддержана грантами РФФИ № 03−04−48 754-а «Структурные основы низкотемпературной активности ферментов. Новая психрофильная коллагеназа», № 06−04−48 678-а «Пропептиды как модуляторы функциональной активности белков» и № 06−04−8 123-офи «Создание активного при пониженных температурах коллагенолитического ферментного препарата для мясной промышленности». На модели протеализина впервые… Читать ещё >
Список литературы
- Березин И.В., Клячко H.JT., Левашов А. В., Мартинек К., Можаев В. В., Хмельницкий Л. Биотехнология. Иммобилизованные ферменты. 1987, Москва: Высшая школа.
- Rawlings N.D., Tolle D.P., Barrett A.J. MEROPS: the peptidase database. // Nucleic Acids Res., 2004. 32(Database issue): p. 160−164.
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. // Biochem. Biophys. Res. Commun., 1967. 27(2): p. 157−162.
- Thayer M.M., Flaherty K.M., McKay D.B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. // J. Biol. Chem., 1991. 266(5): p. 2864−2871.
- Серкина А.В., Шевелев А. Б., Честухина Г. Г. Структура и функции предшественников бактериальных протеиназ. // Биорг. хим., 2001. 27(5): с. 323−346.
- Mclver K.S., Kessler E., Olson J.C., Ohman D.E. The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. II Mol. Microbiol., 1995. 18(5): p. 877−89.
- Braun-P., Tommassen J., Filloux A. Role of the propeptide in folding and secretion of elastase of Pseudomonas aeruginosa. II Mol. Microbiol., 1996. 19(2): p. 297 306.
- Marie-Claire C., Ruffet E., Beaumont A., Roques B.P. The prosequence of thermolysin acts as an intramolecular chaperone when expressed in trans with the mature sequence in Escherichia coli. II J. Mol. Biol., 1999. 285(5): p. 1911−1915.
- Serkina A.V., Gorozhankina T.F., Shevelev A.B., Chestukhina G.G. Propeptide of the metalloprotease of Brevibacillus brevis 7882 is a strong inhibitor of the mature enzyme. II FEBS Lett., 1999. 456(1): p. 215−219.
- O’Donohue M.J., Beaumont A. The roles of the prosequence of thermolysin in enzyme inhibition and folding in vitro. // J. Biol. Chem., 1996. 271(43): p. 26 477−26 481.
- Kessler E., Safrin M. The propeptide of Pseudomonas aeruginosa elastase acts an elastase inhibitor. II J. Biol. Chem., 1994. 269(36): p. 22 726−22 731.
- Kearns D.B., Bonner P.J., Smith D.R., Shimkets L.J. An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. II J. Bacteriol., 2002. 184(6): p. 1678−1684.
- Miyoshi S., Kawata K., Tomochika K., Shinoda S., Yamamoto S. The C-terminal domain promotes the hemorrhagic damage caused by Vibrio vulnificus metalloprotease. // Toxicon, 2001. 39(12): p. 1883−1886.
- Miyoshi S., Wakae H., Tomochika K., Shinoda S. Functional domains of a zinc metalloprotease from Vibrio vulnificus. II J. Bacteriol., 1997. 179(23): p. 7606−7609.
- Miyamoto K., Nukui E., Hirose M., Nagai F., Sato T., Inamori Y., Tsujibo H. A metalloprotease (Mprlll) involved in the chitinolytic system of a marine bacterium, Alteromonas sp. strain 0−7. // Appl. Environ. Microbiol., 2002. 68(11): p. 5563−5570.
- Wetmore D.R., Wong S.L., Roche R.S. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus. II Mol. Microbiol., 1992. 6(12): p. 1593−1604.
- Toma S., Campagnoli S., De Gregoriis E., Gianna R., Margarit I., Zamai M., Grandi G. Effect of Glu-143 and His-231 substitutions on the catalytic activity and secretion of Bacillus subtilis neutral protease. // Protein Eng., 1989. 2(5): p. 359−364.
- Bitar A.P., Cao M., Marquis H. The metalloprotease of Listeria monocytogenes is activated by intramolecular autocatalysis. II J. Bacteriol., 2008. 190(1): p. 107−111.
- Marie-Claire C., Roques B.P., Beaumont A. Intramolecular processing of prothermolysin. H J. Biol. Chem., 1998. 273(10): p. 5697−5701.
- Veltman O.R., Vriend G., Hardy F., Mansfeld J., van den Burg B., Venema G., Eijsink V.G. Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases. // Eur. J. Biochem., 1997. 248(2): p. 433−440.
- Voordouw G., Milo C., Roche R.S. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. II Biochemistry, 1976. 15(17): p. 3716−3724.
- Coolbear T., Whittaker J.M., Daniel R.M. The effect of metal ions on the activity and thermostability of the extracellular proteinase from a thermophilic Bacillus, strain EA.l. II Biochem. J., 1992. 287 (Pt 2): p. 367−374.
- Corbett R.J., Ahmad F., Roche R.S. Domain unfolding and the stability of thermolysin in guanidine hydrochloride. // Biochem. Cell. Biol., 1986. 64(10): p. 953−961.
- Hausrath A.C., Matthews B.W. Redetermination and refinement of the complex of benzyl succinic acid with thermolysin and its relation to the complex with carboxypeptidase A. II J. Biol. Chem., 1994. 269(29): p. 18 839−18 842.
- Holmes M.A., Tronrud D.E., Matthews B.W. Structural analysis of the inhibition of thermolysin by an active-site-directed irreversible inhibitor. // Biochemistry, 1983. 22(1): p. 236−240.
- Jin Y., Kim D.H. Inhibition stereochemistry of hydroxamate inhibitors for thermolysin. II Bioorg. Med. Chem. Lett., 1998. 8(24): p. 3515−3518.
- Kester W.R., Matthews B.W. Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. // Biochemistry, 1977. 16(11): p. 2506−2516.
- Mock W.L., Aksamawati M. Binding to thermolysin of phenolate-containing inhibitors necessitates a revised mechanism of catalysis. // Biochem J., 1994. 302 (Pt 1): p. 57−68.
- Matthews B.W. Structural basis of the action of thermolysin and related zinc peptidases. // Acc. Chem. Res., 1988. 21: p. 333−340.
- Hangauer D.G., Monzingo A.F., Matthews B.W. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. II Biochemistry, 1984. 23(24): p. 5730−5741.
- Feder J., Lewis C., Jr. Studies on the specificity of Bacillus subtilis neutral protease with insulin B-chain. // Biochem Biophys Res Commun, 1967. 28(3): p. 318−323.
- Mei H.C., Liaw Y.C., Li Y.C., Wang D.C., Takagi H., Tsai Y.C. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Glyl24 and Glyl51 with Ala. II Protein Eng., 1998. 11(2): p. 109−117.
- Bech L.M., Sorensen S.B., Breddam K. Mutational replacements in subtilisin 309. Vail04 has a modulating effect on the P4 substrate preference. // Eur. J. Biochem., 1992. 209(3): p. 869−874.
- McKay D.B., Thayer M.M., Flaherty K.M., Pley H., Benvegnu D. Crystallographic structures of the elastase of Pseudomonas aeruginosa. II Matrix Suppl., 1992. 1: p. 112−115.
- Hausrath A.C., Matthews B.W. Thermolysin in the absence of substrate has an open conformation. // Acta Crystallogr. D Biol. Crystallogr., 2002. 58(Pt 6 Pt 2): p. 1002−1007.
- Veltman O.R., Eijsink V.G., Vriend G., de Kreij A., Venema G., Van den Burg B. Probing catalytic hinge bending motions in thermolysin-like proteases by glycine—"alanine mutations. II Biochemistry, 1998. 37(15): p. 5305−5311.
- Monzingo A.F., Matthews B.W. Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans. // Biochemistry, 1982. 21(14): p. 3390−3394.
- Bolognesi M.C., Matthews B.W. Binding of the biproduct analog L-benzylsuccinic acid to thermolysin determined by X-ray crystallography. // J. Biol. Chem., 1979. 254(3): p. 634−639.
- Демидкж И.В., Заволотская M.B., Велишаева H.C., Сафина Д. Р., Костров C.B. Про-зависимый фолдинг микробных протеолитических ферментов. // Мол. ген. Микробиол. Вирусол., 2003. 4(4): с. 11−15.
- Demidyuk I.V., Gasanov E.V., Safina D.R., Kostrov S.V. Structural Organization of Precursors of Thermolysin-like Proteinases. // Protein J., 2008. 27: p. DOI: 10.1007/s 10 930−008−9143−2.
- Bendtsen J.D., Nielsen H., von Heijne G., Brunak S. Improved prediction of signal peptides: SignalP 3.0. II J. Mol. Biol., 2004. 340(4): p. 783−795.
- Kyostio S.R., Cramer C.L., Lacy G.H. Erwinia carotovora subsp. carotovora extracellular protease: characterization and nucleotide sequence of the gene. // J. Bacteriol., 1991. 173(20): p. 6537−6546.
- Kwon Y.T., Lee H.H., Rho H.M. Cloning, sequencing, and expression of a minor protease-encoding gene from Serratia marcescens ATCC21074. // Gene, 1993. 125(1): p. 75−80.
- Bozhokina E., Khaitlina S., Adam T. Grimelysin, a novel metalloprotease from Serratia grimesii, is similar to ECP32. // Biochem.Biophys. Res. Commun., 2008. 367(4): p. 888−892.
- Held K.G., LaRock C.N., D’Argenio D.A., Berg C.A., Collins C.M. A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. H Appl. Environ. Microbiol., 2007. 73(23): p. 7622−7628.
- Tang B., Nirasawa S., Kitaoka M., Hayashi K. In vitro stepwise autoprocessing of the proform of pro-aminopeptidase processing protease from Aeromonas caviae T-64. // Biochim. Biophys. Acta., 2002. 1596(1): p. 16−27.
- Tang B., Nirasawa S., Kitaoka M., Hayashi K. The role of the N-terminal propeptide of the pro-aminopeptidase processing protease: refolding, processing, and enzyme inhibition. // Biochem. Biophys. Res. Commun., 2002. 296(1): p. 78−84.
- Chang A.K., Park J.W., Lee E.H., Lee J.S. The N-terminal propeptide of Vibrio vulnificus extracellular metalloprotease is both an inhibitor and substrate for the enzyme. II J. Bacteriol., 2007. 189(19): p. 6832−6838.
- Mclver K.S., Kessler E., Ohman D.E. Identification of residues in the Pseudomonas aeruginosa elastase propeptide required for chaperone and secretion activities. II Microbiology, 2004. 150(Pt 12): p. 3969−3977.
- Zabolotskaya M.V., Demidyuk I.V., Akimkina T.V., Kostrov S.V. A novel neutral protease from Thermoactinomyces species 27a: sequencing of the gene, purification, and characterization of the enzyme. // Protein J., 2004. 23(7): p. 483−492.
- Hase C.C., Finkelstein R.A. Comparison of the Vibrio cholerae hemagglutinin/protease and the Pseudomonas aeruginosa elastase. // Infect. Immun., 1990. 58(12): p. 4011−4015.
- Norqvist A., Norrman B., Wolf-Watz H. Identification and characterization of a zinc metalloprotease associated with invasion by the fish pathogen Vibrio anguillarum. II Infect. Immun., 1990. 58(11): p. 3731−3736.
- Oda K., Okayama K., Okutomi K., Shimada M., Sato R., Takahashi S. A novel alcohol resistant metalloproteinase, vimelysin, from vibrio sp. T1800: purification and characterization. II Biosci. Biotechnol. Biochem., 1996. 60(3): p. 463−467.
- Nirasawa S., Nakajima Y., Zhang Z.Z., Yoshida M., Hayashi K. Intramolecular chaperone and inhibitor activities of a propeptide from a bacterial zinc aminopeptidase. // Biochem. J., 1999. 341 (Pt 1): p. 25−31.
- Miyoshi N., Shimizu C., Miyoshi S., Shinoda S. Purification and characterization of Vibrio vulnificus protease. II Microbiol. Immunol., 1987. 31(1): p. 13−25.
- David V.A., Deutch A.H., Sloma A., Pawlyk D., Ally A., Durham D.R. Cloning, sequencing and expression of the gene encoding the extracellular neutral protease, vibnolysin, of Vibrio proteolytics. // Gene, 1992. 112(1): p. 107−112.
- Teo J.W., Zhang L.H., Poh C.L. Cloning and characterization of a metalloprotease from Vibrio harveyi strain AP6. // Gene, 2003. 303: p’j 147−156'.', ' ' f 'ч- ¦'li
- Austin В., Austin D.A., Bacterial fish pathogens: diseases in farmed and wild fish. 1999, London: Springer.
- Zhang F., Chen J., Chi Z., Wu L.F. Expression and processing of Vibrio anguillarum zinc-metalloprotease in Escherichia' coli. II Arch. Microbiol., 2006. 186(1): p. 11−20.1
- Staroscik A.M., Denkin S.M., Nelson D.R. Regulation of the Vibrio anguillarum metalloprotease lEmpA by posttranslational modification. II J. Bacteriol., 2005. 187(7): p. 2257−2260.
- Балабан Н.П., Марданова A.M., Шарипова' 'M.P'., i Габдрахманова JI.A., Соколова Е. А., Руденская’Г.Н.,'Лёщйнская Й. Б. КП о лужение! и 'характеристика тиолзависимой сериновой протеиназы 2 Bacillus intermedins 3−19. II Биохимия, 2004. 69(4): с. 420−426.
- Maniatis Т., Fritsch E.F., Sambrook J., Molecular cloning. A laboratory manual. 1982, NY: Cold Spring Harbor Laboratory, Cold Spring Harbor.
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. II Nature, 1970. 227(5259): p. 680−685.
- Charney J., Tomarelli R.M. Determination of the proteolytic activity of duodenal juice. II J. Biochem., 1947. 177: p. 501−505.
- Bredford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dge binding. // Anal. Biochem., 1976. 72(1−2): p. 248−254.
- Гаспаров C.B., Дактярь В. П. Определение по связыванию с красителем кумасси бриллянтовым голубым G-250. II Биохимия, 1994. 59(6): р. 763−777.
- Feder J. A spectrophotometry assay for neutral protease. // Biochem Biophys Res Commun, 1968. 32(2): p. 326−332.
- Inouye K. Effects of salts on thermolysin: activation of hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester, and a unique change in the absorption spectrum of thermolysia // J. Biochem. (Tokyo), 1992. 112: p. 335−340.
- Батаева Д.С. Создание и использование коллагенолитического препарата микробного происхождения для улючшения качества мясных продуктов. Диссертация на соискание ученой степени кандидата технических наук. ВНИИМП, 2001.
- Gobinda S., Sommer S.S. The «megaprimer» mehtod of site-directed mutagenesis. // Biotechniques, 1990. 8(4): p. 404−407.
- Костенко Ю.Г., Спицина Д. Н., Батаева Д. С., Костров С. В., Носовская Е. А., Штамм Serratia proteamaculans 94 продуцент коллагеназы. // 2001. Пат. Россия No 2 175 350.
- O’Donohue M.J., Roques В.Р., Beaumont A. Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin. // Biochem J., 1994. 300 (Pt 2): p. 599−603.
- Jongeneel C.V., Bouvier J., Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. // FEBSLett., 1989. 242(2): p. 211−214.
- Антонов B.K., Химия протеолиза. 1991, Москва: Наука.
- Novagen, рЕТsystem manual. 2002.
- Sohoni S.S., Joshi P.N. Isolation end characterization of a protease from Bacillus subtilis. II Indian J. Biochem. Biophys., 1982. 19(6): p. 399−402.
- Amersham pharmacia biotech AB. Protein purification. Handbook. 1999.
- Feder J., Keay L., Garrett L.R., Cirulis N. Moseley M.H., Wildi B.S. Bacillus cereus neutral protease. // Biochim Biophys Acta, 1971. 251(1): p. 74−78.
- Шагинян K.A., Изотова JI.C., Йомантас В., Строгин А. Я., Степанов В. М. Металлопротеиназа из Bacillus subtilis внеклеочный и внутриклеточный ферменты. II Биохимия, 1980. 45(11): с. 2083−2095.
- Паберит II., Панк М. С., Лийдере М. А., Ванаталу К. П. Очистка и свойства нейтральной металлопротеиназы из термофильной бактерии Bacillus brevis. II Биохимия, 1984. 49(2): с. 275−284.
- Silder W., Kumpf В., Peterhaus В., Zuber Н. A neutral proteinase produced by Bacillus cereus with hith sequence homology to thermolysin: production, isolation and characterization. // Appl. Microbiol, and Biotechnol., 1986. 25(1): p. 18−24.
- Морозова И.П., Честухина Г. Г., Борматова М. Е., Гололобов М., Иванова Н. М., Лысогорская Е. Н., Филиппова И., Ходова О. М., Тимохина Е. А. Выделение и характеристика металлопротеиназы из Bacillus megaterium. II Биохимия, 1993. 58(6): с. 896−907.
- Чумаков В.Н., Азимова М. И., Зайцев Д. А., Габриэлян А. Э., Костров С. В. Анализ структурных основ термостабильности секреторных металлопротеиназ на модели химерных ферментов. // Молекулярная биология, 1995.29(5): р. 992−1000.
- Toma S., Campagnoli S., Margarit I., Gianna R., Grandi G., Bolognesi M., De Filippis V., Fontana A. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease. // Biochemistry, 1991. 30(1): p. 97−106.
- Dahlquist F.W., Long J.W., Bigbee W.L. Role of Calcium in the thermal stability of thermolysin. II Biochemistry, 1976. 15(5): p. 1103−1111.
- Khan S.M., Darnall D.W. The hydrolysis of 3-(2-furylacryloyl)-glycyl-l-leucine amide by thermolysin. II Anal Biochem., 1978. 86(1): p. 332−336.