Помощь в написании студенческих работ
Антистрессовый сервис

Окислительно-восстановительное взаимодействие Mn-бикарбонатных комплексов с реакционными центрами типа II аноксигенных фотосинтезирующих бактерий

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Способность Мп2+ (в присутствии бикарбоната) к донированию электрона на Р+ зависела от величины Ет пары Р+/Р в РЦ исследуемых бактерий, а также от стерической доступности Р+ для взаимодействия с экзогенными донорами электрона, что потверждало л: окислительно-восстановительную природу взаимодействия между Мпбикарбонатными комплексами и Р+. Так, недостаточно высокое значение Ет пары Р+/Р в РЦ С… Читать ещё >

Окислительно-восстановительное взаимодействие Mn-бикарбонатных комплексов с реакционными центрами типа II аноксигенных фотосинтезирующих бактерий (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ
  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. ПОЯВЛЕНИЕ ФОТОСИНТЕЗА
    • 1. 2. КЛАССИФИКАЦИЯ ФОТОСИНТЕЗИРУЮЩИХБАКТЕРИЙ
    • 1. 3. МЕХАНИЗМ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ СВЕТА ПРИ ФОТОСИНТЕЗЕ
    • 1. 4. РЕАКЦИОННЫЕ ЦЕНТРЫ ПУРПУРНЫХ И ЗЕЛЕНЫХ НИТЧАТЫХ БАКТЕРИЙ
    • 1. 5. СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ ФОТОСИСТЕМЫ
    • 1. 6. ЛОКАЛИЗАЦИЯ И ФУНКЦИИ БИКАРБОНАТА В ФОТОСИСТЕМЕ
    • 1. 7. СОСТАВ И ЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА КОМПЛЕКСОВ Мп2+ С БИКАРБОНАТОМ
    • 1. 8. ГИПОТЕЗА О КЛЮЧЕВОЙ РОЛИ Мп2±БИКАРБОНАТНЫХ КОМПЛЕКСОВ В ЭВОЛЮЦИОННОМ ПЕРЕХОДЕ ОТ АНОКСИГЕННОГО К ОКСИГЕННОМУ ФОТОСИНТЕЗУ
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • ГЛАВА 2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ
    • 2. 1. ВЫДЕЛЕНИЕ «КОРОВЫХ» КОМПЛЕКСОВ ИЗ ПУРПУРНЫХ БАКТЕРИЙ: Як юйоъит, Як. robiginosum, Тк хШНса и Ск ттийвьшит
    • 2. 2. ВЫДЕЛЕНИЕ КОМПЛЕКСОВ РЕАКЦИОННЫХ ЦЕНТРОВ ИЗ
  • С/. аигапНасш и ЯЪ. sphaeroid. es Я
    • 2. 3. ЭЛЕКТРОФОРЕЗ «КОРОВЫХ» КОМПЛЕКСОВ БАКТЕРИЙ И СПЕЦИФИЧЕСКАЯ ОКРАСКА ПОЛИАКРИЛАМИДНЫХГЕЛЕЙ НА ГЕМЫ ЦИТОХРОМА
    • 2. 4. ИЗМЕРЕНИЕ СРЕДНЕТОЧЕЧНОГО ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ПОТЕНЦИАЛА ПАРЫ Р+/Р В «КОРОВЫХ» КОМПЛЕКСАХ ПУРПУРНЫХ БАКТЕРИЙ
    • 2. 5. УДАЛЕНИЕ С02/НС03~ ИЗ РАСТВОРОВ
    • 2. 6. ИЗМЕРЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ СПЕКТРОВ ПОГЛОЩЕНИЯ
    • 2. 7. ИЗМЕРЕНИЕ КИНЕТИКИ ФОТООКИСЛЕНИЯ Р И РЕ-ВОССТАНОВЛЕНИЯ Р+ В РЕАКЦИОННЫХ ЦЕНТРАХ БАКТЕРИЙ
    • 2. 8. ЭПР-ИЗМЕРЕНИЕ ФОТООКИСЛЕНИЯ Мп2+ РЕАКЦИОННЫМИ ЦЕНТРАМИ ПУРПУРНОЙ БАКТЕРИИ Як Шояит
  • ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. ИЗУЧЕНИЕ ВОЗМОЖНОСТИ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ВЗАИМОДЕЙСТВИЯ Мп2+ В ПРИСУТСТВИИ БИКАРБОНАТА С РЕАКЦИОННЫМИ ЦЕНТРАМИ ТИПА IIАНОКСИГЕННЫХ ФОТОСИНТЕЗИРУЮЩИХ БАКТЕРИЙ
      • 3. 1. 1. Исследование окислительно-восстановительного взаимодействия Мп2+ в присутствии бикарбоната с РЦ аноксигенных пурпурных Ее-окисляющих бактерий ЯН. юйоьит и Як гоЪщтозит
      • 3. 1. 2. Исследование окислительно-восстановительного взаимодействия Мп2+ в присутствии бикарбоната с РЦ серной алкалофильной бактерии
  • Тк згЫпса
    • 3. 2. ИССЛЕДОВАНИЕ ФОТООКИСЛЕНИЯ Мп2+В ПРИСУТСТВИИ ИОНОВ НС03~ РЕАКЦИОННЫМИ ЦЕНТРАМИ Як Шоиит С ПОМОЩЬЮ ЭПР-СПЕКТРОСКОПИИ
    • 3. 3. ВЛИЯНИЕ ВЕЛИЧИНЫ Ет
  • ПАРЫ РУР И СТЕРИЧЕСКОЙДОСТУПНОСТИ Р+НА ДОНИРОВАНИЕ ЭЛЕКТРОНА ОТ Мп2+ НА РЕАКЦИОННЫЕ ЦЕНТРЫ ТИПАП АНОКСИГЕННЫХ ФОТОСИНТЕЗИРУЮЩИХ БАКТЕРИЙ В ПРИСУТСТВИИ БИКАРБОНАТА
    • 3. 3. 1. Исследование окислительно-восстановительного взаимодействия Мп2+ в присутствии бикарбоната с реакционными центрами ЯЬ. зркаего1с1е5Я-2б.1Ъ
    • 3. 2. 2. Влияние величины Ет пары Р+/Р на допирование электрона от Мп2+ на реакционный центр С/. аигапНасиз в присутствии бикарбоната
    • 3. 2. 3. Влияние цитохромной субъединицы на допирование электрона от Мп2+ на реакционный центр Ск ттиШвШит в присутствии бикарбоната

Актуальность проблемы. Появление оксигенных фотосинтезирующих организмов более 2,5 млрд лет назад привело к накоплению О2 в атмосфере Земли, кардинальной перестройке биосферы и возникновению аэробной жизни [Holland and Rye, 1998; Des Marais, 2000; Dismukes and Blankenship, 2005].

Кислород-выделяющая фотосистема 2 (ФС-2) растений и цианобактерий состоит из двух основных функциональных блоков: (1) фотохимического реакционного центра (РЦ), в котором происходит превращение энергии возбуждения хлорофилла, поглотившего квант света, в энергию разделенных зарядов, в результате чего образуется самый сильный биологический окислитель — катион-радикал первичного донора электрона — хлорофилла Рб80 (Рб80+')> и (2) водоокисляющего комплекса (ВОК), который многократно окисляется с помощью Р680+ через вторичный донор электрона, Yz, и, в свою очередь, окисляет Н2О до Ог [подробнее см. Renger, 2001]. Накопление окислительных эквивалентов, необходимых для четырехэлектронного окисления воды, происходит в Mn-кластере ВОК, содержащем четыре катиона Мп и один катион Са [Umena et al., 2011].

Наиболее вероятными эволюционными предшественниками ФС-2 являются РЦ пурпурных бактерий, которые, так же как и РЦ ФС-2, относятся к типу II [Blankenship, 1992; Allen and Williams, 1998], хотя путь эволюционного перехода от аноксигенного фотосинтеза к оксигенному остается неясным. В бактериохлорофилл-содержащих РЦ аноксигенных бактерий значение среднеточечного окислительно-восстановительного потенциала (Ет) пары Р870+/Р87о составляет лишь около 0,50 В [Lin et al., 1994], которого достаточно для окисления ионов железа, некоторых органических и сульфидных соединений, используемых аноксигенными фототрофами в качестве доноров электрона, но недостаточно для окисления марганца.

В последнее время развиваются представления о возможной роли Мпбикарбонатных комплексов в эволюционном происхождении Mn-кластера ВОК [Dismukes et al., 2001; Kozlov et al., 2004; Dasgupta et al., 2006]. Электрохимические и ЭПР-измерения [Козлов с соавт., 1997; Kozlov et al., 2004; Dasgupta et al., 2006] показали, что в присутствии ионов бикарбоната окисление ионов Мп значительно облегчается: потенциал одноэлектронного ух окисления Мп, равный 1,18 В для водного комплекса, понижается до 0,61 и 0,52 В при формировании, соответственно, комплексов [Мп (НСОз)]+ и [Мп (НСОз)г]. Образование таких легкоокисляемых" Мп2±бикарбонатных комплексов облегчает фотоокисление Мп2+ в процессе фотоиндуцированного формирования неорганического ядра ВОК из фотосистемы.

2+ 2+.

2, не содержащей Mn-кластер (апо-ВОК-ФС-2) и неорганических кофакторов Мп и [Klimov et al., 1995a, b- 1997aAllakhverdiev et al., 1997; Baranov et al., 2000; Baranov et al.,.

2004; Ког1оу й а1., 2004]. Кроме того, потенциал окисления Мп2±бикарбонатных комплексов настолько низок (0,52 В), что можно ожидать их фотоокисление даже РЦ аноксигенных фотосинтезирующих бактерий. Вследствие этого было предположено, что такие комплексы могли использоваться аноксигенными бактериями в качестве доноров электронов и «строительных блоков» в процессе формирования первых 02-выделяющих РЦэтикев сг а1&bdquo- 2001; Ког1оу й а1., 2004; Баз? ир1а й а1., 2006].

Целью данной работы было экспериментальное исследование возможности донирования электрона от Мп в присутствии бикарбоната на реакционный центр типа II аноксигенных фотосинтезирующих бактерий дикого типа. Для достижения поставленной цели решались следующие задачи:

1) с помощью дифференциальной абсорбционной спектрофотометрии и ЭПРспектрометрии исследовать возможность окислительно-восстановительного взаимодействия 2+.

Мп в присутствии бикарбоната с РЦ типа II аноксигенных фотосинтезирующих бактерий;

2) изучить специфичность окислительно-восстановительного взаимодействия пары «МпСЬ плюс МаНСОз» с РЦ исследуемых бактерий;

3) провести сравнительные исследования взаимодействия Мп2+ в присутствии бикарбоната с РЦ бактерий, различающихся по величине Ет пары Р /Р.

Научная новизна работы. Впервые с помощью методов оптической спектрофотометрии показана способность катиона Мп2+ в присутствии бикарбоната к редокс-взаимодействию с Р+ в РЦ типа II аноксигенных фотосинтезирующих бактерий дикого типа: Ккойои1ит (Як.) юйозит, Як robiginosum, ТЫогкойозргга (ТИ.) згЫпса, КкойоЪа^ег (ЯЬ.) sphaeroid. es 11−26. С помощью ЭПР-спектроскопии выявлено, что №НСОз стимулирует фотоокисление Мп2+ до Мп3+ реакционными центрами Як юйоьит.

Установлено, что наблюдаемый в присутствии пары «МпСЬ плюс ЫаНСОз» эффект 2+ ускорения темнового ре-восстановления Р является специфичным для Мпбикарбонатных.

2+ комплексов: добавление МпСЦ и ЫаНСОз отдельно друг от друга, так же как и замена Мп в присутствии КаНСОз на другие двухвалентные катионы (М§-2+, Са2+) или замена бикарбоната (в присутствии Мп) на схожие по структуре анионы (формиат, ацетат, оксалат) приводит к потере эффекта. Результаты исследований зависимости эффекта от концентрации бикарбоната позволяют предположить электронейтральный комплекс [Мп (НСОз)2] (с потенциалом окисления Мп2+, равным 0,52 В) в качестве донора электрона на Р+ бактериальных РЦ (хотя, не исключено и участие комплекса [Мп (НСОз)]+ в этом процессе). Обнаружено, что способность Мп (в присутствии бикарбоната) к донированию электрона на Р+ зависит от величины окислительно-восстановительного потенциала пары Р+/Р, что подтверждает окислительно-восстановительную природу взаимодействия между Мп2+ и Р+.

Практическая значимость работы. Полученные данные вносят вклад в решение фундаментальной проблемы — изучение механизмов формирования и эволюционного происхождения Мп-содержащего водоокисляющего комплекса фотосистемы 2, а также могут послужить основой для разработки принципов создания искусственных систем на основе пигмент-белковых комплексов, преобразующих и запасающих солнечную энергию.

Апробация работы. Результаты и основные положения работы были представлены на международной конференции «Биология: теория, практика, эксперимент» (Саранск, январь 2008 г.), 15-й международной Пущинской школе-конференции молодых ученых «Биологиянаука XXI века» (Пущино, 18−22 апреля 2011 г.), международной конференции «Экология и геохимическая деятельность микроорганизмов экстремальных местообитаний» (Улан-УдэУлаанбаатар, 5−16 сентября 2011 г.), У1-м съезде Российского фотобиологического общества (пос. Шепси, Краснодарский край, 15−22 сентября 2011 г.), школе-конференции молодых ученых на базе Института фундаментальных проблем биологии РАН «Биосистема: от теории к практике» (Пущино, 4−5 октября 2012 г.), международной конференции молодых ученых «Экспериментальная и теоретическая биофизика'12» (Пущино, 22−24 октября 2012 г.).

Личный вклад соискателя. Диссертация выполнена самостоятельно. Автор участвовал в постановке и решении всех экспериментальных задач, обработке результатов и формулировке выводов. Соавторы, принимавшие участие в совместных исследованиях, указаны в соответствующих разделах диссертации.

Публикации. По теме диссертации опубликовано 10 печатных работ, в том числе 4 статьи: 1 статья в реферируемом научном российском журнале (из списка ВАК), 1 в реферируемом зарубежном журнале, 2 в периодических научных изданиях и б в материалах коференций.

Структура и объем диссертации

Диссертация состоит из введения, обзора литературы, описания материалов и методов исследования, изложения результатов и их обсуждения, заключения, выводов и списка цитируемой литературы. Диссертация изложена на 112 страницах, иллюстрирована 47 рисунками.

Список литературы

содержит 181 источник (из них 172 на английском языке).

выводы.

1. Обнаружена способность катионов Мп2+ в присутствии бикарбоната к окислительно-восстановительному взаимодействию с окисленным первичным донором электрона, Р+, реакционных центров (РЦ) типа II в препаратах из аноксигенных фотосинтезирующих бактерий Rhodovulum iodosum, Rhodovulum robiginosum, Thiorhodospira sibirica и Rhodobacter sphaeroides R-26, что проявляется как в ускорении ре-восстановления генерируемого на свету Р, так и в фотоиндуцированном окислении экзогенного Мп2+ до Мп3+.

2. Показано, что наблюдаемый в присутствии пары «МпС12 плюс ИаНСОз» эффект ускорения ре-восстановления Р+ в РЦ исследуемых пурпурных бактерий является специфичным для Мпбикарбонатных комплексов, поскольку добавление к препаратам отдельно друг от друга МпС12 и ЫаНСОз или замена.

Мп2+ на Mg2+ или Са2+ (в присутствии бикарбоната), или замена бикарбоната на формиат, ацетат или оксалат (в присутствии МпС12) приводит к потере эффекта. Зависимость эффекта ускорения темновой релаксации г с помощью.

Мп2+ от концентрации бикарбоната позволяет предположить участие «низкопотенциальных» комплексов [Мп (НСОз)2] (характеризующихся потенциалом.

94окисления Мп до Мп, равным 0,52 В) в окислительно-восстановительном взаимодействии с Р+.

9+.

3. Показано, что способность Мп (в присутствии бикарбоната) к донированию электрона на Р+ в РЦ исследуемых аноксигенных фотосинтезирующих бактерий зависит от величины Ет пары Р+/Р, что подтверждает окислительно-восстановительную природу.

9+ + взаимодействия между Мпбикарбонатными комплексами и Р .

4. Полученные данные можно рассматривать в качестве экспериментального подтверждения.

9+ гипотезы о возможной ключевой роли Мпбикарбонатных комплексов в эволюционном переходе от аноксигенного к оксигенному фотосинтезу, согласно которой, в архейский период в условиях, благоприятных для образования «низкопотенциальных» комплексов [Мп (НСОз)2], аноксигенные бактерии могли использовать их сначала в качестве донора электрона, а затем в качестве «строительных» блоков для формирования Мп-содержащего энзиматического центра, способного к окислению воды, что могло привести к появлению первых 02-выделяющих цианобактерий.

ЗАКЛЮЧЕНИЕ

.

Полученные в нашей работе экспериментальные данные свидетельствуют об.

9+ окислительно-восстановительном взаимодействии катионов Мп в присутствии бикарбоната (рН 8,3) с Р+ в РЦ типа II, выделенных из аноксигенных пурпурных бактерий Як юйозит, Як roЫginosum, Тк $ 1ЫНса и ЯЪ. sphaeroid. es Я-26. В присутствии 0,5 мМ МпСЬ и 50 мМ ЫаНСОз отмечалось ускорение ре-восстановления генерируемого на свету Р+, а также фотоиндуцированное окисление Мп2+ до Мп3+ бактериальными РЦ. Было показано, что наблюдаемый в присутствии пары «МпСЬ плюс ЫаНСОз» эффект ускорения ре-восстановления Р является специфичным для Мпбикарбонатных комплексов, поскольку добавление к препаратам отдельно друг от друга МпСЬ и ЫаНСОз или замена.

Мп (в присутствии бикарбоната) на другие двухвалентные катионы (Мд2+ или Са2+), или замена бикарбоната (в присутствии МпСЬ) на другие схожие с ним по структуре анионы (формиат, ацетат или оксалат) приводило к потере эффекта. Результаты исследований зависимости эффекта от концентрации бикарбоната позволяют предположить электронейтральный комплекс [Мп (НСОз)г] (с потенциалом окисления Мп, равным 0,52 В) в качестве донора электрона на Р+ бактериальных РЦ (хотя, не исключено и участие комплекса [Мп (НСОз)]+ в этом процессе).

Способность Мп2+ (в присутствии бикарбоната) к донированию электрона на Р+ зависела от величины Ет пары Р+/Р в РЦ исследуемых бактерий, а также от стерической доступности Р+ для взаимодействия с экзогенными донорами электрона, что потверждало л: окислительно-восстановительную природу взаимодействия между Мпбикарбонатными комплексами и Р+. Так, недостаточно высокое значение Ет пары Р+/Р в РЦ С/. аигапНасш (равное, согласно разным источникам, 0,36−0,42 В), как и присутствие прочно связанного с РЦ Ск ттЫ’ш’тит цитохрома (высокопотенциальный гем которого, окисляемый непосредственно Р+, также характеризуется недостаточно высоким значением Ет, равным 0,39 В) приводило к потере изучаемого эффекта ускорения ре-восстановления Р+ в присутствии пары «МпСЬ плюс ЫаНСОз».

Полученные результаты рассматриваются нами в качестве экспериментального подтверждения гипотезы о возможной ключевой роли Мпбикарбонатных комплексов в эволюционном переходе от аноксигенного к оксигенному фотосинтезу, согласно которой, в архейский период в условиях, благоприятных для образования «низкопотенциальных» Мпбикарбонатных комплексов, аноксигенные бактерии могли использовать их сначала в качестве донора электрона, а затем в качестве «строительных» блоков для формирования.

Мп-содержащего энзиматического центра, способного к окислению воды, что могло привести к появлению первых Ог-вьщеляющих цианобактерий.

Показать весь текст

Список литературы

  1. И. А., Ганаго А. О. и Ерохин Ю.Е. (1978) Линейный дихроизм ориентированных хроматофоров и пигмент-белковых комплексов из фотосинтезирующей бактерии Chromatium minutissimum. ДАН СССР, 242, 1197−1199.
  2. В.В., Карапетян Н. В. и Красновский A.A. (1975) Действие детергента тритона Х-100 на фотоиндуцированные изменения выхода флуоресценции хлоропластов. Молекулярная биология, 9, 219−226.
  3. В.В., Шувалов В. А., Крахмалева И. Н., Клеваник A.B. и Красновский A.A. (1977) Фотовосстановление бактериофеофитина Ъ в первичной световой реакции хроматофоров Rhodopseudomonas viridis. Биохимия, 42, 519−530.
  4. В.В., Аллахвердиев С. И., Деметер Ш. и Красновский A.A. (1979) Фотовосстановление феофитина в фотосистеме 2 хлоропластов в зависимости от окислительно-восстановительного потенциала среды. Доклады АН СССР, 249, 227−230.
  5. Ю.Н., Казакова A.A. и Климов В.В. (1997) Изменение окислительно-восстановительного потенциала и каталазнои активности ионов Мп2+ при образовании Mn-бикарбонатных комплексов. Биологические мембраны, 14, 93−97.
  6. И.И., Прохоренко И. Р., Возняк В. М. и Ерохин Ю.Е. (1978) Изучение методом ЭПР окислительно-восстановительного титрования хроматофоров Chromatium minutissimum. Биофизика, 23, 916−918.
  7. К.Г., Застрижная О. М., Козлов Ю. Н. и Климов В.В. (2006) Состав и каталоподобная активность марганец (П)-бикарбонатных комплексов. Биохимия, 71,1561−1569.
  8. Т.Ю. (2010) Влияние аминокислотных замещений вблизи молекул бактериохлорофиллов Рд и Рв на свойства реакционного центра Rhodobacter sphaeroides. Диссертация на соискание ученой степени кандидата биологических наук. Пущино.
  9. Allakhverdiev S.I., Tomo T., Shimada Y., Kindo H., Nagao R., Klimov V.V. and Mimuro M. (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA, 107, 3924−3929.
  10. Allakhverdiev S.I., Yruela I., Picorel R. and Klimov V.V. (1997) Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proc Natl Acad Sci USA, 94, 5050−5054.
  11. Allen J.P. and Williams J.C. (1998) Photosynthetic reaction centers. FEBS Lett, 438, 5−9.
  12. Allen J.P., Feher G., Yeates T.O., Komiya H. and Rees D.C. (1987a) Structure of the reaction centers from Rhodobacter sphaeroides R-26: The cofactors. Proc Natl Acad Sci USA, 84, 5730−5734.
  13. Allen J.P., Feher G., Yeates T.O., Komiya H. and Rees D.C. (1987b) Structure of the reaction centers from Rhodobacter sphaeroides R-26: The protein subunits. Proc Natl Acad Sci USA, 84, 6162−6166.
  14. Aller R.C., Mackin J. E. and Cox R.T., Jr. (1986) Diagenesis of the Fe and S in Amazonian inner shelf muds: apparent dominance of Fe redaction and implications for the genesis of ironstones. Continental Shelf Res, 6, 263−289.
  15. Andreasson U. and Andreasson L-E. (2003) Characterization of a semi-stable, charge-separated state in reaction centers from Rhodobacter sphaeroides. Photosynth Res, 75, 223−233.
  16. Aoyama C., Suzuki H., Sugiura M. and Noguchi T. (2007) Flash-induced FTIR difference spectroscopy shows no evidence for the structural coupling of bicarbonate to the oxygen-evolving Mn cluster in photosystem II. Biochemistry, 47, 2760−2765.
  17. S.M. (1992) The oldest records of photosynthesis. Photosynth Res, 33, 75−89.
  18. J. (1987) Photosynthetic reaction centers: a common link. Trends Biochem Sci, 12, 321−326.
  19. Berry E.A. and Trumpower B. (1987) Simultaneous determination of hemes a, b and c from pyridine hemochrome spectra. Anal Biochem, 161, 1−15.
  20. Biesiadka J., Loll B., Kern J., Irrgang K.D. and Zouni A. (2004) Crystal structure of cyanobacterial photosystem II at 3.2 angstrom resolution: a closer look at the Mn-cluster. Phys Chem Chem Phys, 6, 4733−4736.
  21. R.E. (1992) Origin and early evolution of photosynthesis. Photosynth Res, 33, 91−111.
  22. R.E. (1994) Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers. Antonie van Leeuwenhoek, 65, 311−329.
  23. Blankenship R.E. and Hartman H. (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci, 23, 94−97.
  24. Bondareva N., De P.L., Al-Babili S., Goussias C., Golecki J.R., Beyer P., Bock R. and Krieger-Liszkay A. (2003) Evidence that cytochrome b559 mediates the oxidation of reduced plastoquinone in the dark. J Biol Chem, 278, 13 554−13 560.
  25. Bricker T.M. and Frankel L.K. (2002) The structure and function of CP47 and CP43 in Photosystem II. Photosynth Res, 72, 131−146.
  26. Briser M.D., Green O.R., Jephcoat A.P., Kleppe A.K., Van Kranendonk M.J., lindsay J.F., Steel A. and Grassineau N.V. (2002) Questioning the evidence for Earth’s oldest fossil. Nature, 416, 76−81.
  27. Bruce B.D., Fuller R.C. and Blankenship R.E. (1982) Primary photochemistry in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Proc Natl Acad Sci USA, 79, 6532−6536.
  28. Bryantseva I., Gorlenko V.M., Kompantseva E.I., Imhoff J.F., Suling J. and Mityushina L. (1999) Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol, 49 Pt 2, 697−703.
  29. R. (1992) The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient archean lakes. Science, 255, 74−77.
  30. Calderone V., Trabucco M., Vujicic A., Battistutta R., Giacometti G.M., Andreucci F., Barbato R. and Zanotti G. (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep, 4, 900−905.
  31. Canfield D.E., Jorgensen B.B., Fossing H., Glud R., Gundersen J., Ramsing N.B., Thamdrup B., Hansen J.W., Nielsen L.P. and Hall P.O. (1993a) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol, 113, 27−40.
  32. Canfield D.E., Thamdrup B. and Hansen J.W. (1993b) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta, 57, 3867−3883.
  33. Cao J., Ohand N., Hirschberg J., Xiong J. and Govindjee (1992) Binding affinity of bicarbonate and formate in herbicide-resistant D1 mutants of Synechocystis sp PCC-7942. Photosynth Res, 34, 397−408.
  34. Chamorovsky S.K., Zakharova N.I., Remennikov S.M., Sabo Y. and Rubin A.B. (1998) The cytochrome subunit structure in the photosynthetic reaction center of Chromatium minutissimum. FEBS Lett, 422, 231−234.
  35. Clausen J., Beckmann K., Junge W. and Messinger J. (2005) Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. Plant Physiol, 139, 1444−1450.
  36. R.K. (1963) Toward the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim Biophys Acta, 75, 312−323.
  37. Cogdell R.J. and Lindsay J.G. (2000) The structure of the photosynthetic complexes in bacteria and plants: an illustration of the importance of protein structure to the future development of plant science. New Phytol, 145, 167−196.
  38. Cogdell R.J., Gall A. and Kohler J. (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys, 39, 227−324.
  39. Dasgupta J., Tyryshkin A.M., Kozlov Y.N., Klimov V.V. and Dismukes G.C. (2006) Carbonate complexation of Mn2+ in the aqueous phase: redox behavior and ligand binding modes by electrochemistry and EPR spectroscopy. J Phys Chem B, 110, 5099−5111.
  40. Debus R.J., Barry B.A., Babcock G.T. and Mcintosh L. (1988) Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA, 85, 427−430.
  41. Deisenhofer J. and Michel H. (1989) The photosynthetic reaction centers from the purple bacterium Rhodopseudomonas viridis (Nobel lecture). The EMBO J, 8, 2149−2169.
  42. Deisenhofer J. and Michel H. (1991) High-resolution structures of photosynthetic reaction centers. Annu Rev Biophys Biophys Chem, 20, 247−266.
  43. Des Marais D. J. (2000) Evolution. When did photosynthesis emerge on Earth?. Science, 289, 17 031 705.
  44. Diner B.A. and Petrouieas V. (1990) Formation by NO of nitrosyl adducts of redox components of the Photosystem II reaction center. II. Evidence that HCO37CO2 binds to the acceptor side non-heme iron. Biochim Biophys Acta, 1015,141−149.
  45. Diner B.A. and Rappaport F. (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol, 53, 551 580.
  46. Dinner B.A. and Britt R.D. (2005) The redox-active tyrosines Yz and Yd. In: Wydrzysky T.J. and Satoh K. (eds) Photosystem II. The light-driven water: plastoquinone oxidoreductase, vol. 22, pp 207−233. Springer, Dordrecht, Netherlands.
  47. Dismukes G.C., Klimov V.V., Baranov S.V., Kozlov Y.N., DasGupta J. and Tyryshkin A. (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA, 98, 2170−2175.
  48. Ermler U., Fritzsch G., Buchanan S.K. and Michel H. (1994) Structure of the photosynthetic reaction centers from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactors interactions. Structure, 2, 925−936.
  49. Farquhar J., Bao H.N. and Thiemans M. (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756.
  50. Feher G. and Okamura M.Y. (1978) Chemical composition and properties of reaction centers. In: Clyton R.K., Sistrom W.R. (eds) The fotosynthetic bacteria, pp 349−386. Plenum Press, New York, USA.
  51. Ferreira K.N., Iverson T.M., Maghlaoui K., Barber J. and Iwata S. (2004) Architecture of the photosynthetic oxygen-evolving center. Science, 303, 1831−1838.
  52. Feysiev Y.M., Yoneda D., Yoshii T., Katsuta N., Kawamori A. and Watanabe Y. (2000) Formate-induced inhibition of the water-oxidizing complex of Photosysten II studied by EPR. Biochemistry, 39, 3848−3855.
  53. Gemerden H.V. and Mas J. (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship R.E., Madigan M.T. and Bauer C.E. (eds) Anoxygenic photosynthetic bacteria, vol. 2, pp 49−85. Kluwer Academic Publishers, Dordrecht.
  54. Gray K.A. and Daldal F. (1995) Mutational studies of the cytochrome bc complex. In: Blankenship R.E., Madigan M.T. and Bauer C.E. (eds) Anoxygenic photosynthetic bacteria, vol. 2, pp 747 774. Kluwer Academic Publishers, Dordrecht.
  55. M.W. (1989) The evolutionary origins of organelles. Trends in Genetics, 5, 294−299.
  56. Gromet-Elhanan Z. (1995) The proton-translocating F0Fi ATP synthase-ATPase complex. In: Blankenship R.E., Madigan M.T. and Bauer C.E. (eds) Anoxygenic photosynthetic bacteria, vol. 2, pp 807−830. Kluwer Academic Publishers, Dordrecht.
  57. Grotjohann I. Jolley C. and Fromme P. (2004) Evolution of photosynthesis and oxygen evolution: Implications from the structural comparison of Photosystems I and II. Phys Chem Chem Phys, 6, 4743−4753.
  58. Guskov A., Kern J., Gabdulkhakov A., Broser M., Zouni A. and Saenger W. (2009) Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol, 16, 334−342.
  59. Hanley J., Sarrou J. and Petrouleas V. (2000) Orientation of the Mn (II)-Mn (III) dimer which results from the reduction of the oxygen-evolving complex of photosystem II by NO: an electron paramagnetic resonance study. Biochemistry, 39, 15 441−15 445.
  60. Hasegawa K., Kimura Y. and Ono T.A. (2004) Oxidation of the Mn cluster induces structural changes of NO «functionally bound to the CI» site in the oxygen-evolving complex of photosystem II. Biophys J, 86, 1042−1050.
  61. Hauska G., Schoedl T., Remigy H. and Tsiotis G. (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta, 1507, 260−277.
  62. Heathcote P., Kyfe P. and Jones R. (2002) Reaction centers: the structure and evolution of biological solar power. TIBS, 27, 79−87.
  63. Hienerwadel R. and Berthomieu C. (1995) Bicarbonate binding to the non-heme iron of photosystem II investigated by Fourier transform infrared difference spectroscopy and Relabeled bicarbonate. Biochemistry, 34, 16 288−16 297.
  64. Hoff A.J. and Deisenhofer j. (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Physics Rep, 287,1−247.
  65. Holland H. and Rye R. (1998) Paleo-recontruction of early O2 evolving. Amer J Science, 298, 621 672.
  66. Jenney F.E. and Daldal F. (1993) A novel membrane-associated c-type cytochrome, Cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. The EMBO J, 12, 1283−1292.
  67. Kalman L. and Maroti P. (1997) Conformation-activated protonation in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides. Biochemistry, 36, 15 269−15 276.
  68. Kalman L., LoBrutto R., Allen J.P. and Williams J.C. (2003) Manganese oxidation by modified reaction centers from Rhodobacter sphaeroides. Biochemistry, 42, 11 016−11 022.
  69. Kamiya N. and Shen J.R. (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7- A resolution. Proc Natl Acad Sci USA, 100, 98−103.
  70. Kasting J. F. and Seifert J. L. (2002) Life and evolution of Earth’s atmospheric. Science, 296,10 661 068.
  71. Katona G., Snijder A., Gourdon P., Andreasson U., Hansson O., Andreasson L.E. and Neutze R. (2005) Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center. Nat Struct Mol Biol, 12, 630−631.
  72. Ke B. (2000) Photosynthesis: photobiochemistry and photobiophysics. In: Govindjee (ed) Advances in photosynthesis, vol 10, 628 p.
  73. Klimov V.V. and Baranov S.V. (2001) Bicarbonate requirement for the water-oxidizing complex of photosystem II. Biochim Biophys Acta, 1503, 187−196.
  74. Klimov V.V., Allakhverdiev S.I., Baranov S.V. and Feyziev Ya.M. (1995a) Effects of bicarbonate and fomate on the donor side of photosystem II. Photosynth Res, 46, 219−225.
  75. Klimov V.V., Allakhverdiev S.I., Feyziev Ya.M. and Baranov S.V. (1995b) Bicarbonate requirement for the donor side of photosystem II. FEBS Lett, 363, 251−255.
  76. Klimov V.V., Klevanik A.V., Shuvalov V.A. and Kransnovsky A.A. (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett, 82, 183−186.
  77. Klimov V.V., Baranov S.V. and Allakhverdiev S.I. (1997a) Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation. FEBS Lett, 418, 243−246.
  78. Klimov V.V., Hulsebosch R.J., Allakhverdiev S.I., Wincencjusz H., van Gorkom H.J. and Hoff A.J. (1997b) Bicarbonate may be required for ligation of manganese in the oxygen-evolving complex of photosystem II. Biochemistry, 36, 16 277−16 281.
  79. D.B. (1993) The cytochrome bc complex of photosynthetic bacteria. Photosynth Res, 35, 117−133.
  80. Kok B., Forbush B. and McGloin M. (1970) Cooperation of charges in photosynthetic O2 evolution. A linear four step mechanism. Photochem Photobiol, 11, 457−475.
  81. Madigan M.T. and Ormerod J.G. (1995) Taxonomy, physiology and ecology of heliobacteria. In: Blankenship R.E., Madigan M.T. and Bauer C.E. (eds) Anoxygenic photosynthetic bacteria, vol. 2, pp 17−30. Kluwer Academic Publishers, Dordrecht.
  82. Manchandra R., Brudvig G.W. and Crabtree R.H. (1995) Hight-valent oxomanganese clusters: Structural and mechanistic work relevant to the oxygen-evolving center in photosystem II. Coord Chem Rev, 144, 1−38.
  83. Meyer T.J., Hang M., Huynh V. and Thorp H.H. (2007) The role of proton coupled electron transfer (PCET) in water oxidation by photosystem II. Writing for protons. Angew Chem Int Ed, 46, 5284−5304.
  84. Michel H. and Deisenhofer J. (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry, 27, 1−7.
  85. Moskalenko A.A., Makhneva Z.K., Fiedor L. and Scheer H. (2005) Effects of carotenoid inhibition on the photosynthetic RC-LH1 complex in purple sulphur bacterium Thiorhodospira sibirica. Photosynth Res, 86, 71−80.
  86. Mourik.F., Reus M. and Holzwarth A.R. (2001) Long-lived charge-separated states in bacterial reaction centers isolated from Rhodobacter sphaeroides. Biochim Biophys Acta, 1504, 311 318.
  87. Nitschke W. and Dracheva S. (1995) Reaction center associated cytochromes. In: Blankenship R.E., Madigan M.T. and Bauer C.E. (eds) Anoxygenic photosynthetic bacteria, vol. 2, pp 775−805. Kluwer Academic Publishers, Dordrecht.
  88. Noguchi T., Ono T. and Inoue Y.(1995) Direct detection of a carboxylate bridge between Mn and Ca2+ in the photosynthetic oxygen-evolving center by means of Fourier transform infrared spectroscopy. Biochim Biophys Acta, 1228, 189−200.
  89. Nozawa T. and Madigan M.T. (1991) Temperature and solvent effects on reaction centers from Chloroflexus aurantiacus and Chromatium tepidum. J Biochem, 110, 588−594.
  90. Ohad I., Dal B.C., Herrmann R.G. and Meurer J. (2004) Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool. Biochemistry, 43, 2297−2308.
  91. Olesen K. and Andreasson L.E. (2003) The function of the chloride ion in photosynthetic oxygen evolution. Biochemistry, 42,2025−2035.
  92. Olsen J.D., Tucker J.D., Timney J.A., Qian P., Vassilev C. and Hunter C.N. (2008) The organization of LH2 complexes in membranes from Rhodobacter sphaeroides. J Biol Chem, 283, 30 772−30 779.
  93. Olson J.M. and Blankenship R.E. (2004) Thinking about the evolution of photosynthesis. Photosynth Res, 80, 373−386.
  94. O’Reilly J.E. (1973) Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim Biophys Acta, 292, 509−515.
  95. Petrouleas V. and Crofts A.R. (2005) The iron-quinone acceptor complex. In: Wydrzysky T.J. and Satoh K. (eds) Photosystem II. The light-driven water: plastoquinone oxidoreductase, vol. 22, pp 177−206. Springer, Dordrecht, Netherlands.
  96. Pfenning N. and Truper H.G. (1983) Taxonomy of phototrophic green and purple bacteria: A rewiew. Ann Microbiol, 134B, 9−20.
  97. Pierson B.K. and Castenholz R.W. (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship R.E., Madigan M.T. and Bauer C.E. (eds) Anoxygenic photosynthetic bacteria, vol. 2, pp 31−47. Kluwer Academic Publishers, Dordrecht.
  98. Pierson B.K. and Thornber J.P. (1983) Isolation and spectral characterization of photochemicalreaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-fl. Proc Natl Acad Sci USA, 80, 80−84.
  99. Qian P., Bullough P.A. and Hunter C.N. (2008) Three-dimensional reconstruction of a membranebending complex: the RC-LHl-PufX core dimer of Rhodobacter sphaeroides. J Biol Chem, 283,14 002−14 011.
  100. Radmer R. and Ollinger O. (1980) Light-driven uptake of oxygen, carbon dioxide, and bicarbonate by the green alga Scenedesmus. Plant Physiol, 65, 723−729.
  101. Rashby S.E., Sessions A.L., Summons R.E. and Newman D.K. (2007) Biosynthesis of 2-methylbacteriohophanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci USA, 104, 15 099−15 104.
  102. Regel R.E., Ivleva N.B., Zer H., Meurer J., Shestakov S.V., Herrmann R.G., Pakrasi H.B. and Ohad I. (2001) Deregulation of electron flow within photosystem II in the absence of the PsbJ protein. J Biol Chem, 276,41 473−41 478.
  103. G. (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta, 1503,210−228.
  104. Renger G. and Holzwarth R. (2005) Primary electron transfer. In: Wydrzysky T.J. and Satoh K. (eds) Photosystem II. The light-driven water: plastoquinone oxidoreductase, vol. 22, pp 139 175. Springer, Dordrecht, Netherlands.
  105. Renger G. and Renger T. (2008) Photosystem II: The machinery of photosynthetic water splitting. Photosynth Res, 98, 53−80.
  106. Robblee J.H., Cinco R.M. and Yachandra V.K. (2001) X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim Biophys Acta, 1503, 7−23.
  107. Rokka A., Suorsa M., Saleem A., Battchikova N. and Aro E.M. (2005) Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II. Biochem J, 388, 159−168.
  108. Roszak A.W., Howard T.D., Southall J., Gardiner A.T., Law C.J., Isaacs N.W. and Cogdell R.J. (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science, 302,1969−1972.
  109. Rutherford A.W., Boussac A. and Faller P. (2004) The stable tyrosyl radical in photosystem II: why D? Biochim Biophys Acta, 1655, 222−230.
  110. Salih G.F. and Jansson C. (1997) Activation of the silent psbAl gene in the cyanobacterium Synechocystis sp strain 6803 produces a novel and functional D1 protein. Plant Cell, 9, 869 878.
  111. M. (1988) A 3800-million-year isotopic records of life from carbon in sedimentary rocks. Nature, 333, 313−318.
  112. Schopf J.W., Kudryavtsev A.B., Czaja A.D. and Tripathi A.B. (2007) Evidence of archean life: Stromatolites and microfossils. Precambrian Res, 158, 141−155.
  113. Shevela D., Su J.H., Klimov V. and Messinger J. (2008) Hydrogencarbonate is not a tightly bound constituent of the water-oxidizing complex in photosystem II. Biochim Biophys Acta, 1777, 532−539.
  114. Shuvalov V.A. and Klimov V.V. (1976) The primary photoreactions in the complex cytochrome-P-890-P-760 (bacteriopheophytin760) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta, 440, 587−599.
  115. Stemler A. and Govindjee (1973) Bicarbonate ion as a critical factor in photosynthetic oxygen evolution. Plant Physiol, 52, 119−123.
  116. Stemler A. and Lavergne J. (1997) Evidence that formate destabilizes the Si state of the oxygen-evolving mechanism in Photosystem II. Photosynth Res, 51, 83−92.
  117. Stemler A. J (1982) The functional role of bicarbonate in photosynthetic light reaction II. In: Govindjee (ed) Photosynthesis, Development, Carbon Metabolism and Plant Productivity, vol.11, pp 513−538. Academic Pree, New York.
  118. Stoll S. and Schweiger A. (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson, 178, 42−55.
  119. Straub K.L., Rainey F.A. and Widdel F. (1999) Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int J Syst Bacteriol, 49 Pt 2, 729−735.
  120. Sugimoto I. and Takahashi Y. (2003) Evidence that the PsbK polypeptide is associated with the photosystem II core antenna complex CP43. J Biol Chem, 278, 45 004−45 010.
  121. Summons R.E., Jahnke L.L., Hope J.M. and Logan G.A. (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554−557.
  122. A. (2005) Too much light? How beta-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci, 4, 950−956.
  123. Thamdrup B., Fossing H. and Jorgensen B.B. (1994) Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta, 58, 5115−5129.
  124. Thomas P.E., Ryan D. and Levin W. (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem, 75, 168−176.
  125. Tracewell C.A. and Brudvig G.W. (2003) Two redox-active beta-carotene molecules in photosystem II. Biochemistry, 42, 9127−9136.
  126. Tyryshkin A.M., Watt R.K., Baranov S.V., Dasgupta J., Hendrich M.P. and Dismukes G.C. (2006) Spectroscopic evidence for Ca involvement in the assembly of the Mr^Ca cluster in the photosynthetic water-oxidizing complex. Biochemistry, 45, 12 876−12 889.
  127. Umena Y., Kawakami K., Shen J.R. and Kamiya N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature, 473, 55−60.
  128. Van Gorkom H.J. and Yocum C.F. (2005) The calcium and chloride cofactors. In: Wydrzysky T.J. and Satoh K. (eds) Photosystem II. The light-driven water: plastoquinone oxidoreductase, vol. 22, pp 307−328. Springer, Dordrecht, Netherlands.
  129. Van Rensen J.J.S. and Klimov V.V. (2005) Bicarbonate interactions. In: Wydrzysky T.J. and Satoh K. (eds) Photosystem II. The light-driven water: plastoquinone oxidoreductase, vol. 22, pp 329−345. Springer, Dordrecht, Netherlands.
  130. Van Rensen J.J.S., Tonk W.J.M. and De Bruijn S.M. (1988) Involvement of bicarbonate in the protonation of the secondary quinone electron acceptor of photosystem II via the non-heme iron of the quinone-iron acceptor complex. FEBS Lett, 226, 347−351.
  131. Vasil’ev S., Brudvig G.W. and Bruce D. (2003) The X-ray structure of photosystem II reveals a novel electron transport pathway between P680, cytochrome b559 and the energy-quenching cation, Chlz+. FEBS Lett, 543,159−163.
  132. Vass I., Cser K. and Cheregi O. (2007) Molecular mechanisms of light stress of photosynthesis. Ann N Y Acad Sci, 1113,114−122.
  133. Venturoli G. and Zannoni D. (1988) Oxidation-reduction thermodynamics of the acceptor quinone complex in whole-membrane fragments from Chloroflexus aurantiacus. Eur J Biochem, 178, 503−509.
  134. Vernotte C., Briantais J.M., Astier C. and Govindjee (1995) Differential effects of formate in single and double mutants Dlin Synechocystis sp PCC 6714. Biochim Biophys Acta, 1229, 296−301.
  135. Volk M., Scheidel G., Ogrodnik A., Feick R. and Michel-Beyerle M.E. (1991) High quantum yield of charge separation in reaction centers of Chloroflexus aurantiacus. Biochim Biophys Acta, 1058,217−224.
  136. Warburg O. and Kpippal G. (1958) Hill-reaktionen. Z Naturforsch, 13b, 509−514.
  137. Widdel F., Schnell S., Heising S., Ehrenreich A., Assmus B. and Schink B. (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362, 834−836.
  138. Williams J.C., Steiner L.A. and Feher G. (1986) Primary structure of the reaction centers from Rhodopseudomonas sphaeroides. Proteins: Structure, Function and Genetics, 1, 312−325.
  139. Wincencjusz H., Allakhverdiev S.I., Klimov V.V. and Gorkom H.J. (1996) Bicarbonate reversible formate inhibition at the donor side of Photosysten II. Biochim Biophys Acta, 1273, 1−3.
  140. C.R. (1987) Bacterial evolution. Microbiol Rev, 51, 221−271.
  141. Wydrzynski T. and Govindjee (1975) A new site of bicarbonate effect in photosystem II of photosynthesis: evidence from chlorophyll fluorescence transients in spinach chloroplasts. Biochim Biophys Acta, 387,403−408.
  142. Xiong J., Fischer W.M., Inoue K., Nakahara M. and Bauer C.E. (2000) Molecular evidence for the early evolution of photosynthesis. Science, 289,1724−1730.
  143. Xiong J., Minagawa J., Crofts A. and Govindjee (1998) Loss of inhibition by formate in newly constructed photosystem II D1 mutants, D1-R257E and D1-R257M, of Chlamydomonas reinhardtii. Biochim Biophys Acta, 1365, 473−491.
  144. Xiong J., Subramaniam S. and Govindjee (1996) Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: implications for herbicide and bicarbonate binding. Protein Sci, 5, 2054−2073.
  145. Yachandra V.K., Sauer K. and Klein M.P. (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev, 96,2927−2950.
  146. Yano J., Kern J., Sauer K., Latimer M.J., Pushkar Y., Biesiadka J., Loll B., Saenger W., Messinger J., Zouni A. and Yachandra V.K. (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn^Ca cluster. Science, 314, 821−825.
  147. Yruela I., Allakhverdiev S.I., Ibarra J.V. and Klimov V.V. (1998) Bicarbonate binding to the water-oxidizing complex in the photosystem II. A Fourier transform infrared spectroscopy study. FEBS Lett, 425, 396−400.
  148. Zabelin A.A., Shkuropatova V.A., Shuvalov V.A. and Shkuropatov A.Y. (2011) FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photoreduction of the bacteriopheophytin electron acceptor. Biochim Biophys Acta, 1807, 1013−1021.
  149. Zouni A., Witt H.T., Kern J., Fromme P., Krauss N., Saenger W. and Orth P. (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature, 409, 739−743.
Заполнить форму текущей работой