Помощь в написании студенческих работ
Антистрессовый сервис

Регуляция аденилатциклазы сердца кролика кальмодулином и регуляторным компонентом, связывающим гуаниловые нуклеотиды

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Происходит в результате Сазависимого сопряжения фермента с ка-льмодулином /9, 33, 42, 44, 47, 50, 65, 100, 103, 207, 234, 242, 316/. Существует точка зрения, что кальмодулин (КМ) регулирует активность особой (КМ-зависимой формы) АЦ, отличной от той, активность которой регулируется гормонами, путем сопряжения каталитического компонента с ns-белком /34, 43, 45/. Обнаружено, что кальмодулин… Читать ещё >

Регуляция аденилатциклазы сердца кролика кальмодулином и регуляторным компонентом, связывающим гуаниловые нуклеотиды (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ
  • Глава I. Регуляция аденилатциклазы клеток эукариот гуани-ловыми нуклеотидами
    • 1. 1. ГТФ-зависимая активация аденилатциклазы гормонами. Гормонстицулируемый регуляторный ГТФ-азный цикл
    • 1. 2. Белковые компоненты гормонстимулируемого аденилатциклазного комплекса
    • 1. 2. Л. Гормональный рецептор
      • 1. 2. 2. Регуляторный компонент, опосредующий ГТФ-зависимую активацию аденилатциклазы гормоном
      • 1. 2. 3. Каталитический компонент эденилатциклазного комплекса
    • 1. 3. Лигандзависимые взаимодействия-между компонентами аденилатциклазного комплекса. Модель активации аденилатциклазы гормонами и гуаниловыми нуклеотидами
  • Глава 2. Регуляция аденилатциклазы ионами кальция. Участие кальмодулина в проявлении Са^±зависимой активации фермента. У
  • Глава 3. Аденилатциклаза сердца
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • I. МАТЕРИАЛЫ И МЕТОДЫ
      • 1. 1. Выделение препарата наружных плазматических мембран (легкой сарколеммы) из сердца кролика
      • 1. 2. Солюбилизация и хроматография регуляторного и каталитического компонентов аденилатциклазы сердца
      • 1. 3. Выделение кальмодулина из головного мозга быка
      • 1. 4. Выделение препарата плазматических мембран из. стриарной системы головного мозга кролика
      • 1. 5. Выделение препарата плазматических мембран из тромбоцитов человека
      • 1. 6. Определение активности аденилатциклазы
      • 1. 7. Электрофорез в полиакриламидном геле
      • 1. 8. Расчет концентрации свободного Са^+
      • 1. 9. Определение концентрации белка
      • 1. 10. Использованные реактивы
    • 2. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
      • 2. 1. Характеристика свойств аденилатциклазы в препарате легкой сарколеммы из сердца кролика
      • 2. 2. Регуляция аденилатциклазы в препарате легкой сарколеммы ионами кальция. Участие кальмодулина в проявлении активирующего влияния Са^+ на активность фермента

      2.3. Солюбилизация, разделение и реконструкция4каталитического компонента и n -белка аденилатциклазного комплекса сердца. Проявление кальмодулинзависимой регуляции на реконструированном комплексе: n -белок-каталитический компонент.

      ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

      ВЫВОДЫ.

Расположенная в наружной плазматической мембране клеток эука-риот гормонстимулируемая аденилатциклаза /АТФ-пирофосфат-лиаза (цикли зующая) КШ 4.6 Л Л./ представляет собой трансмембранный комплекс, состоящий по меньшей мере из трех компонентов: гормонального рецептора, регуляторного компонента, связывающего гуаниловые нуклеотиды, (Ng-белка) и собственно каталитического компонента фермента. Гормонсвязывающий участок рецептора экспонирован в межклеточное пространство, а участок связывания гуаниловых нуклеотидов Ng-белка и активный центр каталитического компонента ориентированы в сторону цитоплазмы. Связывание гормона с рецептором вызывает ГТФ-зависимое сопряжение Ng-белка с каталитическим компонентом и появление у последнего способности катализировать образование цАМФ в физиологических условиях. Гидролиз Ns-белком ГТФ до ГДФ и Фн приводит к диссоциации каталитического компонента и Ng-белка и, соответственно, к устранению гормонстимулированной активности фермента. Помимо гормона и ГТФ необходимым кофактором функционального сопряжения ы3-белка и каталитического компонента является Щ2±. переход Ng-белка в ГТФ-активированную конформацию возможен лишь в присутствии этого катиона /38, 57, 67, 189, 263/.

2+.

Са является также важным регулятором активности гормончув-ствительной аденилатциклазы САЦ). В области физиологических концентраций: Са^+ вызывает ингибирование активности этого фермента. Высказывается предположение, что негативная регуляция АЦ ионами кальция осуществляется в результате связывания катиона в регуляторном центре, расположенном на каталитическом компоненте фермента /25, 57, 115, 176, 184, 204, 243, 244, 297/.

АЦ некоторых тканей (головного мозга, почек, кишечника, легких, надпочечников и др.) способна также и активироваться микро.

2+ молярными концентрациями Са. Установлено, что эта активация.

2+ происходит в результате Сазависимого сопряжения фермента с ка-льмодулином /9, 33, 42, 44, 47, 50, 65, 100, 103, 207, 234, 242, 316/. Существует точка зрения, что кальмодулин (КМ) регулирует активность особой (КМ-зависимой формы) АЦ, отличной от той, активность которой регулируется гормонами, путем сопряжения каталитического компонента с ns-белком /34, 43, 45/.

АЦ сердца активируется большим числом гормонов: катехоламинами, гистамином, глюкагоном и рядом других эффекторов по «клас.

2+ 2+ сическому" мд, ГТФ-зависимому механизму /40, 82, 93/. Сазависимая регуляция АЦ сердца изучена в значительно меньшей степени. К моменту выполнения настоящей работы было твердо установлено лишь то, что в сердце АЦ ингибируется Са^+, тогда как. вопрос о способности этого фермента активироваться Са^+ опосредовано через сопряжение с КМ оставался открытым /3, 247, 329/.

Целью настоящей работы было на примере АЦ из сердечной мышцы кролика изучить регуляцию АЦ сердца ионами кальция и КМ. Учитывая облигатную роль гуаниловых нуклеотидов в функционировании АЦ комплекса клеток эукариот, особое внимание было уделено характеристи.

2+ ке м3-белка и выяснению его роли в Сазависимой регуляции АЦ сердца КМ. На примере АЦ сердца была подвергнута анализу гипотеза о существовании в тканях двух независимых форм АЦ: КМ-зависимой и гормонрегулируемой. В работе были поставлены следующие задачи: I) выделить высокоочищенный препарат сарколеммы из сердца кролика и охарактеризовать в нем регуляцию АЦ ионами кальция и КМвыяснить 2+ действие мд, гуаниловых нуклеотидов, гормонов, ионов фтора, фо-рсколина и холерного токсина на активность и Са^±зависимую регуляцию фермента — 2) провести солюбилизацию компонентов АЦ сердца из мембраны, разделить их и затем реконструировать каталитический компонент с Nбелком и КМ. На реконструированном АЦ комплексе изучить характер регуляции каталитического компонента кгв-белком и КМ.

ОБЗОР ЛИТЕРАТУРЫ.

ВЫВОДЫ.

1. Доказано, что при микромолярных концентрациях Са2+ кальмоду-лин активирует аденилатциклазу плазматических мембран сердца кролика. Активацию фермента кальмодулином подавляют тропонин I, три-фторперазин и высокое соотношение концентраций мд /са2+.

2. Показано, что кальмодулинзависимая активация аденилатциклазы сердца проявляется как на базальном, так и на активированном изо-протеренолом+ГТФ, 6pp (NH)p, NaF t форсколином уровнях активности фермента. Перечисленные активаторы аденилатциклазы повышают величину кальмодулинзависимой активности фермента, не изменяя кажущегося сродства аденилатциклазы к кальмодулину.

3. Установлено, что кальмодулин не защищает аденилатциклазу сердца от термоинактивации. При термоинактивации достоверное стабилизирующее действие на кальмодулинзависимую активность фермента оказывает Gpp (NH)p.

4. Обнаружено, что кальмодулин не влияет на изомеризацию N^-бел-ка в активированную гуаниловым нуклеотидом и мд2+ конформацию, но активирует аденилатциклазу сердца, повышая число оборотов каталитического компонента фермента, находящегося в функционально активном сопряжении с ns-белком.

5. Сделано заключение, что в сердце не существует особой кальмодулинзависимой формы аденилатциклазы. В присутствии Са2+ и гуа-нилового нуклеотида фермент представлен комплексом: кальмодулин. каталитический компонентnбелок.

Показать весь текст

Список литературы

  1. П.В., Панченко М. П., Ткачук В. А. Действие GTP и NaF на аденилатциклазу сердца кролика, активированную гуанил-б'-илимидодифосфатом. Биохимия, 1980, т. 45, вып. II, с.1970−1979.
  2. П.В., Свитина-Улитина И.В., Ткачук В. А. Взаимосвязь между регуляторными эффектами аденозина, АТР и фторида на аденилатциклазу сердца. Биохимия, 1982, т. 47, вып. 3, с. 455−464.
  3. П.В., Ткачук В. А. Участие Са^±зависимого белкового активатора в регуляции активности аденилатциклазы сердца ионами Са. Докл. Акад. Наук СССР, 1978, т. 238, № 3, с. 726 729.
  4. Н.В., Гусев Н. Б. Тропонин сердца быка: выделение и изучение катионсвязывающих свойств с помощью флуоресцентного зонда диметиламинонафтейродина. Биохимия, 1981, т. 46, вып. 3, с. 495−503.
  5. Г. Ю., Балденков Г. Н., Авдонин П. В., Панченко М. П., Ткачук В. А., Швец В. И. Восстановление чувствительности солю-билизированной аденилатциклазы сердца кролика к гормонам и гуаниловым нуклеотидам. Биохимия, 198I, т. 46, вып. I, с. 148−155.
  6. Р. Комплексоны в химическом анализе. Наука, М., I960, с. 304.
  7. В.А., Балденков Г. Н. Регуляция активности аденилатциклазы гормонами. В сб. «Циклические нуклеотиды» (под ред.
  8. С.Е.Северина) Наука, М., 1979, с. 5−19.
  9. Alvarez R., and Bruno J.J. Activation of cardiac adenylate cyclase: hormonal modification of the magnesium ion requirement. Proc.Natl.Acad.Sci.USA, 1977, v.74, N 1, 92−95.
  10. Amiranoff B.M., Laburthe M.C., Rouyer-Fessard C.M., Demaille J.G., and Rosselin G.E. Calmodulin stimulation of adenylate cyclase of intestinal epithelium. Eur.J.Biochem., 1983, v.130, N 1, p.33−37.
  11. Anand-Srivastava M.B., and Johnson R.A. Role of phospholipids in coupling of adenosine and dopamine receptors to striatal adenylate cyclase. J.Neurochem., 1981, v.36, N 5, p.1819−1828.
  12. Anderson W.B., Mukku V.R., and Johnson G.S. Enhanced GTP-depen-dent activities of the adenylate cyclase system: basis for increased hormonal responsiveness. Arch.Biochem.Biophys., 1979, v.197, N 2, p.599−606.
  13. Andreasen T.J., Heideman W., Rosenberg G.B., and Storm D.R. Photoaffinity labeling of brain adenylate cyclase preparations with azido iodocalmodulin. Biochemistry, 1983, v.22,1. N 11, p.2757−2762.
  14. Arad H., Rimon G., and Levitzki A. The reversal of the Gpp (NH)p-activated state of adenylate cyclase by GTP and hormone by the «collision coupling» mechanism. J.Biol.Chem., 1981, v.256, N 4, p.1593−1597.
  15. Atlas D., Volsky D.J., and Levitzki A. Lateral mobilities of-receptors involved in adenylate cyclase activation. Biochim.Biophys.Acta, 1980, v.597, N 1, p.64−69.
  16. Ausiello D.A., and Hall D. Regulation of vasopressin-sensitive adenylate cyclase by calmodulin. J.Biol.Chem., 1981, v.256,1. N 19, p.9796−9798.
  17. Awad J.A., Johnson R.A., Jacobs K.H., and Schultz G. Interactions of forscolin and adenylate cyclase. Effects onsubstrate kinetics and protection against inactivation by heat and N-ethylmaleimide. J.Biol.Chem., 1983, v.258, N 5, p.2960−2965.
  18. Bar H.P., and Hechter 0. Adenyl cyclase and hormone action. III. Calcium requirement for ACTH stimulation of adenyl cyclase. Biochem.Biophys.Res.Commun., 1969, v.35, p.681−686.
  19. Bar H.P., and Hechter 0. Adenyl cyclase and hormone action. I. Effects of adrenocorticotropic hormone, glucagon and epinephrine on the plasma membrane of rat fat cells. Proc.Natl. Acad.Sci.USA, 1969, v.66, p.350−356.
  20. Barovsky K., and Brooker G. (-) — a newcytoma cells. J. Cyclic Nucleotide Res., 1980, v.6, N 4, p.297−307.
  21. Bartfai T. Preparation of metal-cholate complexes and the design of steady state kinetic experiment involving metal nucleotide complexes. Adv. Cyclic Nucl.Res., (ed.by J.B.Brooker, P. Greengard, and G.A.Robison), 1979, v.10, p.219−242.
  22. Bender J.L., and Neer E.J. Properties of the adenylate cyclase catalytic unit from caudate nucleus. J.Biol.Chem., 1983, v.258, N 4, p.2432−2439.
  23. Berrie C.P., Birdsall N.J.H., Burgen A.S.V., and Hulme E.C. Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem.Biophys.Res.Commun., 1979, v.87, p.1000−1005.
  24. Bird S.J., and Maguire M.E. The agonist specific effect ofcyclase activation. J.Biol.Chem., 1978, v.253, N 24, p.8826−8834.
  25. Birnbaumer L. Hormone-sensitive adenylyl cyclases: useful models for studying hormone receptor functions in cell-free systems. Biochim.Biophys.Acta, 1973, v.300, p.129−158.
  26. Birnbaumer L., Pohl S.L., and Rodbell M. Adenyl cyclase in fat cells. I. Properties and the effects of adrenocorticotropin and fluoride. J.Biol.Chem., 1969, v.244, N 13, p.3468−3476.
  27. Birnbaumer L., and Rodbell M. Adenyl cyclase in fat cells.1. Hormone receptors. J.Biol.Chem., 1969, v.244, p.3477−3482.
  28. Birnbaumer L., Swartz T.L., Abramowitz J.- Mintz P.W., and Iyengar R. Transient and steady state kinetics of the interaction of guanyl nucleotide with adenylyl cyclase from rat liver plasma membranes. J.Biol.Chem., 1980, v.255, N 8, p.3542−3551.
  29. Bitonti A.J., Moss J., and Vaughan M. Resolution and activity of adenylate cyclase components in a Zwitterionic cholatepropanesulfonatej. Biochemistry, 1982, v.21, N 15, p.3650−3653.
  30. Bitonti A.J., Moss J., Tandon N.N., and Vaughan M. Prostaglandins increase GTP hydrolysis by membranes from human mononuclear cells. J.Biol.Chem., 1980, v.255, p.2026−2029.
  31. Blume A.J., and Foster C.J. Neuroblastoma adenylate cyclase. Role of 2-chloroadenosine, prostaglandin E^, and guanine nucleotides in regulation of activity. J.Biol.Chem., 1976, v.251, N 11, p.3399−3404.magnesium ion on binding by2+
  32. S49 lymphoma cells. Interaction of GTP and Mg in adenylatederivative
  33. Bobik A., Campbell J., Snow P., and Little P.J. The effectsof endogenous phospholipase A2 activation on beta adrenoceptor function in cardiac cells. J.Mol.Cell.Cardiol., 1983, v.15, p.759−768.
  34. Bockaert J., Roy C., and Jard S. Oxytocin-sensitive adenylate cyclase in frog bladder epithelial cells. Role of calcium, nucleotides, and other factors in hormone stimulation. J.Biol. Chem., 1972, v.247, p.7073−7081.
  35. Bradham L.S., and Cheung W.Y. Calmodulin-dependent adenylate cyclase. In book: Calcium and Cell Function, v. l Calmodulin (ed. by Cheung W.Y.), Acad (Press, 1980, p.109−126.2+
  36. Bradham L.S., Holt D.A., and Sims M. The effect of Ca on the adenyl cyclase of calf brain. Biochim.Biophys.Acta, 1970, v.276, p.434−443.
  37. Brandt D.R., Asano Т., Pedersen S.E., and Ross E.M. Reconsti-tution of catecholamine-stimulated guanosine triphosphatase activity. Biochemistry, 1983, v.22, N 19, p.4357−4362.2+
  38. Braun S., Arad H., and Levitzki A. The interaction of Mn with turkey erythrocyte adenylate cyclase. Biochim.Biophys. Acta, 1982, v.705, N 1, p.55−62.
  39. Braun S., Tolkovsky A.M., Steer M.L., Lester H.A., and Ler vitzky A. Activation and inhibition of adenylate cyclase hormones. Biochemical Society Transactions, 1982, v.10,1. N 6, p.496−498.2+
  40. Braun Т., and Dods R.F. Development of Mn -sensitive «soluble» adenylate cyclase in rat testis. Proc.Natl.Acad.Sci.USA, 1975, v.72, p.1097−1101.
  41. Bristow M.R., Cubicciotti R., Ginsburg R., Stinson E.B., and Johnson C. Histamine-mediated adenylate cyclase stimulation in human myocardium. Mol.Eharm., 1982, v.21, N 3, p.671−679.
  42. Brostrom С. 0., Brostrom М.А. and Wolff D.J. Calcium-dependent adenylate cyclase from rat cerebral cortex. Reversible activation by sodium fluoride. J.Biol.Chem., 1977, v.252,1. N 16, p.5677−5685.
  43. Brostrom C.O., Huang Y.-C., Breckenridge B.M., and Wolff D.J. Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc.Natl. Acad.Sci.USA, 1975, v.72, No 1, p.64−68.
  44. Brostrom C.O. and Wolff D.J. Properties and functions of calmodulin. Biochem.Pharm., 1981, v.30, N 12, p.1395−1405.
  45. Brostrom M.A., Brostrom C.O., Breckenridge B.M., and Wolff D.J. Regulation of adenylate cyclase from glial tumor cells by calcium and a calcium-binding protein. J.Biol.Chem., 1976, v.251, N 15, p.4744−4750.
  46. Brostrom M.A., Brostrom C.O., Breckenridge B.M., and Woff D.J. Calcium-dependent regulation of brain adenylate cyclase. Adv.Cycl.Nucl.Res., 1978 (ed. by George W.J. and Ignarro L. J), Raven Press, New York, p.85−99.
  47. Brostrom M.A., Brostrom C.O., and Wolff D.J. Calcium-dependent adenylate cyclase from rat cerebral cortex: activation by guanine nucleotides. Arch.Biochem.Biophys., 1978, v.191, N 1, p.341−350.
  48. Brostrom M.A., Brotman L.A., and Brostrom C.O. Calcium-dependent adenylate cyclase of pituitary tumor cells. Biochim. Biophys. Acta, 1982, v.721, N 3, p.227−235.
  49. Burns D.L., Moss J., and Vaughan M. Choleragen-stimulated release of guanyl nucleotides from turkey erythrocyte membranes. J.Biol.Chem., 1982, v.257, N 1, p.32−34.
  50. Burns D.L., Moss J., and Vaughan M. Release of guanyl nucleotides from the regulatory subunit of adenylate cyclase. J.
  51. Biol.Chem., 1983, v.258, N 2, p.1116−1120.
  52. Campbell B.J., Woodward C., and Borberg V. Calcium mediated interactions between the antidiuretic hormone and renal plasma membranes. J.Biol.Chem., 1972, v.247, p.6167−6175.
  53. Cassel D., Levkowitz H., Selinger Z. The regulatory GTP-ase cycle of turkey erythrocyte adenylate cyclase. J.Cycl.Nucl. Res., 1977, v.3, p.393−406.
  54. Cassel D., and Pfe. uffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc.Natl.Acad.Sci.USA, 1978, v.75, p.2669−2673.
  55. Cassel D., and Selinger Z. Catecholamine-stimulated GTP-ase activity in turkey erythrocyte membranes. Biochim.Biophys. Acta, 1976, v.452, p.538−551.
  56. Cassel D., and Selinger Z. Activation of turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTPase by guasine 51 -(jj-thio) triphosphate. Biochem.Biophys. Res.Commun., 1977, v.77, p.868−873.
  57. Cassel D., and Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc.Natl.Acad.Sci., 1977, v.74, p.3307
  58. Cech S.Y., and Maguire M.E. Magnesium regulation of thebeta receptor-adenylate cyclase complex. I. Effects of manganese on receptor binding and cyclase activation. Mol.Pharmacol., 1982, v.22, N 2, p.267−273.
  59. Chatelain P., Robberecht P, Huu A.N., and Christophe J. Promotion by Mg2+ of диалоз1пе 51- ^-imido)triphosphate activation of adenylate cyclase in rat lung and heart membranes. FEBS Lett., 1982, v.141, N 2, p.169−172.
  60. Chatelain p., Robberecht P., Waelbroeck M., De Neef P., Camus J., and Christophe J. Thermodependence of guanine nucleotide-activated rat cardiac adenylate cyclase activity: effect of cholera toxin pretreatment. Mol.Pharm., 1982, v.22, N 2, p.342−348 .
  61. Cherkscy B.D., Zadunaisky J.A., and Murphy R.B. Cytoskeletal constant of the J3 -adrenergic receptor in frog erythrocyte membranes. Proc.Natl.Acad.Sci.USA, 1980, v.77, N 11, p.6401−6405.
  62. Cheung W.Y. Cyclic 31,51-nucleotide phosphodiesterase: demonstration of an activator. Biochem.Biophys.Res.Commun., 19 70, v.38, p.533−538.
  63. Cheung W.Y. Cyclic 31,5 *-nucleotide phosphodiesterase: evidence for and properties of a protein activator. J.Biol.Chem., 1971, v.246, p.2859−2869.
  64. Cheung W.Y., Bradham L.S., Lynch T.J., Lin У.М., and Tallant E.A. Protein activator of cyclic 351-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem.Res.Commun., 1975, v.66, N 3, p.1055−1062.
  65. Christophe J., Svoboda M., and Lambert M. Determining steps in the regulatory GTPase cycle of rat pancreatic adenylate cyclase.- Philosophical transactions on the royal society of London. Series В Biological Sciences, v.296, N 1080, 1981, p.139.
  66. Citry Y., and Schramm M. Resolution, reconstitution and kinetics of the primary action of a hormone receptors. Nature, 1980, v.287, p.297−300.
  67. R.B., Сока Т.J., Green D.A., Barber R., and Butcher R.W. Differences in the forskolin activation of adenylate cyclases in wild type and variant lymphoma cells. Molec. Pharm., 1982, v.22, N 3, p.609−613.
  68. Cohen P., Burchell A., Foulkes J.C., Cohen P.W., Vanaman2 +
  69. T.C., and Nairn A.C. Identification of the Ca -dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett., 1978, v.92,N 2, p.287−293.
  70. Cohen P. The role of calcium ions, calmodulin and troponin in the regulation of phosphorylase kinase from rabbit skeletal muscle. Eur.J.Biochem., 1980, v. Ill, N2, p.563−574.
  71. DarflerF.G., Mahan L.C., Koachman A.M., and Insel P.A. Stimulation by forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J.Biol.Chem., 1982, v.257, N 20, p.11 901−11 907.
  72. Dedman J.R., Jackson R.L., Schreiber W.E., and Means A.R.2+
  73. Sequence homology of the Ca -dependent regulator of cyclicnucleotide phosphodiesterase from rat testis with other Ca^+1978binding proteins. J.Biol.Chem., v.253, p.343−346.
  74. De Lean A., Stadel J.M., and Lefkowitz R.J. A ternary complex model explains the agonist-specific binding properties ofthe adenylate cyclase coupled J& -adrenergic receptor. J.Biol. Chem., 1980, v.255, N 15, p.7108−7117.
  75. De Robertise E., Rodrignez G., De Lores A., Alberici M., Butcher R.W., Sutherland E.W. Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J.Biol.Chem., 1967, v.242, N 15, p.3487−3493.
  76. Downs R.W.Jr., Spiegel A.M., Singer M., Reen S., and Aurbach, G.D. Fluoride stimulation of adenylate cyclase is dependent on the guanine nucleotide regulatory protein. J.Biol.Chem., 1980, v.255, N 3, p.949−954.
  77. Druiranond G.I., and Dunham J. Properties of detergent-dispersed myocardial adenylate cyclase. Arch.Biochem.Biophys., 1978, v.189, N 1, p.63−75.
  78. Drummond G.I., and Duncan L. Adenyl cyclase in cardiac tissue. J.Biol.Chem., 1970, v.245, N 5, p.976−983.
  79. Drummond G.I., Sano M., and Nambi P. Skeletal muscle adenylate cyclase: reconstitution of fluoride and guanylnucleotide sensitivity. Arch.Biochem.Biophys., 1980, v.201, N 1, p.286
  80. Drummond G.I., Severson D.L., and Duncan L. Adenyl cyclase. Kinetic properties and nature of fluoride and hormone stimulation. J.Biol.Chem., v.246, N 13, p.4166−4173.
  81. Dufau M.L., and Catt K.J. In book: Cell Membrane Receptors for Viruses Antigens and Antibodies, Polypeptide Hormones and Small Molecules (Beers R.F.Jr., and Basset E.G., eds.) Raven Press, New York, 1976, p.135−163.
  82. Dulis B.H., and Wilson I.B. The-adrenergic receptor of live human polymorphonuclear leukocytes. J.Biol.Chem., 1980, v.255, N 3, p.1043−1048.
  83. Eckstein F., Cassel D., Levkowitz H., Lowe M., and Selinger Z. Guanosine 51−0-(2-triodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J.Biol.Chem., 1979, v.254, N 19, p.9829−9834.
  84. Eimerl S., Neufeld G., Korner M., and Schramm M. Functionalthe membrane of a cell. Proc.Natl.Acad.Sci.USA, 1980, v.77, N 2, p.760−764.
  85. Enomoto K., and Gill D.M. Requirement for GTP in the activation of adenylate cyclase by cholera toxin. J.Supramol.Struct., 1979, v.10, N 1, p.51−60.295.implantation of a solubilized
  86. Enomoto К., and Gill D.M. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromole-cular factor in the ADP ribosylation of the GTP-dependent regulatory component. J.Biol.Chem., 1980, v.255, N 4, p.1252−1258.
  87. Farfel Z., Kaslow H., and Bourne H.R. A regulatory component of adenylate cyclase is located on the inner surface of human erythrocyte membranes. Biochem.Biophys.Res.Commun., 1979, v.90, N 4, p.1237.
  88. Florio V.A., and Ross E.M. Regulation of the catalytic component of adenylate cyclase: potentiative interaction of stimulatory ligands and 21−5'-dideoxyadenosine. Mol.Pharm., 1983, v.24, N 2, p.195−202.
  89. Forte L.R., Bylund D.B., and Zahler W.L. Forscolin does not activate sperm adenylate cyclase. Mol.Pharm., 1983, v.24,1. N 1, p.42−47.
  90. Fraser C.M., and Ventor J.C. Monoclonal antibodies to
  91. P -adrenergic receptors: use in purification and molecular characterization of jb receptors. Proc.Natl.Acad.Sci.USA, 1980, v.77, N 12, p.7034−7038.
  92. Fricke R.F., Queener S.F., and Clark C.M. Cardiac adenylate cyclase: kinetics of synergistic activation by guanosine-51-triphosphate (GTP) and glucagon. J.Mol.Cell.Card., 1980, v.12, p.595−608.
  93. Gal A., Braun S., Feder D., and Levitzki A. Reconstitution of a functional j3-adrenergic receptor using cholate and a novel method for its functional assay. Eur.J.Biochem., 1983, v.134, N 2, p.391−396.
  94. Galper J.B., and Smith T.W. Agonist and guanine nucleotide modulation of muscarinic cholinergic receptors in culturedheart cells. J.Biol.Chem., 1980, v.255, N 20, p.9571−9579.
  95. Garbers D.L., and Johnson R.A. Metal and metal-ATP interactions with brain and cardiac adenylate cyclases. J.Biol.Chem., 1975, v.250, N 21, p.8449−8456.
  96. Geisov M.J. Calcium control of enzyme reactions. Nature, 1978, v.276, p.211−212.
  97. Gill D.M., and Meren R. ADP-ribosylation of membrane proteinscatalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc.Natl.Acad.Sci.USA, 1978, v.75, N 7, p.3050−3054.
  98. Girardot J.M., Cooper D.M.F., and Kempf J. Regulation of rat hippocapal adenylate cyclase by guanyl nucleotides. Adv. Cycl.Nucl.Res. (ed. by J.E.Dumont, P. Greengard, G.A.Robison), 1981, Raven Press, New York, v.14, p.657 (abstract).
  99. Girardot J.M., Kempf J., and Cooper D.M.F. Role of calmodulin in the effect of guanyl nucleotides on rat hippocampal adenylate cyclase: involvement of adenosine and opiates. J. Neurochem., 1983, v.41, N 3, p.848−859.
  100. Gnegy M.E., Nathanson J.A., and Uzumov P. Release of the phosphodiesterase activator by cyclic AMP-dependent ATP: protein phosphotranspherase from subcellular fractions of rat brain. Biochim.Biophys.Acta, 1977, v.497, p.75−85.
  101. Gnegy M., and Treismann G. Effect of calmodulin on dopamine-sensitive adenylate cyclase activity in rat striatal membranes. Mol.Pharm., 1981, v.19, N 2, p.256−263.
  102. Gnegy M.E., Uzunov P., arid Costa E. Regulation of dopamine1 stimulation of striatal adenylate cyclase by an endogenous 2+
  103. Ca -binding protein. Proc.Natl.Acad.Sci.USA, 1976, v.73, p.3887−3890.
  104. Gnegy M.E., Uzunov P., and Costa E. Participation of an2+endogenous Ca -binding protein activator in the development of drug-induced supersensitivity of striatal dopaminereceptors. J.Pharmacol.Exp.Ther., 1977, v.202, p.558−564.2 +
  105. Gopalakrishna K., and Anderson W.B. Ca -induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-sepharose affinity chromatography. Biochem.Biophys.Res.Commun., 1982, v.104, N 2, p.830−836.
  106. Gopalakrishna R., and Anderson W.B. Calmodulin interacts with cyclic nucleotide phosphodiesterase and calcineurin by binding to a metal ion independent hydrophobic region on these proteins. J.Biol.Chem., 1983, v.258, N 4, p.2405−2409.
  107. Graham W., Houslay M. Membrane structure and receptor organization. In book: Cellular Receptors for Hormones and Neurotransmitters (ed. by D. Schulster and A. Levitzki) 1980, John Wiley and Sons Ltd., p.30−54.
  108. Grand R.J.A., and Perry S.V. The amino acid sequence of the troponine C-like protein (modulator protein) from bovine uterus. FEBS Lett., 1978, v.92, p.137−142.
  109. Greenlee D.V., Andreasen T.J., and Storm D.R. Calcium independent stimulation of Bordetella pertussis adenylate cyclase by calmodulin. Biochem. USA, 1982, v.21, N 11, p.2759−2764.
  110. Guillon G., Conrand P.O., and Roy C. Conversion of basal б. ОЬ adenylate cyclase into 7.4S by guanyl nucleotide treatment of membrane bound enzyme. Biochem.Biophys.Res.Commun., 1979, v.87, N 3, p.855−861.31
  111. Gupta R.K., and Moore, R.D. P-NMR studies of intracellular2+free Mg in intact frog skeletal muscle. J.Biol.Chem., 1980, v.255, N 9, p.3987−3993.31
  112. Gupta R.K., and Yushok W.D. Noninvasive P-NMR probes of2+free Mg, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc.Natl.Acad.Sci.USA, 1980, v.77, N 5, p.2487−2491.
  113. Hanski E., Gilman A.G. The guanine nucleotide binding regulatory component of adenylate cyclase in human erythrocytes.
  114. J.Cyclic Nucleotide Res., v.8, N 5, 1982, p.323−336. 1 *"
  115. Hanski E., Sevilla N., and Levitzki A. The allosteric inhibition by calcium of soluble and partially purified adenylate cyclase from turkey erythrocytes. Eur.J.Biochem., 1977, v.76, p.513−520.
  116. Hanski E., Sternweiss P.C., Northup J.K., Dromerick A.W., and Gilman A.G. The regulatory component of adenylate cyclase. Purification and properties of the turkey erythrocyte protein. J.Biol.Chem., 1981, v.256, N 24, p.12 911−12 919.
  117. Harden Т.К., Scheer A.G., and Smith M.H. Differential modification of the interaction of cardiac muscarinic cholinergic and beta-adrenergic receptors with a guanine nucleotide binding components. Mol.Pharm., 1982, v.21, N 3, p.570−580.
  118. Hazeki 0., and Ui M. Modification by islet-activating protein of receptor mediated regulation of cyclic AMP accumulationin isolated rat heart cells. J.Biol.Chem., 1981, v.256, N 6, p.2856−2862.
  119. Hebdon G.M., Le Vine H., Sahyonn N.E., Schmitges G.J., and Cuatrecasas P. Specific phospholipids are required to reconstitute adenylate cyclase solubilized from rat brain. Proc. Natl.Acad.Sci.USA, 1981, v.78, N 1, p.120−123.
  120. Heideman W., Wierman B.M., and Strom D.R. GTP is not required for calmodulin stimulation of bovine brain adenylate cyclase. Proc.Natl.Acad.Sci.USA, 1982, v.79, N 5, p.1462−1465.
  121. Heyningen S.V. The interaction of cholera toxin with gan-gliosides and the cell membrane. In book: Current topics in membranes and transport, v.18 (Kleinzeller A. and Martin B.R., eds.), Acad. Press, New York, 1983, p.446−471.
  122. Hildebrandt J.D., Sekura R.D., Codina J., Iyengar R., Man-clark C.R., and Birnbaumer L. Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature, 1983, v.302, 706−708.
  123. Homey C.J., Wrenn S.M., and Haber E. Demonstration of the hydrophilic character of adenylate cyclase following hydrophobic resolution on immobilized. alky1 residues" Critical role of alkyl chain length. J.Biol.Chem., 1977, v.252, N 24, p.8957−8964.
  124. Homey C.J., Wrenn S.M., and Haber E. Affinity purification of cardiac adenylate cyclase: dependence on prior hydrophobic resolution. Proc.Natl.Acad.Sci.USA, 1978, v.75, p.59−63.
  125. Howlett A.C., Van Arsdale P.M., and Gilman A.G. Efficiency of coupling between beta-adrenergic receptor and adenylate cyclase. Mol.Pharmacol., 1978, v.14, p.531−539.
  126. Howlett A.C., Ross E.M., Gilman A.G. Reconstitution of hormone-stimulated adenylate cyclase activity from partially resolved components. Fed.Proc., 197 $, v."37, N 3, p. 340.
  127. Huang M., and Drummond G.I. Interaction between adenosine and catecholamines on cyclic AMP accumulation in guinea pig ventricular myocardium. Biochem.Pharmacol., 1978, v.27,1. N 1, p.187−191.
  128. Hudson Т.Н., and Fain J.N. Forskolin-activated adenylate cyclase. Inhibition by guanyl-5'-yl-imidodiphosphate. J. Biol.Chem., 1983, v.258, N 16, p.9755−9761.
  129. Hudson Т.Н., and Johnson G.L. Peptide mapping of adenylate cyclase regulatory proteins that are cholera toxin substrates. J.Biol.Chem., 1980, v.255, N 15, p.7480−7486.
  130. Insel P.A., Stengel D., Ferry N., and Hanoune J. Regulation of adenylate cyclase of human platelet membranes by forsko-lin. J.Biol.Chem., 1982, v.257, N 13, p.7485−7490.
  131. Iyengar R., and Birnbaumer L. Hysteretic activation of ade2+nylyl cyclases. I. Effect of Mg ion on the rate of activation by guanine nucleotides and fluoride. J.Biol.Chem., 1981, v.256, N 21, p.11 036−11 041.
  132. Iyengar R. Hysteretic activation of adenylyl cyclases. II. Mg ion regulation of the activation of the regulatory component as analyzed by reconstitution. J.Biol.Chem., 1981, v.256, N 21, p.11 042−11 050.
  133. Iyengar R., Birnbaumer L., Schulster D., Houslay M., Michel R.H. Modes of membrane receptor-signal coupling. In book: Cellular Receptors for Hormones and Neurotransmitters (ed. by D. Schulster and A. Levitaki), 1980, J. Wiley and Sons Ltd., p.55−81.
  134. Jackowski M.M., Johnson R.A., and Exton J.H. Calcium regulation of guanine nucleotide activation of hepatic adenylate cyclase. Biochim.Biophys.Acta, 1980, v.630, N 4, p.497−510.
  135. Jackowski M.M., Johnson R.A., and Exton J. Regulation of adrenergic stimulation of hepatic adenylate cyclase by divalent cations. Biochim.Biophys.Acta, 1982, v.714, N 1, p. 7483.
  136. Jakobs K.H., Aktories K., and Schultz G. GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists. Naun.-Sch.Arch.Pharm., 1979, v.310, N 1, p.113−119.
  137. Jakobs K.H., Schultz G., Gangler В., and Pfeuffer T. Inhibition of N -protein-stimulated human-platelet adenylatescyclase by epinephrine and stable GTP analogs. Eur.J.Biochem., 1983, v.134, N 2, p.351−354.
  138. Johnson C.L., Weinstein H., and Green J.P. Studies on histamine receptors coupled to cardiac adenylate cyclase. Blockade by and H^ receptor antagonists. Mol.Pharm., 1979, v.16, p.417−428.
  139. Johnson G.L., Weinstein B.H., and Green J.P. Studies on histamine receptor coupled to cardiac adenylate cyclase: effects of guanyl nucleotides and structural requirements for agonist activity. Biochim.Biophys.Acta, 1979, v.587,p.155−168.
  140. Johnson G.L., Kaslow H.R., Farfel Z., and Bourne H.R. Genetic analysis of hormone-sensitive adenylate cyclase. Adv. Cyclic Nucleotide Res., 1980, v.13, (Greengard P. and Robi-son G.A., eds.), p.1−37, Raven Press, New York.
  141. Johnson G.L., MacAndrew V.I.Jr., and Pilch P.F. Identification of the glucagon receptor in rat liver membranes by photoaffinity crosslinking. Proc.Natl.Acad.Sci.USA, 1981, v.78, N 2, p.875−878.
  142. Johnson G.S., and Mukku V.R. Evidence in intact cells for an involvement of GTP in the activation of adenylate cyclase. J.Biol.Chem., 1979, v.254, N 1, p.95−100.
  143. Johnson J.D., and Wittenawer L.A. A fluorescent calmodulin that reports the binding of hydrophobic inhibitory ligands. Biochem.J., 1983, v.211, p.473−479.
  144. Johnson R.A. An approach to the identification of adenosine’s inhibitory site on adenylate cyclase. FEBS Lett., 1 1982, v.140, N 1, p.80−84.
  145. Johnson R.A. and Sutherland E.W. Detergent-dispersed adenylate cyclase from rat brain. Effects of fluoride cations and chelators. J. Biol .Chem., 1973, v. 248, p.5114−5121.
  146. Kakiuchi S., and Yamazaki R. Calcium dependent phosphodiesterase activity and its activating factor from brain. Biochem.Biophys.Res.Commun., 1970, v.41, p.1104−1110.
  147. Kaslow H.R., Cox D., Groppi V.E., and Bourne H.R. An Mr-52 000 peptide can mediate effects of cholera toxin on adenylate cyclase in intact cells. Mol.Pharmacol., 1981, v.19, N 3, p.406−410.
  148. Kaslow H.R., Johnson G.L., Brothers V.M., and Bourne H.R. A regulatory component of adenylate cyclase from human erythrocyte membranes. J.Biol.Chem., 1980, v.255, N 8, p.3736−3741.
  149. Kassis S., Hagmann J., Fishman P.H., Chang P.P., and Moss J. Mechanism of action of cholera toxin on intact cells. Generation of A^ peptide and activation of adenylate cyclase. J.Biol.Chem., 1982, v.257, N 20, p.12 148−12 152.
  150. Katada Т., and Ui M. ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity.
  151. J.Biol.Chem., 19−82, v.257, N 12, p. 7210−7216.
  152. Kent R., De Lean A., Lefkowitz R.J. A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol.Pharmacol., 1980, v.17, N 1, p.14−23.
  153. Kidwai A.M., Radcliffe. M.A., Duchon G., and Daniel E.E. Isolation of plasma membrane from cardiac muscle. Biochem. Biophys.Res.Commun., 1971, v.45, N 4, p.901−910.
  154. Kilhoffer M.-C., Cook G.H., and Wolff J. Calcium-independent activation of adenylate cyclase by calmodulin. Eur.J.Biochem., 1983, v.133, N 1, p.11−15.
  155. Kimura N., and Nagata N. Mechanism of glucagon stimulation of adenylate cyclase in the presence of GDP in rat liver plasma membranes. J.Biol.Chem., 1979, v.254, N 9, p.3451−3457.
  156. Kimura N., and Shimada N. GDP does not mediate but rather inhibits hormonal signal to adenylate cyclase. J.Biol.Chem., 1983, v.258, N 4, p.2278−2283.
  157. Klee C.B. Calmodulin: structure-function relationships.1. book: Calcium and Cell Function, v. l Calmodulin (ed. by W.Y.Cheung), 1980, Academic Press, New York, pp.59−78.
  158. Klee C.B., and Krinks M.H. Purification of cyclic 3'-5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to sepharose. Biochemistry, 1978, v.17, p.120−126.
  159. Kretsinger R.H. Calcium binding proteins. Ann.Rev.Biochem., 1976, v.45, p.239−266.
  160. Lad P.M., Nielsen T.B., Londos C., Preston M.S., and Rodbell M. Independent mechanisms of adenosine activation and inhibition of the turkey erythrocyte adenylate cyclase system. J.Biol.Chem., 1980, v.255, N 22, p.10 841−10 846.
  161. Laemmli U.K. Cleavage of structural proteins during the assembly on the head of bacteriophage T4. Nature, 1970, v.222, p.680.
  162. Lai E., Rosen O.M., and Rubin C.S. Differentiation-dependent expression of catecholamine-stimulated adenylate cyclase. Roles of the -receptor and G/F protein in differentiating 3 T3-L1 adipocytes. J.Biol.Chem., 1981, v.256, N 24, p.12 866−12 874.
  163. Lasker R.D., Downs R.W.Jr., and Aurbach G.D. Calcium inhibition of adenylate cyclase: studies in turkey RBG and S49 eye cell membranes. Arch.Biochem.Biophys., 1982, v.216, N 1, p.345−355.
  164. Lee T.P., Kuo J.F., and Greengard P. Regulation of myocardial cyclic AMP by isoproterenol, glucagon and acetyl choline. Biochem.Biophys.Res.Commun., 1971, v.45, N 4, p.991−997.
  165. Lefkowitz R.J., Caron M.G., Michel Т., and Stadel J.M. Mechanisms of hormone receptor-effector coupling: the-adrenergic receptor and adenylate cyclase. Fed.Proc., 1982, v.41, N 10, p.2664−2670.
  166. Lefkowitz R.J., Mullikin D., and Caron M.G. Regulation ofjt> -adrenergic receptors by guanyl-5' -yl-imidophosphate and other purine nucleotides. J.Biol.Chem., 1976, v.251, p.4686−4692.
  167. Lefkowitz R.J., Mullikin D., Wood C.L., Gore T.B., and Muk-herjee C. Regulation of prostaglandin receptors by prostaglandins and guanine nucleotides in frog erythrocytes. J. Biol.Chem., 1977, v.252, p.5295−5303.
  168. USA, 1983, v.80, p.4899−4903.
  169. Leppla S.H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations in euca-ryotic cells. Proc.Natl.Acad.Sci.USA, 1982, v.79, N 10, p.3162−3166.
  170. Lester H.A., Styer M.L., and Levitzki A. Prostaglandin-sti-mulated GTP hydrolysis associated with activation of adenylate cyclase in human platelet membranes. Proc.Natl.Acad. Sci. USA, 1982, v.79, N 3, p.719−723.
  171. Levey G.S. Restoration of norepinephrine responsiveness of solubilized myocardial adenylate cyclase by phosphatidyl-inositol. J.Biol.Chem., 1971, v.246, N 18, p.7405−7410.
  172. Levey G.S. Restoration of glucagon responsiveness of solubilized myocardial adenyl cyclase by phosphatidylserine. Biochem.Biophys.Res.Commun., 1971, v.43, N 1, p.108−113.
  173. Levin R.M., and Weiss B. Binding of trifluoperazine to thecalcium-dependent activator of cyclic nucleotide phosphodiesterase .
  174. Mol.Pharmacol., 1977, v.13, N 4, p.690−697.
  175. Levinson S.L., and Blume A.J. Altered guanine nucleotide hydrolysis as basis for increased adenylate cyclase activity after cholera toxin treatment. J.Biol.Chem., 1977, v.252,p.3766−3774.
  176. Limbird L.E., Gill D.M., and Lefkowitz R.J. Agonist-promoted coupling of the J& -adrenergic receptor with guanyl nucleotide regulatory protein of adenylate cyclase system. Proc.Natl.Acad.Sci.USA, v.77, N 2, p.775−779.
  177. Limbird L.E., Hickey A.R., and Lefkowitz R.J. The molecular size of adenylate cyclase in the absence and presence of nucleotide and hormone effectors. J.Cycl.Nucl.Res., 1979, v.6, N 3, p.251−259.
  178. Lin M.C., Nicosia S., Lad P.M., and Rodbell M. Effects of GTP on binding of glucagon on receptors in rat hepatic plasma membranes. J.Biol.Chem., 1977, v.252, p.2790−2792.
  179. Lin Y.P., and Cheung W.Y. Cyclic 351-nucleotide phospho2 +diesterase: Ca confers more helical conformation to the protein activator. J.Biol.Chem., 1976, v.251, N 2, p.4193−4198.
  180. Londos C., Wolff Y. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc.Natl.Acad.Sci.USA, 1977, v.74,1. N 12, p.5482−5486.
  181. Litosch I., Hudson Т.Н., Milis I., Li S.-Y., and Fain J.N. Forskolin as an activator of cyclic AMP accumulation and lipolysis in rat adipocytes. Mol.Pharm., 1982, v.22, N 1, p.109−115.
  182. Londos C., Lin M.C., Welton A.F., Lad P.M., and Rodbell M. Reversible activation of hepatic adenylate cyclase by gua-nyl-5'-yl (c^j^ -methylene) diphosphonate and guanyl-51-yl imidodiphosphate. J.Biol.Chem., 1977, v.252, N 15, p.5180−5182.
  183. Londos C., and Preston M.S. Activation of the hepatic cyclase system by divalent cations. J.Biol.Chem., 1977, v.252, N 17, p.5957−5961.
  184. Londos C., Salomon Y., Lin M.C., Harwood J.P., Schramm M., Wolff J., Rodbell M. Guanylylimidodiphosphate, a potent activator of adenylate cyclase system in eukaryotic cells. Proc.Natl.Acad.Sci., 1974, v.71, N 8, p.3087−3090.
  185. Londos C., Wolff J., and Cooper D.M.F. Action of adenosine on adenylate cyclase, in book: Physiological and regulatory functions of adenosine and adenine nucleotides (ed. by Baer, H.P. and Drummond, G.I.), Raven Press,
  186. New York, 1979, p.271−282., 2+
  187. Lynch T.J., Tallant E.A., and Cheung W.Y. Ca -dependent formation of brain adenylate cyclase-protein activator complex. Biochem.Biophys.Res.Commun., 1976, v.68, N 2, p.616−625.
  188. Lynch T.J., Tallant E.A., and Cheung W.Y. Rat brain adenylate cyclase. Further studies on its stimulation by a2+ t Ca -binding protein. Arch.Biochem.Biophys., 1977, v.182,p.124−133.
  189. Mahaffee D.D., and Ontjes D.A. The role of calcium in the control of adrenal adenylate cyclase. J.Biol.Chem., 1980, v.255, N 4, p.1565−1571.
  190. Mahaffee. D.D., and Ontjes D.A. Activation of adrenal adenylate cyclase by guanine nucleotides. Promotion of nucleotide binding by calcium, but not by adrenocorticotropic hormone. Molec.Pharm., 1983, v.23, N 2, p.369−377.
  191. Maguire M.E. Magnesium regulation of the beta-receptor3+ 2+adenylate cyclase complex. II. Sc as a Mg antagonist.
  192. Mol.Pharmacol., 1982, v.22, N 2, p.274−280.2+
  193. Malnoe A., Cox J.A., Stein E.A. Ca -dependent regulationof calmodulin binding and adenylate cyclase activation inbovine cerebellar membranes. Biochim.Biophys.Acta, Generalv.714, N 1 Subjects, 1982, p.84−92.
  194. Manning D.R., and Gilman A.G. The regulatory components of adenylate cyclase and transducin. A. Family of structurally homologous guanine nucleotide-binding proteins. J.Biol. Chem., 1983, v.258, N 11, p.7059−7063.
  195. Mansour J.M., Ehrlich A., and Mansour Т.Е. The dual effects of aluminum as activator and inhibitor of adenylate cyclase in the liver fluke Fasciola hepatica. Biochem.Biophys.Res. Commun., 1983, v.112, No 3, p.911−918.
  196. Moore W.V., and Wolff J. Binding of prostaglandin E1 to beef thyroid membranes. J.Biol.Chem., 1973, v.248, p.5705−5711.
  197. Morris S.A., and Bilezikian J.P. Evidence that forscolin activates turkey erythrocyte adenylate cyclase through a noncatalytic site. Arch.Biochem.Biophys., 19 83, v.220,1. N 2, p.628−636.
  198. Moss J., Burns D.L., Chang P.P., Cutilletta A.F., and Vaug-han M. Characterization of the GTP-binding component of adenylate cyclase system in isolated myocardial musclecells. J.Mol.Cell.Card., 1982, 14, s.3, p.71−75.
  199. Moss J., and Vaughan M. Activation of adenylate cyclase by choleragen. Ann.Rev.Biochem., 1979, v.48, p.581−600.
  200. Moss J., and Vaughan M. Choleragen activation of solubilized adenylate cyclase: requirement for GTP and protein activator for demonstration of enzymatic activity. Proc.Natl. Acad.Sci.USA, 1977, v.74, N 10, p.4396−4400.
  201. Moss J., and Vaughan M. Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc.Natl.Acad.Sci. USA, 1978, v.75, N 8, p.3621−3624.
  202. Mukku V.R., Anderson W.B., and Johnson G.S. Enhancement of hormonal stimulation in intact cells. Potentiation of GTP-dependent activation of adenylate cyclase. J.Biol.Chem., 1979, v.254, N 13, p.5588−5590.
  203. Narayanan N., and Sulakhe P.V. 51-guanylylimidodiphosph&t6-activated adenylate cyclase of cardiac sarcolemma displays higher affinity for magnesium ions. Molecular Pharmacol., 1977, v.13, N 6, p.1033−1047.
  204. Narayanan N., and Sulakhe P.V. Stimulatory and inhibitory effects of guanyl-5'-yl imidodiphosphate on adenylate cyclase activity of cardiac sarcolemma. Arch.Biochem.Biophys., 1978, v.185, N 1, p.72−81.
  205. Narayanan N., Wei J.W., and Sulakhe P.V. Differences in the cation sensitivity of adenylate cyclase from heart skelal muscle: modification by gyanyl nucleotide and isoproterenol. Arch.Biochem.Biophys., 1979, v.197, N 1, p. 1829.
  206. Neer E.J. Interaction of soluble brain adenylate cyclase with manganese. J.Biol.Chem., 1979, v.254, N 6, p.2089−2096.
  207. Neer E.J. Physical and functional properties of adenylate cyclase from mature rat testis. J.Biol.Chem., 1978, v.253, N 16, p.5808−5812.
  208. Neer E.E., Echeverria D., and Knox S. Increase in the size of soluble brain adenylate with activation by guanosine-imino) triphosphate. J.Biol.Chem., 1980, v.255, N 20, p.9782−9789.
  209. Neer E.J., and Salter R.S. Modification of adenylate cyclase structure and functions by ammonium sulfate. J.Biol.Chem., 1981, v.256, N 11, p.5497−5503.
  210. Neer E.J., and Salter R.S. Reconstitution adenylate cyclase from bovine brain. J.Biol.Chem., 1981, v.256, N 23, p.12 102−12 107.
  211. Neilsen T.B., Lad P.M., Preston M.S., Kempner E., Schlegel W., and Rodbell M. Structure of the turkey erythrocyte adenylate cyclase system. Proc.Natl.Acad.Sci., 1981, v.78,1. N 2, p.722−726.
  212. Nielson T.B., Lad P.M., Preston M.S., and Rodbell M. Characteristics of the guanine nucleotide regulatory component of adenylate cyclase in human erythrocyte membranes.
  213. Biochim.Biophys.Acta, 1980, v.629, N 1, p.143−155.
  214. Noda L., Kuby S., and Lardy H. ATP-creatine transphospho-rylase. Methods enzymology (Colowick S.P. and Kaplan N.O. eds.) 1955, v.2, p.605−610, Acad. Press, New York.
  215. Northup J.K., Smiegel M.D., and Gilman A.G. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding. J. Biol.Chem., 1982, v.257, N 19, p.11 416−11 423.
  216. Northup J.K., Smigel M.D., Sternweis P.C., and Gilman A.G. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45 000-dalton (Ы) subunit. J.Biol.Chem., 1983, v.258, N 18, p.11 369−11 376.
  217. Palfrey H.C., Schiebler W., and Greengard P. A major cal-modulin-binding protein common to various vertebrate tissues. Proc.Natl.Acad.Sci.USA, 1982, v.79, p.3780−3784.
  218. Pederson S.E., and Ross E.M. Functional reconstitutionof adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase. Proc.Natl.Acad.Sci.USA, 1982, v.79, N 23, p.7228−7232.
  219. Perkins J.P. Adenyl Cyclase. Adv. Cyclic Nucleotide Res. (ed. by Greengard P. and Robison G.A.), 1973, v.3, p.1−64.
  220. Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem., 1977, v.83, p.346−356.
  221. Pfeuffer T. GTP-binding proteins in membranes and the control of adenylate cyclase activity. J.Biol.Chem., 1977, v.25, N 20, p.7224−7234.
  222. Pfeuffer T. Guanine nucleotide-controlled interactions between components of adenylate cyclase. FEBS Lett., 1979, v.101, N 1, p.85−89.
  223. Pfeuffer Т., and Metzger H. 7−0-Hemisuccinyl-deacetyl for-skolin for purification of adenylate cyclase. FEBS Lett., 1982, v.146, N 2, p.369−375.
  224. Piascik M.T., Babich M., and Rush M.E. Calmodulin stimulation and calcium regulation of smooth muscle adenylate cyclase activity. J.Biol.Chem., 1983, v.258, N 18, p.10 913−10 918.
  225. Piascik M.T., Wisler P.L., Johnson C.L., and Potter J.D.2 +
  226. Ca -dependent regulation of guinea pig brain adenylate cyclase. J.Biol.Chem., 1980, v.255, N 9, p.4176−4181.
  227. Pinchasi I., and Michaelson D.M. Adenylate cyclase of Torpedo synaptosomes is inhibited by calcium and not affected by muscarinic ligands. J.Neurochem., 1982, v.38, N 5, p.1223−1229.
  228. Pinkett M.O., arid Anderson W.B. Plasma membrane-associated components that confer cholera toxin sensitivity to adenylate cyclase. Biochim.Biophys.Acta, 1982, v.714, N 2, p.337−343.
  229. Pinkus L.M., Sulimovici S., Susser F.I., and Roginsky M.S. Involvement of calmodulin in the regulation of adenylate cyclase activity in guinea pig enterocytes. Biochim.Biophys.Acta, 1983, v.762, N 4, p.552−559.
  230. Potter J.D., Piascik M.T., Nisler P.L., and Johnson C.L. Calcium dependent regulation of brain and cardiac muscle adenylate cyclase. Ann.N.Y. Acad. Sci,(ed. by Watterson D.M. and Vincenzi F.F.) Calmodulin and cell functions, 1980, v.356, p.220−231.
  231. Pinkus L.M., Sulimovici S., Susser F.I., and Roginsky M.S. Involvement of calmodulin in the regulation of adenylate cyclase activity in guinea pig enterocytes. Biochim. et Biophys. Acta, 1983, v.762, N 4, p.552−559.2+
  232. Premont J., Guillon G., and Bockaert J. Specific Mg and adenosine sites involved in a bireactant mechanism for adenylate cyclase inhibition and their probable localization on this enzyme’s catalytic component. Biochem.Biophys.
  233. Res.Commun., 1979, v.90, N 2, p.513−519.
  234. Prozialeck W.C., Cimino M., and Weiss B. Photoaffinity labeling of calmodulin by phenothiazine antipsychotics. Mol.Pharm., 1981, v.19, N 2, p.264−269.
  235. Rashidbaigi A., Ruoho A.E., Green D.A., and Clark R.B. Photoaffinity labeling of the ft -adrenergic receptor fromcultured lymphoma cells withlol: loss of the lable with desensitization. Proc.Natl.
  236. Acad.Sci.USA, 1983, v.80, N 10, p.2849−2853.
  237. Rimon G., HanskiTE., Braun S., and Levitzki A. Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity. Nature, 1978, v.276, N 5686, p.394−396.
  238. Robberecht P., Waelbrock M., Chatelain P., Camus J.-C., and Christophe J. Inhibition of forscolin-stimulated cardiac adenylate cyclase activity by short-chain alcohols. FEBS Lett., 1983, v.154, N 1, p.205−208.
  239. Rodbell M. The role of hormone receptors and GTP-regulato-ry proteins in the membrane transduction. Nature, 1980, v.284, N 5751, p.17−22.
  240. Rodbell M. On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides. An explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and role of hormones. J.Biol.Chem., 1975, v.250, N 15, p.5826−5834.
  241. Rodbell M., Birnbaumer L., Pohl S.L., and Krans H.M.J. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. An obligatory role of guanyl nucleotides in glucagon action. J.Biol.Chem., 1971, v.246, p.1877−1882.
  242. Rodbell M., Krans H.H.J., Pohl S.L., and Birnbaumer L.
  243. The glucagon sensitive adenylate cyclase system in plasmamembranes of rat liver. IV. Effects of guanyl nucleotides 125on binding of I-glucagon. J.Biol.Chem., 1971, v.246,N 6p.1872−1876.
  244. Rose I.A. The state of magnesium in cells as estimated fromthe adenylate kinase equilibrium.
  245. Proc.Natl.Acad.Sci.USA, 1968, v.61, p.1079−1086.
  246. Rosenberger L.B., Yamamura H.I., and Roeske W.R. Cardiac muscarinic cholinergic receptor binding is regulated Na+and guanyl nucleotides. J.Biol.Chem., 1980, v.255, p.820−823.
  247. Ross E.M. Physical separation of the catalytic and regulatory proteins of hepatic adenylate cyclase. J.Biol.Chem., 1981, v.256, N 4, p.1949−1953.
  248. Ross E.M. Phosphatidylcholine-promoted interaction of the catalytic and regulatory proteins of adenylate cyclase. J.Biol.Chem., 1982, v.257, N 18, p.10 751−10 758.
  249. Ross E.M., and Gilman A.G. Biochemical properties of hormone sensitive adenylate cyclase. Annual Rev.Biochem., 1980, v.49, p.533−564.
  250. Ross E.M., Howlett A.C., Ferguson K.M., and Gilman A.G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J.Biol.Chem., 1978, v.253, N 18, p.6401−6412.
  251. Ross E.M., Maguire M.E., Sturgill T.W., Biltonen R.L., and Gilman A.G. Relationship between the fi -adrenergic receptor and adenylate cyclase. J.Biol.Chem., 1977, v.252, N 16, p.5761−5775.
  252. Sahyoun N., Schmitges C.J./ Le Vine III H., and Cuatre-casas P. Molecular resolution and reconstitution of the Gpp (NH)p and NaF sensitive adenylate cyclase system. Life Sci., 1977/ v.21, N 12, p.1857−1864.
  253. Salomon У. Receptors for the glycoprotein hormones: LH, FSH, hCG, and TSH. In book: Cellular Receptors for Hormones and Neurotransmitters (ed. by D. Schulster and A. Levitzki) 1980, J. Wiley and Sons Ltd., p.149−161.
  254. Sano M. and Drummond G.I. Properties of detergent-dispersed adenylate cyclase from cerebral cortex. Presence of an inhibitor protein. J. Neurochem, 1981, v.37, N 3, p.558−566.
  255. Sano M., Kitajima S. Ontogeny of calmodulin and calmodulin-dependent adenylate cyclase in rat brain. Developmental Brain Research, v.7, v.2−3, 1983, p.215−220.
  256. Sano M., Kitajima S., and Mizutani A. Activation of adenylate cyclase by forskolin in rat brain and testis. Arch.Biochem. Biophys., 1983, v.220, N 2, p.333−339.
  257. Schlegel W., Kempner E.S., and Rodbell M. Activation of adenylate cyclase in hepatic membranes involves interactionsof the catalytic unit with multimeric complexes of regulatory proteins. J.Biol.Chem., 1979, v.254, N 12, p.5168−5176.
  258. Schleifer L.S., Kahn R.A., Hanski E., Northup J.K., Stern-weiss P.C., and Gilman A.G. Requirement for cholera toxindependent ADP-ribosylation of the purified regulatory component of adenylate cyclase. J.Biol.Chem., 1982, v.257, N 1, p.20−23.
  259. Schneyer C.R., Pineyro M.A., and Gregerman R.I. Mechanism of action of forskolin on adenylate cyclase: effect of bovine sperm complemented with erythrocyte membranes. Life Sciences, 1983, v.33, N 3, p.275−279.
  260. Seamon K.B., Padgett W., Daly J.W. Forskolin: unique diter-pene activator of adenylate cyclase in membranes and in intact cells. Proc.Natl.Acad.Sci.USA, 1981, v.78, N 6, p.3363−3367.
  261. Seamon K. and Daly J.W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J.Biol.Chem., 1981, v.256, N 19, p.9799−9801.
  262. Seamon K.B., and Daly J. Guanosine 5-(Jb, jj -imido) triphosphate inhibition of forskolin-activated adenylate cyclase is mediated by the putative inhibitory guanine nucleotide regulatory protein. J.Biol.Chem., 1982, v.257, N 19, p.11 591−11 596.
  263. Seamon K.B., Daly J.W. Calmodulin stimulation of adenylate cyclase in rat brain membranes does not require GTP. Life Sciences, 1982, v.30, N 17, p.1457−1464.
  264. Sedlmeier D., Dieberg G. Grayfish abdominal muscle adenylate2+cyclase. Studies on the stimulation by a Ca -binding protein. Biochem.J., 1983, v.211, N 2, p.319−322.
  265. Severson D.L., Drummorid G.I./ and Sulakhe P.V. Adenylate cyclase in skeletal muscle. Kinetic properties and hormonal stimulation. J.Biol.Chem., v.247, N 9, 1972, p.2949−2958.
  266. Sevilla N., and Levitzki A. The activation of adenylate cyclase by 1-epinephrine and guanylylimidodiphosphate and its reversal by 1-epinephrine and GTP. FEBS Lett., 1977, v.76, N 1, p.129−134.
  267. Sevilla N., Steer M.L., and Levitzki A. Synergistic activation of adenylate cyclase by guanylyl imidophosphate and epinephrine. Biochemistry, 1976, v.15, p.3493−3499.
  268. Shimada N., and Kimura N. GDP does not support activation of adenylate cyclase nor ADP-ribosylation of nucleotide binding protein by cholera toxin. FEBS Lett., 1983, v.159, N 1−2, p.75−78.
  269. Shorr R.G.L., Lefkowitz R. J, and Caron M.C. Purification of the P -adrenergic receptor. Identification of the hormone binding subunit. J.Biol.Chem., 1981, v.256, N 11, p.5820−5826.
  270. Simonin G., Zackowski A. Stimulation of tubulin of an adenylate cyclase from murinic plasmacytoma. Eur.J.Biochem., 1981, v.118, N 3, p.515−519.
  271. Smigel M.D., Northup J.K., and Gilman A.G. Characteristics of the guanine nucleotide-binding regulatory component of adenylate cyclase. In book: Recent progress hormone research (ed. by Greep R.O.), v.38, p.601−622, Acad. Press, New York.
  272. Snyder F.F., and Drummond G.I. Activation and stabilization of cardiac adenylate cyclase by GTP analog and fluoride. Arch.Biochem.Biophys., 1978, v.185, N 1, p.116−125.
  273. Sobue К., Muramoto Y., Yamazaki R., and Kakiuchi S. Distribution in rat tissues of modulator-binding protein of par3ticulate nature. Studies with H-modulator protein. FEBS Lett., 1979, v.105, N 1, p.105−109.
  274. Somkuti S.G., Hildebrandt J.D., Herberg J.Т., and Igengar R. Divalent cation regulation of adenylyl cyclase. An allosteric site on the catalytic component. J.Biol.Chem., 1982, v.257,1. N 11, p.6387−6393.
  275. Spiegel A.M., Downs R.W.Jr., and Aurbach G.D. Separation of guanine nucleotide regulatory unit from the adenylate cyclase complex with GTP affinity chromatography. J.Cycl. Nucl.Res., 1979, v.5, N 1, p.3−17.
  276. Steer M.L., and Levitzki A. The control of adenylate cyclase by calcium in turkey erythrocyte ghosts. J.Biol.Chem., 1975, v.250, N 6, p.2080−2084.
  277. Stein J.M. and Martin B.R. The role of GTP in prostaglandin E^ stimulation of adenylate cyclase in platelet membranes. Biochem.J., 1983, v.214, N 1, p.231−234.
  278. Stengel D., Lacombe M.-L., Billon M.-C., and Hanoune J. Change in the cation dependence of rat liver adenylate cyclase after proteolytic activation. FEBS Lett., 1979, v.107, N 1, p.105−109.
  279. Stengel D., Lad P.M., Nielsen T.B., Rodbell M., Hanoune J. Proteolysis activates adenylate cyclase in rat liver and AC lymphoma cell independently of the guanine nucleotide regulatory site. FEBS Lett., 1980, v.115, N 2, p.260−264.
  280. Stengel D., Guenet L., Desmier H., Insel P., and Hanoune J. Forscolin requires more than the catalytic unit to activate adenylate cyclase. Mol.Cell.Endocrin., 1982, v.28, p.681−690.
  281. Stengel D., Guenet L., Hanoune J. Proteolytic solubilization of adenylate cyclase from membranes deficient in regulatory component. Properties of the solubilized enzyme. J.Biol. Chem., 1982, v.257, N 18, p.10 818−10 826.
  282. Stengel D., and Hanoune J. The catalytic unit of ram sperm adenylate cyclase can be activated through the guanine nucleotide regulatory component and prostaglandin receptors of human erythrocyte. J.Biol.Chem., 1981, v.256, N 11, p.5394−5398.
  283. Sternweis А.С., and Gilman A.G. Aluminum a requirement for activation of the regulatory component of adenylate cyclase. Proc.Natl.Acad.Sci., 1982, v.79, N 16, p.4888−4891.
  284. Sternweis P.C., Northup J.K., Smigel M.D., and Gilman A.G. The regulatory component of adenylate cyclase. Purification and properties. J.Biol.Chem., 1981, v.256, N 22, p.11 517−11 526.
  285. Stiles G.L., Strasser R.H., Caron M.G., and Lefkowitz R.J. Mammalian yS -adrenergic receptors. Structural differences in and subtypes revealed by peptide maps. J.Biol. Chem., 1983, v.258, N 17, p.10 689−10 694.
  286. Stockton J.M., and Turner A.J. Characterization of adenylate cyclase purified from rat brain by hydrophobic chromatography. J.Neurochem., 1981, v.36, N 5, p.1722−1730.
  287. Strittmatter S., and Neer E.J. Properties of the separated catalytic and regulatory units of brain adenylate cyclase. Proc.Natl.Acad.Sci.USA, 1980, v.77, N 11, p.6344−6348.
  288. Sulakhe P.V., Leung N. K-K., Arbus A.Т., Sulakhe S.J., Jan S.-H., Narayanan N. Catecholamine-sensitive adenylate cyclase of caudate nucleus and cerebral cortex. Effect of guanine nucleotides. Biochem.J., 1977, v.164, p.67−74.
  289. Sutherland E.W., Rail T.W., and Menon T. Adenyl cyclase. I. Distribution, preparation and properties. J.Biol.Chem., 1962, v.237, N 4, p.1221−1227.
  290. Tada M., Kirchberger M.A., Iorio J.A.M., and Katz A.M. Control of cardiac sarcolemmal adenylate cyclase and sodium, potassium-activated adenosine triphosphatase activities. Circul.Research., 1975, v.36, N 1, p.8−17.
  291. Thams P., Capito K., and Hedeskov C.J. Differential effects2 +of Ca -calmodulin on adenylate cyclase activity in mouse and rat pancreatic islets. Biochem.J., 1982, v.206, p.97−102.
  292. Tirrell J.G., Coffee C.J. The subcellular localization of calmodulin, cyclic AMP phosphodiesterase and adenylate cyclase in bovine adrenal medulla. Arch.Biochem.Biophys., 1983, N 2, p.380−388.
  293. Toscano W.A., Jr., Wescott’K.R., La Porte D.C., and Storm D.R. Evidence for a dissociable protein subunit required for calmodulin stimulation of brain adenylate cyclase. Proc.Natl. Acad.Sci., USA, 1979, v.76, N 11, p.5582−5586.
  294. Totsuka Y., Nielsen T.B., and Field J.B. Roles of GTP and GDP in the regulation of the thyroid adenylate cyclase system. Biochim.Biophys.Acta, 1982, v.718, N 2, p.135−143.
  295. Trendelenburg U. The action of histamine and 5-hydroxytryp-tamine on isolated mammalian atria. J.Pharmacol.Exper.Ther., I960, v.130, p.450−460.
  296. Valverdi I., Vandermeers A., Anjaneyulu R., and Malaisse W.J. Calmodulin activation of adenylate cyclase in pancreatic islets. Science, 1979, v.206, N 4415, p.225−227.
  297. Veloso D., Guinn R.W., Oskarsson M., and Veech R.I. The concentrations of free and bound magnesium in rat tissues. J.Biol.Chem., 1973, v.248, p.4811−4819.
  298. Vente: J.D., and Zaagma J. The influence of the divalent2+ 2+cations Mn and Mg on the activation of particulate and digitonin-solubilized adenylate cyclase from rat fat cell membranes. Arch.Biochem.Biophys., 1981, v.209, N 1, p.249−255.
  299. Waelbroeck M., Robberecht P., Chatelain P., and Christophe J. Rat cardiac muscarinic receptors. I. Effects of guanine nucleotides on high, and low-affinity binding sites. Mol. Pharm., 1982, v.21, N 3, p.581−588.
  300. Wallace R.W., Lynch T.J., Tallant E.A., and Cheung W.Y. Purification and characterization of an inhibitor protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase. J.Biol.Chem., 1979, v.254, N 2, p.328−334.
  301. Wallace R.W., Tallant"~E.A., aid Cheung W.Y. Assay, preparation and properties of calmodulin. In book: Calcium and Cell Function, v. l, Calmodulin (ed. by Cheung W.Y.), 1980, Acad. Press, New York, p.13−40.
  302. Walsh M.P., Le Peuch C.J., Vallet В., Cavadore J.-C., and Demaille J.G. Cardiac calmodulin and its role in the regulation of metabolism and contraction. J.Mol.Cell.Card., 1980, v.12, N 10, p.1091−1101.
  303. Ward W.H.J., and van Heyningen S. The sites on the regulatory component of adenylate cyclase which are ADP-ribosylated by cholera toxin. Biochem.Biophys.Res.Commun., 1982, v.105,1. N 3, p.928−934.
  304. Watkins P.A., Moss J., and Vaughan M. ADP ribosylation of membrane proteins from human fibroblasts. Effect of prior exposure of cells to choleragen J.Biol.Chem., 1981, v.256, N 10, p.4895−4899.
  305. Webster S., and Olsson R.A. Adenosine regulation of canine cardiac adenylate cyclase. Biochem.Pharmacol., 1981, v.30, p.369−373.
  306. Wei: J.W., and Sulakhe P.V. Cardiac muscarinic cholinergic receptor sites: opposing regulation by divalent cations and guaninet nucleotides of receptor-agonist interaction. Eur.J.Pharmacol., 1980, v.62, p.345−347.
  307. Welton A.F., and Simko B.A. Metal ion and guanine nucleotide regulation of the inhibition of lung adenylate cyclase by adenosine analogs. Biochim.Biophys.Acta, 1980, v.615, N 1, p.252−261.
  308. Westcott K.R., La Porte D.C., and Storm D.R. Resolution of2+adenylate cyclase sensitive and insensitive to Ca and calcium-dependent regulatory protein (CDR) by CDR-sepharoseaffinity chromatography. Proc.Natl.Acad.Sci.USA, 1979, v. 76, N 1, p.204−208.
  309. White A.A. Separation and purification of cyclic nucleotides by alumina column chromatography. Methods. Enzymol., 1974, tc.38C, p.31−46.
  310. Williams L., Mullikin D., and Lefkowitz R.J. Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors. J.Biol.Chem., 1978, v.253, N 9, p.2984−2989.
  311. Wolff D.J., and Brostrom C.O. Calcium-dependent cyclic nucleotide phosphodiesterase from brain: identification of phospholipids as calcium-independent activators. Arch. Bio-chem.Biophys., 1976, v.173, p.720−731.
  312. Wolff D.J., and Brostrom C.O. Properties and functions of the calcium-dependent regulator protein. Adv.Cycl.Nucl.Res., v. 11 (ed. by P. Greengard and G.A.Robison), Raven Press, New York, 1979, p.28−88.
  313. Wolff D.J., Poirier P.G., Brostrom C.O., and Brostrom M.A.2 +
  314. Divalent cation binding properties of bovine brain Ca dependent regulator protein. J.Biol.Chem., 1977, v.252, p.4108−4117.
  315. Wolff J., Cook G.H., Goldhammer A.R., and Berkowitz S.A. Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl.Acad.Sci.USA, 1980, v.77, N 7, p.3841−3844.
  316. Wolff J., and Jones A.B. Inhibition of hormone-sensitive adenyl cyclase by phenothiazines.
  317. Proc.Natl.Acad.Sci.USA, 1970, v.65, p.454−459.
  318. Выражаю глубокую благодарность моему научному руководителю В. А. Ткачуку за постоянное внимание и неустанную заботу во время выполнения диссертационной работы.
  319. Считаю также своим долгом поблагодарить Г. Н. Балденкова, Г. Ю. Григоряна, М. Ю. Меньшикова, П. В. Авдонина, Й.В.Свитину-Улитину, Е. И. Ратнер, В.0.Рыбина за ценные замечания при проведении экспериментальных исследований и обсуждении полученных результатов.
  320. Искренне благодарен всему коллективу кафедры биохимии за внимание и доброе отношение.
Заполнить форму текущей работой