Резонансные явления в динамике заряженных частиц в электромагнитных полях сложной конфигурации
Диссертация
Понятие адиабатической инвариантности играет важную роль в квантовой механике. Связь между медленными квантовыми переходами и изменением адиабатического инварианта линейного осциллятора изучалось в работе. Задачи, связанные с динамикой бозе-эйнштейновсикх конденсатов, приводят к необходимости рассматривать нелинейные системы. Во многих моделях среднего поля, относящихся к физике БЭК (таких, как… Читать ещё >
Список литературы
- A.P. Itin, A.A. Vasiliev, G. Krishna, and S. Watanabe, Change in the adiabatic invariant in a nonlinear two-mode model of Feschbach resonance passage, Physica D 232, 108−115, (2007).
- А.А.Васильев, А. И. Нейштадт, К. Симо, Д. В. Трещев, Острова устойчивости в области переходов через сепаратрису в гамильтоновых системах с быстрыми и медленными движениями, Труды Математического института им. В. А. Стеклова РАН, т. 259, с. 243−255, (2007).
- A. I. Neishtadt, С. Simo, D. V. Treschev, and A. A. Vasiliev, Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems, Discrete and Continuous Dynamical Systems Series В 10, 621−650, (2008).
- Д. Л. Вайнштейн, А. А. Васильев, А. И. Нейштадт, Динамика электронов в параболическом магнитном поле в присутствии электростатической волны, Физика плазмы, т. 35, 1102−1113, (2009).
- X. Leoncini, A. Neishtadt, and A. Vasiliev, Directed transport in a spatially periodic harmonic potential under periodic nonbiased forcing, Phys. Rev. E 79, 26 213, (2009).
- A. Neishtadt, D. Vainshtein, and A. Vasiliev, Dynamics of electrons in a parabolic magnetic field perturbed by an electromagnetic wave, Plasma Physics and Controlled Fusion 53, 85 014 (15pp), (2011).
- A. Vasiliev, A. Neishtadt, and A. Artemyev, Resonant particle acceleration in an oblique electromagnetic wave, Physics Letters A 375, 3075−3079, (2011).
- A.Neishtadt, A. Vasiliev, and A. Artemyev, Resonance-induced surfatron acceleration of a relativistic particle, Moscow Mathematical Journal 11, 531−545, (2011).
- Другие публикации автора по теме диссертации
- A. I. Neishtadt, A. A. Vasiliev, Capture into resonance in dynamics of a classical hydrogen atom, Proceedings of International Conference «MODE CONVERSION, COHERENT STRUCTURES AND TURBULENCE Moscow 2004, M.: УРСС, pp. 80−86.
- A. A. Vasiliev, Shock wave surfing acceleration, In: Advances in Plasma Physics Research, Volume 5, Eds.: Francois Gerard, Nova Science Publishers, pp.129−134, (2007).
- A. Itin, A. Vasiliev, «Change in the adiabatic invariant at a separatrix crossing in a nonlinear model of Feshbach resonance», Proceedings of
- Sixth EUROMECH Nonlinear Dynamics Conference Final program and abstracts (ENOC-2008, St. Petersburg, 30.07.2008−04.08.2008).
- Материалы по диссертации, размещенные в Интернете
- A. A. Vasiliev, Shock wave surfing acceleration, http://arxiv.org/abs/physics/204 018, 2002.
- Anatoly Neishtadt, Alexei Vasiliev, Capture into resonance in dynamics of a classical hydrogen atom in an oscillating electric field, http://arxiv.org/abs/physics/401 009, 2004.
- A.I.Neishtadt, A.A.Vasiliev, Destruction of adiabatic invariance at resonances in slow-fast Hamiltonian systems, http://arxiv.org/abs/nlin/511 050, 2005.
- Anatoly Neishtadt, Carles Simo, Dmitri Treschev, Alexei Vasiliev, Stability islands in domains of separatrix crossings in slow-fast Hamiltonian systems, http://arxiv.org/abs/math/611 468, 2006.
- Xavier Leoncini, Anatoly Neishtadt, Alexei Vasiliev, Directed transport in a spatially periodic potential under periodic non-biased forcing, http://arxiv.org/abs/0807.4849, 2008.
- A. I. Neishtadt, A. A. Vasiliev, A. V. Artemyev, Surfatron acceleration of a relativistic particle by electromagnetic plane wave, http://arxiv.org/abs/1011.2236, 2010.1. Прочие публикации
- JI. Д. Ландау, О колебаниях электронной плазмы, ЖЭТФ, т. 16, с. 574, (1946).
- S. V. Bulanov, L. М. Kovrizhnykh, and A. S. Sakharov, Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with a plasma, Physics Reports 186, 1−51, (1990).
- D. Shklyar, H. Matsumoto, Oblique Whistler-Mode Waves in the Inhomogeneous Magnetospheric Plasma: Resonant Interactions with Energetic Charged Particles, Surveys in Geophysics 30, 55−104, (2009).
- V. Y. Trakhtengerts, M.J. Rycroft, Whistler and Alfven Mode Cyclotron Masers in Space, ISBN 978−0-521−87 198−3. Published by Cambridge University Press, Cambridge, UK, 2008.
- А. В. Тимофеев, Резонансные явления в колебаниях плазмы. М., Физматлит, 2009.
- V. I. Karpman, J. N. Istomin, D. R. Shklyar, Nonlinear theory of a quasi-monochromatic whistler mode packet in inhomogeneous plasma, Plasma Physics 16, 685−703, (1974).
- V. I. Karpman, J. N. Istomin, D. R. Shklyar, Particle acceleration by a non-linear Langmuir wave in an inhomogeneous plasma, Physics Letters A 53, 101−102, (1975).
- Я. H. Истомин, В. И. Карпман, Д. Р. Шкляр, Эффекты увлечения при резонансном взаимодействии частиц с ленгмюровской волной в неоднородной плазме, ЖЭТФ, т. 69, с. 909−920, (1975).
- D. R. Shklyar, Stochastic motion of relativistic particles in the field of a monochromatic wave, Sov. Phys. JETP 53, 1197−1192, (1981).
- V. V. Solovev, D. R. Shkliar, Particle heating by a low-amplitude wave in an inhomogeneous magnetoplasma, Sov. Phys. JETP 63, 272−277, (1986).
- Y. A. Romanov, G. F. Filippov, The interaction of fast electron beams with longitudinal plasma waves, Sov. Phys. JETP 13, 87−92, (1961).
- A. A. Vedenov, E.P. Velikhov, R.Z.Sagdeev, Quasilinear theory of plasma oscillations, Nuclear Fusion Suppl. 2, 465−475, (1962).
- A. A. Vedenov, Quasi-Linear Equations for Quantized Plasma, Soviet Physics Doklady 7, 1008, (1963).
- R. Z. Sagdeev, Reviews of Plasma Physics. Volume 4, New York: Consultants Bureau, 1966.
- R. B. Decker, A. T. Y. Lui, L. Vlahos, Predictions of lithium interactions with earth’s bow shock in the presence of wave activity, J. Geophys. Res. 89, 7331−7337, (1984).
- Д. В. Сивухин, Вопросы теории плазмы, т.1, М.: Атомиздат, 1963.
- Т. G. Northrop, The adiabatic motion of charged particles, Interscience Publishers John Wiley and Sons, New York-London-Sydney, 1963.
- F. Bagenal. Giant planet magnetospheres, Annual Review of Earth and Planetary Sciences 20, 289−328, (1992).
- Плазменная Гелиогеофизика, под ред. JI. М. Зелёного и И. С. Весе-ловского, М.: Физматлит, 2008.
- Нейтральные токовые слои в плазме, Труды ФИАН СССР, т. 74, под ред. Н. Г. Басова, М.: Наука, 1974.
- Вспышечные процессы в плазме, Труды ФИАН СССР, т. 110, под ред. Н. Г. Басова, М.: Наука, 1979.
- М. Yamacla, R. Kulsrud, Н. Ji. Magnetic reconnection, Reviews of Modern Physics 82, 603−664, (2010).48| A. G. Frank, N. P. Kyrie, S. N. Satunin, Plasma dynamics in laboratory-produced current sheets, Physics of Plasmas 18, 111 209, (2011).
- E. N. Parker, Spontaneous current sheets in magnetic fields: with applications to stellar x-rays, International Series in Astronomy and Astrophysics, Vol. 1. New York: Oxford University Press, 1994.
- E. Priest, T. Forbes, Magnetic Reconnection, ISBN 521 481 791. Cambridge, UK: Cambridge University Press, June 2000.
- С. И. Вайнштейн, А. М. Быков, И. Н. Топтыгин, Турбулентность, токовые слои и ударные волны в космической плазме, М.: Наука, 1989.
- J. Arons, Pulsar Wind Nebulae as Cosmic Pevatrons: A Current Sheet’s Tale, Space Sci. Rev., May, 33, (2012).
- T. Katsouleas and J. M. Dawson, Unlimited electron acceleration in laser-driven plasma waves, Phys. Rev. Lett. 51, 392, (1983).
- Г. H. Кичигип, О происхождении энергичных частиц в области фор-шока околоземной ударной волны, Письма в Астрономический журнал, т. 35, с. 295−304, (2009).
- S. Takeuchi, New particle accelerations by magnetized plasma shock waves, Physics of Plasmas 12, 102 901, (2005).
- R. A. Treumann, Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks, The Astronomy and Astrophysics Review 17, 409−535, (2009).
- H.C. Ерохин, С. С. Моисеев. Р. З. Сагдеев, Релятивистский серфинг в неоднородной плазме и генерация космических лучей, Письма в Астрономический журнал, т. 15, с. 3, (1989).
- В. Eliasson, М. Е. Dieckmann, and Р. К. Shukla, Simulation study of surfing acceleration in magnetized space plasmas, New Journal of Physics 7, 136, (2005).
- De-YuWang and Quan-Ming Lu, Electron surfing acceleration by electrostatic waves in current sheets, Astrophys Space Sci. 312, 103−111, (2007).
- De-YuWang and Quan-Ming Lu, Numerical simulation and visualization of stochastic and ordered electron motion forced by electrostatic waves in a magnetized plasma, Phys. Plasmas 12, 92 902, (2005).
- M. Hoshino, N. Shimada, Nonthermal Electrons at High Mach Number Shocks: Electron Shock Surfing Acceleration, Astrophys. J.572, 880−887, (2002).
- G. P. Zank, H. L. Pauls, I. H. Cairns, G. M. Webb, Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks, J. Geophys. Res. 101, 457−478, (1996).
- Г. M. Заславский, С. С. Моисеев, Р. З. Сагдеев, А. А. Черников, Излучение захваченных частиц в магнитном поле, Письма в ЖЭТФ, т. 43, с. 18, (1986).
- С.В. Буланов, А. С. Сахаров, Ускорение частиц, захваченных сильной потенциальной волной с искривленным фронтом в магнитном поле, Письма в ЖЭТФ, т.44, с.421−423, (1986).
- С. В. Буланов, А. С. Сахаров, О влиянии магнитного поля на резонансное ускорение частиц, Физика плазмы, т. 26, с. 1074−1084, (2000).
- G.R.Smith and A.N.Kaufman, Stochastic acceleration by an obliquely propagating wave- An example of overlapping resonances, Phys. Fluids 21, 2230−2241, (1978).
- C.F.F.Karney, Stochastic ion heating by a lower hybrid wave: II, Phys. Fluids 22, 2188−2209, (1979).
- R.Sugihara and Y. Midzuno, Non-stochastic heating of magnetized plasma by electrostatic wave, J.Soc.Japan 47, 1290−1295, (1979).
- Г. M. Заславский, А. И. Нейштадт, Б. А. Петровичев, P. 3. Сагдеев, Механизм усиления диффузии при взаимодействии волна-частица в слабом магнитном поле, Физика плазмы, т. 15, с. 631−634, (1989).
- А. И. Нейштадт, Б. А. Петровичев, А. А. Черников, Захват частиц в режим неограниченного ускорения, Физика плазмы, т. 15, с. 10 211 024, (1989).
- A. A. Chernikov, G. Schmidt, and A. I. Neishtadt, Unlimited particle acceleration by waves in a magnetic field, Phys. Rev. Lett. 168, 15 071 510, (1992),.
- R. B. Decker, Computer modeling of test particle acceleration at oblique shocks, Space Sci. Rev. 48, 195−262, (1988).
- D. Ucer and V. D. Shapiro, Unlimited Relativistic Shock Surfing Acceleration, Phys. Rev.Lett. 87, 75 001, (2001).
- I. Roth, S. D. Bale, Heliospheric ion energization due to emerging CME shocks, J. Geophys. Res. Ill, A10, 7, (2006).
- G. Zimbardo, Heavy ion reflection and heating by collisionless shocks in polar solar corona, Planetary and Space Science 59, 468−474, (2011).
- T. Amano, M. Hoshino, Electron Shock Surfing Acceleration in Multiclimensions: Two-Dimensional Particle-in-Cell Simulation of Collisionless Perpendicular Shock, Astrophys. J. 690, 244−251, (2009).
- А. И. Нейштадт, А. В. Артемьев, JI. M. Зеленый, Д. Л. Вайнштейн, Серфотронное ускорение в электромагнитных волнах с малой фазовой скоростью, Письма в ЖЭТФ, т. 89, с. 528−534, (2009).
- А. П. Итин, Захваты в резонанс и рассеяние на резонансе в динамике релятивистской заряженной частицы в магнитном поле и электромагнитной волне, Физика плазмы, т. 28, с. 639−650, (2002).
- S. Takeuchi, К. Sakai, М. Matsumoto, and R. Sugihara, Unlimited acceleration of a charged particle by an electromagnetic wave with a purely transverse electric field, Physics Letters A 122, 257−261 (1987).
- G. P. Ginet, M. A. Heinemann, Test particle acceleration by small amplitude electromagnetic waves in a uniform magnetic field, Physics of Fluids В 2, 700−714, (1990).
- H. Karimabadi, K. Akimoto, N. Omidi, and C. R. Menyuk, Particle acceleration by a wave in a strong magnetic field Regular and stochastic motion, Physics of Fluids В 2, 606−628, (1990).
- N. Yugami, К. Kikuta, and Y. Nishida, Electron Acceleration by a Transverse Electromagnetic Wave Supplemented with a Crossed Static Magnetic Field, Phys. Rev. Lett. 76, 1635−1638, (1996).
- L. M. Zelenyi, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, H. V. Malova, and V. Y. Popov, Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations, Ann. Geophys. 27, 861−868, (2009).
- V. L. Krasovsky, Trapped particle effect on the velocity of circularly polarized electromagnetic waves in an isotropic plasma, Phys. Lett. A 374, 1751−1754, (2010).
- J. Biichner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals. I Basic theory of trapped motion, J. Geophys. Res. 94, 11 821−11 842, (1989).
- JI.M. Зеленый, Д. В. Зогнн, И. Бгохнер, Квазиадиабатическая динамика заряженных частиц в магнитосферном хвосте, Космические исследования, т. 28, с. 430−444, (1990).
- M. Ashour-Abdalla, J. P. Berchem, J. Biichner, L. M. Zelenyi, Shaping of the magnetotail from the mantle Global and local structuring, J. Geophys. Res. 98, 5651−5676, (1993).
- Д.Л. Вайнштейн, Л.M. Зеленый, А. И. Нейштадт, Квазиадиабатическое описание движения заряженных частиц в конфигурациях с обращением магнитного поля, Физика плазмы, т. 21, с. 484−491, (1995).
- Д.Л. Вайнштейн, Л. М. Зеленый, А. И. Нейштадт, Квазиадиабатическое описание движения заряженных частиц заряженных частиц в окрестности Х-линии, Физика плазмы, т. 22, с. 1039−1045, (1996).
- Д.Л. Вайнштейн, Л. М. Зеленый, А. И. Нейштадт, О движении заряженных частиц в хвосте магнитосферы Земли в поле монохроматической волны, Физика плазмы, т. 25, с. 887−896, (1999).
- D.L. Vainchtein, L.M. Zelenyi, A.I. Neishtadt, and J. Buchner, Quasi-adiabatic description of nonlinear particle dynamics in typical magnetotail configurations, Nonlinear Processes in Geophysics 12, 101 115, (2005).
- D.L. Vainchtein, E.V. Rovinsky, L.M. Zelenyi, and A.I. Neishtadt, Resonances and particle stochastization in nonhomogeneous electromagnetic fields, J. of Nonlin. Sci. 14, 173−205, (2004).
- B. A. Tverskoy, Main mechanisms in the formation of the Earth’s radiation belts. Reviews of Geophysics and Space Physics 7, 219−231, (1969).
- V. P. Shabansky, Some Processes in the Magnetosphere, Space Sci. Rev. 12, 299−418, (1971).
- A. E. Antonova, Y. I. Gubar', and A. P. Kropotkin, Effects in the radiation belts caused by the second adiabatic invariant violation in the presence of dayside off-equatorial magnetic field minima, Advances in Space Research 31, 1223−1228, (2003).
- A. Y. Ukhorskiy, M. I. Sitnov, R. M. Millan, and B. T. Kress, The role of drift orbit bifurcations in energization and loss of electrons in the outer radiation belt, J. Geophys. Res. 116, A15, 9208, (2011).
- V. Y. Trakhtengerts, Stationary states of the Earth’s outer radiation zone, Geomagnetism and Aeronomy 6, 827−836, (1966).
- A. A. Andronov, V. Yu. Trakhtengerts, Kinetic instability of the Earth’s outer radiation belt, Geomagnetism and Aeronomy 4, 233−242, (1964).
- C. F. Kennel, H. E. Petschek, Limit on Stably Trapped Particle Fluxes, J. Geophys. Res. 71, 1, (1966).
- W. E. Drummond and M. N. Rosenbluth, Anomalous Diffusion Arising from Microinstabilities in a Plasma, Physics of Fluids 5, 1507−1513, (1962).
- L. R. Lyons, R. M. Thorne, and C. F. Kennel, Pitch-angle diffusion of radiation belt electrons within the plasmasphere, J. Geophys. Res. 77, 3455−3474, (1972).
- L. R. Lyons, D. J. Williams, Quantitative aspects of magnetospheric physics, Reidel Publishing Company, Dordrecht Boston Lancaster. 15+231 pp. (1984).
- D. Summers, B. Ni, N. P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory, J. Geophys. Res. 112, All, 4206, (2007).
- R. B. Home, R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, R. R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res. 110, A9, 3225, (2005).
- J. M. Albert, Efficient approximations of quasi-linear diffusion coefficients in the radiation belts, J. Geophys. Res. 113, A12, 6208, (2008).
- O. Santolik, D. A. Gurnett, J. S. Pickett, J. Chum, and N. Cornilleau-Wehrlin, Oblique propagation of whistler mode waves in the chorus source region, J. Geophys. Res. 114, A13, A00F03, (2009).
- C. Cattell, J. R. Wygant, K. Goetz, et al, Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts, Geophys. Res. Lett. 35, 1105, (2008).
- L. B. Wilson III, C. A. Cattell, P. J. Kellogg, et al, The properties of large amplitude whistler mode waves in the magnetosphere: Propagation and relationship with geomagnetic activity, Geophys. Res. Lett. 38, 17 107, (2011).
- V. I. Karpman, D. R. Shkliar, Particle precipitation caused by a single whistler-mode wave injected into the magnetosphere, Plan. Space Science, 25, 395−403, (1977).
- J. Bortnik, R. M. Thorne, and U. S. Inan, Nonlinear interaction of energetic electrons with large amplitude chorus, Geophys. Res. Lett. 35, 21 102, (2008).
- P. H. Yoon, Large-amplitude whistler waves and electron acceleration, Geophys. Res. Lett. 38, 12 105, (2011).
- K. G. Orlova, Y. Y. Shprits, Dependence of pitch-angle scattering rates and loss timescales on the magnetic field model, Geophys. Res. Lett. 37, 5105, (2010).
- В. Ni, R. M. Thorne, N. P. Meredith, et al, Diffuse auroral scattering by whistler mode chorus waves: Dependence on wave normal angle distribution, J. Geophys. Res. 116, A15, 10 207, (2011).
- S. S. Sazhin, R. В. Horne, Quasilongitudinal approximation for whistlermode waves in the magnetospheric plasma, Plan. Space Science, 38, 1551−1553, (1990).
- Cattell C.A., Mozer F.S., Electric-fields measured by ISEE-1 within and near the neutral sheet during quiet and active times, Geophys. Res. Lett. 9, 1041−1044, (1982).
- M. Zhou, X.H. Deng, S.Y. Li, Y. Pang, A. Vaivads, H. Reme, E. Lucek, S. Fu, X. Lin, Z.G. Yuan, and J.F. Wang, Observation of waves near lower hybrid frequency in the reconnection region with thin current sheet, J. of Geophys. Res.114, A02216, (2009).
- M.K. Hudson, W. Lotko, C.A. Cattell, R.L. Lysak, I. Roth, and M. Temerin, Modeling mesoscale processes in the global geospace system, Space Science Reviews 71, 623−646, (1995).
- M. Zhou, М. Ashour-Abdalla, D. Xiaohua, D. Schriver, M. El-Alaoui, and Y. Pang, THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-earth magnetotail, Geophys. Res. Lett. 36, L20107, (2009).
- A. T. Y. Lui, Potential Plasma Instabilities For Substorm Expansion Onsets, Space Science Reviews 113, 127−206, (2004).
- A. A. Galeev, Reconnection in the magnetotail, Space Science Reviews 23, 411−425, (1979).
- A. Runov, V. Angelopoulos, M. I. Sitnov, et al, THEMIS observations of an earthward-propagating dipolarization front, Geophys. Res. Lett. 36, L14106, (2009).
- M. I. Sitnov, M. Swisdak, and A. V. Divin, Dipolarization fronts as a signature of transient reeonnection in the magnetotail, J. Geophys. Res. 114, A13, A04202, (2009).
- M. Fujimoto, I. Shinohara, and H. Kojima, Reconnection and Waves: A Review with a Perspective, Space Sci. Rev. 160, 123−143, (2011).
- Буланов С. В., Сасоров П. В., Энергетический спектр частиц, ускоряемых в окрестности нулевой линии магнитного поля, Астрономический Журнал, т. 52, с. 763−771, (1975).
- L. М. Zelenyi, J. G. Lominadze, and A. L. Taktakishvili, Generation of the energetic proton and electron bursts in planetary magnetotails, J. Geophys. Res. 95, 3883−3891, (1990).
- G. E. Vekstein, E. R. Priest, Nonlinear magnetic reconnection with collisionless dissipation, Physics of Plasmas 2, 3169−3178, (1995).
- S. P. Christon, D. J. Williams, D. G. Mitchell, et al, Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions, J. Geophys. Res. 94, 13 409−13 424, (1989).
- P. J. Kellogg, S. D. Bale, Nearly monochromatic waves in the distant tail of the Earth, J. Geophys. Res. 109, A18, 4223, (2004).
- Y. V. Khotyaintsev, С. M. Cully, A. Vaivads, et al, Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons, Physical Review Letters 106, 165 001, (2011).
- А. В. Тимофеев, К вопросу о постоянстве адиабатического инварианта при изменении характера движения, ЖЭТФ, т. 75, с. 1303−1308, (1978).
- А. И. Нейштадт, А. В. Тимофеев, Явление авторезонанса при электронном циклотронном нагреве плазмы, ЖЭТФ, т. 93, с. 1706−1713, (1987).
- Гуревич А.В., Цедилина Е. Е. Сверхдальнее распространение коротких радиоволн. М.: Наука, 1979, гл. 3.
- И. М. Лифшиц, А. А. Слуцкин, В. М. Набутовский, Об особенностях движения заряженных частиц в переменном и неоднородном электромагнитном поле, ЖЭТФ, т. 41, с. 939−948, (1961).
- J. Wisdom, A perturbative treatment of motion near the 3/1 commensurability, Icarus 63, 272−289, (1985).
- D.L. Vainshtein, A.A. Vasiliev, and A.I. Neishtadt, Changes in the adiabatic invariant and streamline chaos in confined incompressible Stokes flow, Chaos 6, 67−77, (1996).
- A.I. Neishtadt, D.L. Vainshtein, and A.A. Vasiliev, Chaotic advection in a cubic Stokes flow, Physica Dill, 227−242, (1998).
- A. P. Itin, R. de la Llave, A. I. Neishtadt, and A. A. Vasiliev, Transport in a slowly perturbed convective cell flow, Chaos 12, 1043−1053, (2002).
- J. R. Сагу, D. F. Escande and J. Tennyson, Adiabatic invariant change due to separatrix crossing, Phys. Rev. A 34, 4256−4275, (1986).
- А. И. Нейштадт, Об изменении адиабатического инварианта при переходе через сепаратрису, Физика плазмы, т. 12, с. 992−1000, (1986).
- А. И. Нейштадт, Об изменении адиабатического инварианта при переходе через сепаратрису в системах с двумя степенями свободы, Прикл. мат. и мех., т.51, с.750−757, (1987).
- J. R. Сагу, R. Т. Skodje, Phase change between separatrix crossings, Physica D 36, 287−316, (1989).
- A. Vasiliev, A. Neishtadt, A. Artemyev, L. Zelenyi, Jump of the adiabatic invariant at a separatrix crossing: Degenerate cases, Physica D 241, 566−573, (2012).
- T. J. Kaper and G. Kovacic, A geometric criterion for adiabatic chaos, J. Math. Phys. 35, 1202−1218, (1994).154| D. S. Bruhwiller, J. R. Cary, Diffusion of particles in a slowly modulated wave. Physica D 40, 265−282, (1989).
- A. I. Neishtadt, V. V. Sidorenko, Wisdom system: dynamics in the adiabatic approximation. Celestial Mechanics and Dynamical Astronomy 90, 307−330, (2004).
- Y. Elskens, D. F. Escande, Slowly pulsating separatrices sweep homoclinic tangles where islands must be small: an extension of classical adiabatic theory. Nonlinearity 4, 615−667, (1991).
- A. I. Neishtadt, V. V. Sidorenko, D. V. Treschev, Stable periodic motions in the problem of passage through a separatrix, Chaos 7, 2−11, (1997).
- А. И. Нейштадт, В. В. Сидоренко, Д. В. Трещев, Об островах устойчивости в области переходов через сепаратрису. В кн.: Нелинейная механика, под ред. В. М. Матросова, В. В. Румянцева, А. В. Кара-петяна. М.: Физматлит, 2001, С. 192−203.
- Т. W. Speiser, Particle Trajectories in Model Current Sheets, 1, Analytical Solutions, J. Geophys. Res. 70, 4219−4226, (1965).
- J. W. Eastwood, Consistency of fields and particle motion in the 'Speiser' model of the current sheet, Planetary and Space Science 20, 1555−1568. (1972).
- A. P. Kropotkin, H. V. Malova, and M. I. Sitnov, Self-consistent structure of a thin anisotropic current sheet, J. Geophys. Res. 102, 22 099−22 132, (1997).
- M. I. Sitnov, L. M. Zelenyi, H. V. Malova, and A. S. Sharma, Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory, J. Geophys. Res. 105, 13 029−13 044, (2000).
- L. M. Zelenyi, M. I. Sitnov, H. V. Malova. and A. S. Sharma, Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models, Nonlinear Processes in Geophysics 7, 127−139, (2000).
- M. Ashour-Abdalla, L. M. Zelenyi, J. M. Bosqued, R. A. Kovrazhkin, Precipitation of fast ion beams from the plasma sheet boundary layer, Geophys. Res. Lett. 19, 617−620, (1992).
- A. Keiling, H. Reme, et al., Transient ion beamlet injections into spatially separated PSBL flux tubes observed by Cluster-CIS, Geophys. Res. Lett. 31, L12804, (2004).
- E. E. Grigorenko, A. O. Fedorov, et al., Spatial structure of beamlets according to Cluster observations, Planetary and Space Science 53, 245 254, (2005).
- E. E. Grigorenko, M. Hoshino, et al, «Geography» of ion acceleration in the magnetotail: X-line versus current sheet effects, J. Geophys. Res. 114, 3203, (2009).
- E. E. Grigorenko, L. M. Zelenyi, M. S. Dolgonosov, A. V. Artemiev, et al., Non-adiabatic Ion Acceleration in the Earth Magnetotail and Its Various Manifestations in the Plasma Sheet Boundary Layer, Space Sci. Rev. 164, 133−181, (2011).
- J.E.Bayfield and P.M.Koch, Multiphoton ionization of highly excited hydrogen-atoms, Phys. Rev. Lett. 33, 258−261, (1974).
- J.G.Leopold and I.C.Percival, Microwave ionization and excitation of rydberg atoms, Phys Rev. Lett. 41, 944−947, (1978).
- P.Bellomo, C.R.Stroud, Jr., D. Farrelly, and T. Uzer, Quantum-classical correspondence in the hydrogen atom in weak external fields, Phys. Rev. A 58, 3896−3913, (1998).
- B.V.Chirikov, Universal instability of many-dimensional oscillator systems, Phys. Rep. 52, 265−379, (1979).
- J.Zakrzewski, R. G§ barowski, and D. Delande, Two-dimensional quantum hydrogen atom in circularly polarized microwaves: Global properties, Phys. Rev. A 54, 691−709, (1996).
- K.Sacha and J. Zakrzewski, H atom in elliptically polarized microwaves: Semiclassical versus quantum resonant dynamics, Phys. Rev. A 58, 39 743 982, (1998).
- C.Chandre, D. Farrelly, and T. Uzer, Thresholds to chaos and ionization for the hydrogen atom in rotating fields, Phys. Rev. A 65, 53 402, (2002).
- B.Meerson and L. Friedland, Strong autoresonance excitation of Rydberg atoms the Rydberg accelerator, Phys. Rev. A 41, 5233−5236, (1990).
- E. Grosfeld and L. Friedland, Spatial control of a classical electron state in a Rydberg atom by adiabatic synchronization, Phys. Rev. E 65, 46 230, (2002).
- P. Ehrenfest, Adiabatic invariants and the theory of quanta, Philosophical Magazine 33, 500, (1917).
- L. Navarro and E. Perez, Paul Ehrenfest: The Genesis of the Adiabatic Hypothesis, Arch. Hist. Exact Sei. 60, 209 (2006).
- A. M. Дыхне, Квантовые переходы в адиабатическом приближении, ЖЭТФ, т. 38, с. 570, (1960).
- М. Н. Anderson, J. R. Ensher, M. R. Matthews, С. Е. Wieman, and Е. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995).
- К. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75, 3969, (1995).
- F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999).
- C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases (Cambridge University Press, 2001).
- L. P. Pitaevskii and S. Stringari, Bose-Einstein condensation. Clarendon Press, Oxford, 2003.
- O. Zobay, В. M. Garraway, Time-dependent tunnelling of Bose-Einstein condensates, Phys. Rev. A 61, 33 603, (2000).
- A. Smerzi, S. Fantony, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates, Phys. Rev. Lett. 79, 4950−4953, (1997).
- K. W. Mahmud, H. Perry, and W. P. Reinhardt, Quantum phase-space picture of Bose-Einstein condensates in a double well, Phys. Rev. A 71, 23 615, (2005).
- E. Pazy, I. Tikhonenkov, et al, Nonlinear adiabatic passage from fermion atoms to boson molecules, Phys. Rev. Lett. 95, 170 403, (2005).
- G. Santos, A. Tonel, A. Foerster, and J. Links, Classical and quantum dynamics of a model for atomic-molecular Bose-Einstein condensates, Phys. Rev. A 73, 23 609, (2006).
- A.P. Hines, R.H. McKenzie, and G.J. Milburn, Entanglement of two-mode Bose-Einstein condensates, Phys. Rev. A 67, 13 609, (2003).
- A. Vardi, V. A. Yurovsky, and J. R. Anglin, Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate, Phys. Rev. A 64, 63 611, (2001).
- P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57−265, (2002).
- Г. M. Заславский, Физика хаоса в гамильтоновых системах, Институт компьютерных исследований, Москва-Ижевск, 2004.
- P.Jung, J.G.Kissner, and P. Hanggi, Regular and chaotic transport in asymmetric periodic potentials: Inertia ratchets, Phys.Rev.Lett. 76, 3436−3439, (1996).
- J.L.Mateos, Chaotic transport and current reversal in deterministic ratchets, Phys.Rev.Lett. 84, 258−261, (2000).
- O.Yevtushenko, S. Flach, and K. Richter, ас-driven phase-dependent directed diffusion, Phys. Rev. E 61, 7215−7218, (2000).
- S.Flach, O. Yevtushenko, and Y. Zolotaryuk, Directed current due to broken time-space symmetry, Phys.Rev.Lett. 84, 2358−2361, (2000).
- S.Denisov and S. Flach, Dynamical mechanisms of dc current generation in driven Hamiltonian systems, Phys. Rev. E 64, 56 236, (2001).
- S.Denisov, et. al. Broken space-time symmetries and mechanisms of rectification of ac fields by nonlinear (non)adiabatic response, Phys. Rev. E 66, 41 104, (2002).
- D. Hennig, L. Schimansky-Geier and P. Hanggi, Slowly rocking symmetric, spatially periodic Hamiltonians: The role of escape and theemergence of giant transient directed transport, Eur. Phys. J. В 62, 493 503, (2008).
- G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep. 371, 461−580, (2002).
- Б. В. Чириков, Прохождение нелинейной колебательной системы через резонанс, Докл. АН СССР, т. 125, с. 1015−1018, (1959).
- В. В. Козлов, Симметрии, топология и резонансы в гамильтоно-вой механике. Ижевск, Издательство Удмуртского государственного университета, 1995.
- В. И. Арнольд, В. В. Козлов, А. И. Нейштадт, Математические аспекты классической и небесной механики. Изд. 2-е. М.: Эдиториал УРСС, 2002, 416 с.
- A. I. Neishtadt, On Adiabatic Invariance in Two-Frequency Systems, In: «Hamiltonian systems with three or more degrees of freedom Ed. C. Simo, NATO ASI Series, Series C, vol. 533, Kluwer Academic Publishers, Dordrecht/Boston/London, 193−213, (1999).
- А. И. Нейштадт, Захват в резонанс и рассеяние на резонансах в двух-частотных системах, Труды Мат. ин-та им. В. А. Стеклова. т. 250, с. 198, (2005).
- В. И. Арнольд, Математические методы классической механики. М: Эдиториал УРСС, 1999.
- Н. Н. Боголюбов, Ю. А. Митропольский, Асимптотические методы в теории нелинейных колебаний. М., Наука, 1974, 504 с.
- В. И. Арнольд, Условия применимости и оценка погрешности метода усреднения для систем, которые в процессе эволюции проходчт через резонансы, Докл. АН СССР, т. 161, с. 9−12, (1965).
- P. Goldreich, S. Peale, Spin-orbit coupling in solar system, Astron. J. 71, 425, (1966).
- A. M. Molchanov, Resonant structure of Solar system law of planetary distances, Icarus 8, 203. (1968).
- Г. M. Заславский, P. 3. Сагдеев, Введение в нелинейную физику. М., Наука, 1988.
- D. Dolgopyat, Repulsion from resonances, Preprint, University of Maryland, 2004.
- V. V. Solov’ev and D. R. Shklyar, Particle heating by a low-amplitude wave in an inhomogenious magnetoactive plasma, Sov. Phys. JETP 63, 272−277, (1986).
- M. Feingold, L. P. Kadanoff, and O. Piro, Passive scalars, 3-dimensional volume-preserving maps, and chaos, J. of Statistical Physics 50, 529−565, (1988).
- O. Gendelman, L. I. Manevitch, A. F. Vakakis, and R. M’Closkey, Energy pumping in nonlinear mechanical oscillators: part I -Dynamics of theunderlying Hamiltonian systems, J. of Applied Mechanics-Transactions of the ASME 68, 34−41, (2001).
- I. Mezic, Break-up of invariant surfaces in action-angle-angle maps and flows, Physica D 154, 51−67, (2001).
- D. L. Vainchtein, J. Widloski, and R. O. Grigoriev, Resonant mixing in perturbed action-action-angle flow, Phys. Rev. E 78, 26 302, (2008).
- V. Rom-Kedar and D. Turaev, The symmetric parabolic resonance, Nonlinearity 23, 1325−1351, (2010).
- R. B. Decker, L. Vlahos, Shock drift acceleration in the presence of waves, J. Geophys. Res. 90, 47−56, (1985).
- V. N. Lutsenko, K. Kudela, Almost monoenergetic ions near the Earth’s magnetosphere boundaries, Geophys. Res. Lett.26, 413−416, (1999).
- A. Klassen, R. Gomez-Herrero, R. Miiller-Mellin, et al., STEREO/SEPT observations of upstream particle events: almost monoenergetic ion beams, Annales Geophysicae 27, 2077−2085, (2009).
- Б. В. Сомов, Магнитное пересоединение в солнечных вспышках, УФЫ, т. 180, с. 997−1000, (2010).
- S. Tsuneta, Т. Naito, Fermi Acceleration at the Fast Shock in a Solar Flare and the Impulsive Loop-Top Hard X-Ray Source, Astrophys. J. Lett. 495, L67, (1998).
- G. Mann, A. Warmuth, H. Aurass, Generation of highly energetic electrons at reconnection outflow shocks during solar flares, Astron. Astrophys. 494, 669−675, (2009).
- A. Klassen, V. Bothmer, G. Mann, et al., Solar energetic electron events and coronal shocks, Astron. Astrophys. 385, 1078−1088, (2002).
- S. Kasahara, E. A. Kronberg, N. Krupp, et al., Magnetic reconnection in the Jovian tail: X-line evolution and consequent plasma sheet structures, Journal of Geophysical Research (Space Physics) 116, A11219, (2011).
- E. A. Kronberg, S. Kasahara, N. Krupp, J. Woch, Field-aligned beams and reconnection in the jovian magnetotail, ICARUS 217, 55−65, (2012).
- В. И. Арнольд, Малые знаменатели и проблемы устойчивости движения в классической и небесной механике, Успехи мат. наук, т. 18, с. 85, (1963).
- A. I. Neishtadt, Scattering by resonances, Celestial Mech. and Dynamical Astronomy 65, 1−20, (1997).
- J.R.Cary, S.G.Shasharina, Probability of orbit transition in asymmetric toroidal plasma, Phys. Fluids В 5, 2098−2121, (1993).
- А. И. Нейштадт, Некоторые резонансные задачи в нелинейных системах, кандидатская диссертация, МГУ, 1975.
- A. I. Neishtadt, Averaging and passage through resonances, In: Proceedings of the International Congress of Mathematicians Kyoto 1990, Springer 1991.
- Г. M. Заславский, С. С. Моисеев, А. А. Черников, Динамика и излучение частиц, захваченных потенциальной волной в поперечном магнитном поле, ЖЭТФ, т.91, с. 98, (1986).
- JI. Д. Ландау, Е. М. Лифшиц, Теория поля, М., Наука, 1988.
- М. Е. Dieckmann, A. Bret, Р. К. Shukla, Electron surfing acceleration by mildly relativistic beams: wave magnetic field effects, New Journal of Physics 10, 13 029, (2008).
- D. Vainchtein, I. Mezic, Capture into Resonance: A Method for Efficient Control, Physical Review Letters 93, 84 301, (2004).
- H. Alfven, A theory of magnetic storms and of the aurorae, Kgl. Sv. Vet. Ak. Handl., Tredje Ser., v.3, 18, (1939).
- H. H. Боголюбов, Д. H. Зубарев, Метод асимптотического приближения для систем с вращающейся фазой и его применение к движению заряженных частиц в магнитном поле, Укр. мат. журн., т. 7, с. 5−7, (1955).
- J. R. Сагу, A. J. Brizard, Hamiltonian theory of guiding-center motion, Reviews of Modern Physics 81, 693−738, (2009).
- W. Baumjohann, A. Roux, O. Le Contel, et al., Dynamics of thin current sheets: Cluster observations, Annales Geophysicae 25, 1365−1389, (2007).
- A. S. Sharma, R. Nakamura, A. Runov, et al., Transient and localized processes in the magnetotail: a review, Annales Geophysicae 26, 9 551 006, (2008).
- De Hoffman F., Teller E., Magneto-hydrodynamic shocks, Phys.Rev. 80, 692−703, (1950).
- Littlejohn R.G., Geometry and guiding center motion, In: Contemporary Mathematics vol. 28, ed. by J. E. Marsden, American Mathematical Society, Providence, RI, 151−167, (1984).
- Omura Y., Kojima H., Miki N., Matsumoto H., Electrostatic solitary waves carried by diffused electron beams observed by the Geotail spacecraft, J. Geophys. Res. 104, 14 627−14 637, (1999).
- Li S.Y., Deng X.H., Zhou M. et al., Adv. Space Res. 43, 394, (2009).
- J.K. Kevorkian and J.D. Cole, Multiple Scale and Singular Perturbation Methods, Springer-Verlag, New York-Heidelberg-Berlin, 1996.
- D.L. Vainchtein, J. Widloski, and R.O. Grigoriev, Mixing properties of steady flow in thermocapillary driven droplets, Phys. of Fluids 19, 67 102, (2007).
- V Angelopoulos et al, Tail reconnection triggering substorm onset, Science 321, 931−935, (2008).
- Z. Voeroes, M. P. Leubner, A. Runov, V. Angelopoulos, and W. Baumjohann, Evolution of kinklike fluctuations associated with ion pickup within reconnection outflows in the earth’s magnetotail, Phys. of Plasmas 16, 120 701, (2009).
- N. F. Ness, The Earth’s Magnetic Tail, J. Geophys. Res. 70, 2989−3005, (1965).
- A. Runov, V. A. Sergeev, R. Nakamura. et al., Local structure of the magnetotail current sheet: 2001 Cluster observations, Annales Geophysicae 24, 247−262, (2006).
- R. Nakamura, W. Baumjohann, A. Runov, Y. Asano, Thin Current Sheets in the Magnetotail Observed by Cluster, Space Science Reviews 122, 29−38, (2006).
- A. A. Petrukovich, А. V. Artemyev, Н. V. Malova, et al., Embedded current sheets in the Earth magnetotail, Journal of Geophysical Research (Space Physics) 116, A15, A00I25, (2011).
- P. C. Gray, L. C. Lee, Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet, J. Geophys. Res. 87, 7445−7452, (1982).
- B. U. 0. Sonnerup, Adiabatic particle orbits in a magnetic null sheet, J. Geophys. Res. 76, 8211−8222, (1971).
- W. Baumjohann, G. Paschmann, C. A. Cattell, Average plasma properties in the central plasma sheet, J. Geophys. Res. 94, 6597−6606, (1989).
- A. V. Artemyev, W. Baumjohann, A. A. Petrukovich, et ah, Proton/electron temperature ratio in the magnetotail, Annales Geophysicae 29, 2253−2257, (2011).
- JI. M. Зелёный, А. В. Артемьев, X. В. Малова, А. А. Петрукович, P. Накамура, Метастастабильность токовых слоёв, УФН 180, 973−982, (2010).
- М. С. Долгоносов, Л. М. Зелёный, Е. Е. Григоренко, Ж. А. Сово, Транзиентные свойства пространственных структур в пограничнойобласти плазменного слоя, Космические Исследования 46, 563−571, (2007).
- L. М. Zelenyi, М. S. Dolgonosov, V. Peroomian, М. Ashour-Abdalla, Effects of nonlinearity on the structure of PSBL beamlets, Geophys. Res. Lett. 33, L18103, (2006).
- P. А. Ковражкин, M. С. Долгоносов, Ж. А. Сово, Скейлинг энергии ионных пучков в низковысотном пограничном плазменном слое, Письма в ЖЭТФ, т. 95, с. 258−262, (2012).
- А. I. Neishtadt, Probability phenomena due to separatrix crossing, Chaos 1, 42−48, (1991).
- F. A. Tal and E. Vanden-Eijnden, Transition state theory and dynamical corrections in ergodic systems, Nonlinearity 19, 501−509, (2006).
- J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Gottingen, Math.-Phys. Kl. II, 1−20, (1962).
- M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables, (Dover Publications), 1965.
- D.Brouwer and G. Clemens, Methods of celestial mechanics, Academic Press, New York and London, 1961.
- А. И. Нейштадт, Прохождение через сепаратрису в резонансной задаче с медленно меняющимся параметром, ПММ, т.39, с. 621−632, (1975).
- А. Т. Sinclair, Origin of commensurabilities amongst satellites of Saturn, Month. Notic. Roy. Astron. Soc. 160, No.2, 169 (1972).
- R. J. Greenberg, Evolution of satellite resonances by tidal dissipation, Astron. J. 78, No.4, 338−346, (1973).1278. M. Tavis and F. W. Cummings, Exact solution for an N-molecule-radiation-field Hamiltonian, Phys. Rev. 170, 379, (1968).
- R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99−110, (1954).
- R. Bonifacio and G. Preparata, Coherent spontaneous emission, Phys. Rev. A 2, 336, (1970).
- E. K. Sklyanin, Separation of variables new trends, Progr. Theoret. Phys. Suppl. 118, 35−60, (1995).
- V. B. Kuznetsov, Quadrics on real riemarmian spaces of constant curvature separation of variables and connection with Gaudin magnet. J. Math. Phys. 33, 3240−3254, (1992).
- M. Mackie, K.-A. Suominen and J. Javanainen, in Interactions in Ultracold Gases: From Atoms to Molecules, ed. by M. Weidemuller,
- K.Zirrirnermann (Wiley-Vch, 2003) — A. Ishkhanyan, M. Mackie, P.L. Gould, and J. Javanainen, ibid.
- T.Koehler, K. Goral, P. S. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances, Rev. Mod. Phys. 78, 1311, (2006).
- M. Duncan et al., Emergent quantum phases in a heteronuclear molecular Bose-Einstein condensate model, Nucl. Phys. В 767, 227, (2007).
- Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика, М., Наука, 1974.
- R. I. McLachlan, P. Atela, The accuracy of symplectic integrators, Nonlinearity 5, 541−562, (1992).
- A. I. Neishtadt, D. Scheeres, V. V. Sidorenko, A. A. Vasiliev, Evolution of comet nucleus rotation, Icarus 157, 205−218, (2002).
- A. P. Itin, A. I. Neishtadt, A. A. Vasiliev, Resonant phenomena in slowly perturbed rectangular billiards, Physics Lett. A 291, 133−138, (2001).
- А. P. Itin, A. I. Neishtadt, A. A. Vasiliev, Resonant phenomena in slowly irregular waveguides, J. Math. Sci. (N. Y.) 128, 2778−2781, (2005).
- И. В. Горелышев, А. И. Нейштадт, О смене режима распространения лучей в плавно нерегулярном волноводе, Мат. Заметки, т. 84, с. 348 364, (2008).
- I. V. Gorelyshev, A. I. Neishtadt, Jump in adiabatic invariant at a transition between modes of motion for systems with impacts, Nonlinearity 21, 661−676, (2008).