ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

РаспознаваниС Ρ‚ΠΈΠΏΠΎΠ² ΠΌΡ‹ΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠΎ Π­Π­Π“ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ пространствСнных ΠΈ Π²Π΅Ρ€Π±Π°Π»ΡŒΠ½ΠΎ-логичСских Π·Π°Π΄Π°Ρ‡

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Шишкин Π‘Π›., Бродский Π‘. Π•., Дарховский Π‘. Π‘., Каплан А. Π―. (1997) Π­Π­Π“ ΠΊΠ°ΠΊ нСстационарный сигнал: ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ нСпарамСтричСской статистики. Ѐизиология Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π’. 23, N 4. Π‘.124βˆ’126. НиколаСв А. Π . (1994) ИсслСдованиС этапов мыслСнной Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΈ слоТных Ρ„ΠΈΠ³ΡƒΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ картирования Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠΎΡ€ΠΊΠΎΠ²ΠΎΠ³ΠΎ взаимодСйствия. Π–ΡƒΡ€Π½. Π²Ρ‹ΡΡˆ. Π½Π΅Ρ€Π²Π½. дСят. Π’. 44, с. 441βˆ’447. Π˜Π²Π°Π½ΠΈΡ†ΠΊΠΈΠΉ Π“. А. (1997… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

РаспознаваниС Ρ‚ΠΈΠΏΠΎΠ² ΠΌΡ‹ΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠΎ Π­Π­Π“ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ пространствСнных ΠΈ Π²Π΅Ρ€Π±Π°Π»ΡŒΠ½ΠΎ-логичСских Π·Π°Π΄Π°Ρ‡ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
  • Π§Ρ‚ΠΎ ΠΌΡ‹ ΠΈΠ·ΠΌΠ΅Ρ€ΡΠ΅ΠΌ, рСгистрируя Π­Π­Π“?
  • Π ΠΈΡ‚ΠΌΡ‹ Π­Π­Π“ — соврСмСнная классификация
  • Π ΠΈΡ‚ΠΌΡ‹ 3 — Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°
  • Π ΠΈΡ‚ΠΌΡ‹ Π² — Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°
  • Π ΠΈΡ‚ΠΌΡ‹ Π°-Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°
  • Π ΠΈΡ‚ΠΌΡ‹ Π  — Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°
  • Π ΠΈΡ‚ΠΌΡ‹ Ρƒ— Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°
  • Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ Ρ€ΠΎΠ»ΡŒ Ρ€ΠΈΡ‚ΠΌΠΎΠ² Π­Π­Π“
  • ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° нСстационарного Π­Π­Π“ сигнала
  • НСстационарная ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° Π­Π­Π“
  • ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π€ΡƒΡ€ΡŒΠ΅ Π­Π­Π“ сигнала
  • Π’Π΅ΠΉΠ²Π»Π΅Ρ‚-Π°Π½Π°Π»ΠΈΠ· Π­Π­Π“ сигнала
  • БСгмСнтация Π­Π­Π“ ΠΈ Π΅Π΅ Ρ„изиологичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅
  • Π˜ΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ нСйросСти Π² Π½Π΅ΠΉΡ€ΠΎΡ„изиологичСских исслСдованиях
  • Π˜ΡΡ‚ΠΎΡ€ΠΈΡ возникновСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй
  • НаиболСС извСстныС Ρ‚ΠΈΠΏΡ‹ искусствСнных нСйросСтСй
  • ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ИНБ для Π°Π½Π°Π»ΠΈΠ·Π° Π­Π­Π“ ΠΈ ΠŸΠ‘Π‘
  • ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования
  • Π˜ΡΠΏΡ‹Ρ‚ΡƒΠ΅ΠΌΡ‹Π΅, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΠ΅ΠΌΡ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΈ Ρ…ΠΎΠ΄ экспСримСнта
  • РСгистрация Π΄Π°Π½Π½Ρ‹Ρ…
  • ΠžΡ‚Π±ΠΎΡ€ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚стройка ΠΎΡ‚ Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΡ‚ΠΎΠ²
  • Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉ ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΎΠΊ Π΄Π°Π½Π½Ρ‹Ρ… для Ρ†Π΅Π»Π΅ΠΉ классификации
  • ΠŸΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°
  • РаспознаваниС Ρ‚ΠΈΠΏΠ° Π΄Π°Π½Π½Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ±ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ классификатора
  • Π˜ΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Π°Ρ Π½Π΅ΠΉΡ€ΠΎΡΠ΅Ρ‚ΡŒ
  • УсрСднСнныС спСктры
  • Π’Π΅ΠΉΠ²Π»Π΅Ρ‚-Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…
  • НСпрСрывноС Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅
  • ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ½ΡΠΊΠΈΠΉ (Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ) Π²Π΅ΠΉΠ²Π»Π΅Ρ‚
  • ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π° Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-прСобразования
  • ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° прСобразования
  • Частотно-врСмСнная локализация Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-Π°Π½Π°Π»ΠΈΠ·Π°
  • Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования
  • Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ИНБ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΎΠ±ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ классификатора
  • Различия Π² ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π°Ρ… Π­Π­Π“, ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‰ΠΈΠ΅ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π΄Π°Π½ΠΈΠΉ
  • ΠœΠ΅ΠΆΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ различия ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ² Π­Π­Π“ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
  • Частотно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π­Π­Π“ Π΄Π°Π½Π½Ρ‹Ρ…
  • ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²
  • ΠŸΡ€ΠΈΡ€ΠΎΠ΄Π° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ритмичСских ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ²
  • Π’ΠΊΠ»Π°Π΄ Π³Π°ΠΌΠΌΠ°- ΠΈ Π΄Π΅Π»ΡŒΡ‚Π°- активности Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ритмичСских ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ² ΠΈ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ
  • Π’ΠΊΠ»Π°Π΄ Π±Π΅Ρ‚Π°-активности Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ритмичСских ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ² ΠΈ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ
  • Π’ΠΊΠ»Π°Π΄ мю-Ρ€ΠΈΡ‚ΠΌΠ° Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ритмичСских ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ² ΠΈ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ
  • Π’ΠΊΠ»Π°Π΄ Ρ€ΠΈΡ‚ΠΌΠΎΠ² Ρ‚Π΅Ρ‚Π°- ΠΈ Π°Π»ΡŒΡ„Π°-Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠ², ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… с ΡΠΌΠΎΡ†ΠΈΡΠΌΠΈ, ΠΏΠ°ΠΌΡΡ‚ΡŒΡŽ, Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ΠΌ ΠΈ ΠΌΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΠ΅ΠΉ
  • ЀазичСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ процСссов, ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π² Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… Ρ€ΠΈΡ‚ΠΌΠ°Ρ…
  • БпСцифичСскиС нСспСцифичСскиС" процСссы
  • Π’ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ритмичСских ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ²
  • Π˜Π½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Ρƒ Ρ€Π°Π·Π½Ρ‹Ρ… испытуСмых. Π˜Π½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² Π·Π°Π΄Π°Π½ΠΈΠΉ
  • ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° классификации с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ искусствСнной Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹

1. Π‘ΠΎΠ»Π΄Ρ‹Ρ€Π΅Π²Π° Π“. Н. (2000) ЭлСктричСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ·Π³Π° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΡ€ΠΈ ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠΈ Π΄ΠΈΡΠ½Ρ†Π΅Ρ„Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π»ΠΈΠΌΠ±ΠΈΡ‡Π΅ΡΠΊΠΈΡ… структур. М.: Наука, 2000.

2. ВитязСв Π’. Π’. (2001) Π’Π΅ΠΉΠ²Π»Π΅Ρ‚-Π°Π½Π°Π΄ΠΈΠ· Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… рядов. Π‘ΠΏΠ±. Изд-eo Π‘.-ΠŸΠ΅Ρ‚Π΅Ρ€. ΡƒΠ½-Ρ‚Π°.

3. Π“Π»Π΅ΠΉΠ·Π΅Ρ€ Π’. Π”. (1985) Π—Ρ€Π΅Π½ΠΈΠ΅ ΠΈ ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΠ΅. JL. 246 с.

4. Π“ΡƒΡ‚ΠΌΠ°Π½ A.M. (1980) Π‘ΠΈΠΎΡ„ΠΈΠ·ΠΈΠΊΠ° Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ ΠΌΠΎΠ·Π³Π°. М. 184 с.

5. Π”Ρ€Π΅ΠΌΠΈΠ½ И. М., Иванов О. Π’., НСчитайло Π’. А. (2001) Π’Π΅ΠΉΠ²Π»Π΅Ρ‚Ρ‹ ΠΈ ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ // УспСхи физичСских Π½Π°ΡƒΠΊ, Ρ‚. 171, № 5, с. 564−601.

6. Π˜Π²Π°Π½ΠΈΡ†ΠΊΠΈΠΉ А. М. (1976) ΠœΠΎΠ·Π³ΠΎΠ²Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ сигналов. М: ΠœΠ΅Π΄ΠΈΡ†ΠΈΠ½Π°, 1976.

7. Π˜Π²Π°Π½ΠΈΡ†ΠΊΠΈΠΉ AM., Π‘Ρ‚Ρ€Π΅Π»Π΅Ρ† Π’. Π‘., ΠšΠΎΡ€ΡΠ°ΠΊΠΎΠ² И. А. (1984) Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ процСссы ΠΌΠΎΠ·Π³Π° ΠΈ ΠΏΡΠΈΡ…ичСская Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. М: Наука, 1984.

8. Π˜Π²Π°Π½ΠΈΡ†ΠΊΠΈΠΉ А. М. (1993) Ѐокусы взаимодСйствия, синтСз ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ ΠΏΡΠΈΡ…ичСская Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π–ΡƒΡ€Π½. Π²Ρ‹ΡΡˆ. Π½Π΅Ρ€Π²Π½. дСят. Π’.43, с. 219−227.

9. Π˜Π²Π°Π½ΠΈΡ†ΠΊΠΈΠΉ Π“. А. (1997) РаспознаваниС Ρ‚ΠΈΠΏΠ° Ρ€Π΅ΡˆΠ°Π΅ΠΌΠΎΠΉ Π² ΡƒΠΌΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΠΌ сСкундам Π­Π­Π“ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ±ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ классификатора. ЖВНД ΠΈΠΌ. Π˜. П. Павлова. Π’. 47, с. 743−747.

10. Π˜Π»ΡŒΡŽΡ‡Π΅Π½ΠΎΠΊ И. Π ., Π‘Π°Π²ΠΎΡΡ‚ΡŒΡΠ½ΠΎΠ² А. Н., Π’Π°Π»Π΅Π΅Π² Π . Π“. (2001) Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… характСристик Ρ‚Π΅Ρ‚Π°ΠΈ Π°Π»ΡŒΡ„Π°-Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠ² Π­Π­Π“ ΠΏΡ€ΠΈ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΡΠΌΠΎΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ. Π–ΡƒΡ€Π½. Π²Ρ‹ΡΡˆ. Π½Π΅Ρ€Π²Π½. дСят. Π’. 51, с. 563−571.

11. Каплан А. Π―., Дарховский Π‘. Π‘., Π€ΠΈΠ½Π³Π΅Π»ΡŒΠΊΡƒΡ€Ρ† АлЛ., Π€ΠΈΠ½Π³Π΅Π»ΡŒΠΊΡƒΡ€Ρ† Ан.А. (1997) ВопологичСскоС ΠΊΠ°Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСсса синхронизации ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ€Π΅Π·ΠΊΠΈΡ… пСрСстроСк Π² ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΊΠ°Π½Π°Π»ΡŒΠ½ΠΎΠΉ Π­Π­Π“ Ρƒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π–ΡƒΡ€Π½. Π²Ρ‹ΡΡˆ. Π½Π΅Ρ€Π²Π½. дСят. Π’. 47, Π²Ρ‹ΠΏ. 1. с. 32−37.

12. Π›ΠΈΠ²Π°Π½ΠΎΠ² М. Н., Поляков ΠšΠ›. (1945) Изв. АН Π‘Π‘Π‘Π . Π‘Π΅Ρ€. Π‘ΠΈΠΎΠ». Π’. 3. Π‘. 286.

13. Π›ΠΈΠ²Π°Π½ΠΎΠ² М. Н. (1972) ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ организация процСссов Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. М.: Наука, 1972.

14. НиколаСв А. Π . (1994) ИсслСдованиС этапов мыслСнной Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΈ слоТных Ρ„ΠΈΠ³ΡƒΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ картирования Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠΎΡ€ΠΊΠΎΠ²ΠΎΠ³ΠΎ взаимодСйствия. Π–ΡƒΡ€Π½. Π²Ρ‹ΡΡˆ. Π½Π΅Ρ€Π²Π½. дСят. Π’. 44, с. 441−447.

15. НиколаСв А. Π . (1995) ΠšΠΎΡ€ΠΊΠΎΠ²Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π½Π΅Π²Π΅Ρ€Π±Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΡ‹ΡˆΠ»Π΅Π½ΠΈΡ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ пространствСнных Π·Π°Π΄Π°Ρ‡. ДиссСртация Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡƒΡ‡Π΅Π½ΠΎΠΉ стСпСни ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π° мСдицинских Π½Π°ΡƒΠΊ. Москва, 1995.

16. НиколаСв А. Π ., Π˜Π²Π°Π½ΠΈΡ†ΠΊΠΈΠΉ Π“. А., Π˜Π²Π°Π½ΠΈΡ†ΠΊΠΈΠΉ А. М. (2000) ИсслСдованиС ΠΊΠΎΡ€ΠΊΠΎΠ²Ρ‹Ρ… взаимодСйствий Π² ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ… Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ поискС Π²Π΅Ρ€Π±Π°Π»ΡŒΠ½Ρ‹Ρ… ассоциаций. ЖВНД ΠΈΠΌ. Π˜. П. Павлова. Π’. 50, с. 44−61.

17. ΠŸΠ΅Ρ€Π΅Π±Π΅Ρ€ΠΈΠ½ A.B. (2001) О ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, Ρ‚.2, с. 15−40.

18. Подвигин И. Π€. (1979) ДинамичСскиС свойства Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… структур Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ систСмы. JI.

19. Π‘ΠΈΠΌΠΎΠ½ΠΎΠ² П. Π’. (1981) Π­ΠΌΠΎΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΎΠ·Π³. М: Наука, 1981.

20. Π€Π°Ρ€Π±Π΅Ρ€ Π”. А., Π‘Π΅ΠΌΠ΅Π½ΠΎΠ²Π°, Π›.К., АлфСрова, iB.B. (1990) Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ организация Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ ΠΌΠΎΠ·Π³Π°. JI. Наука. Π‘. 198.

21. Π€Ρ€ΠΎΠ»ΠΎΠ² АЛ., ΠœΡƒΡ€Π°Π²ΡŒΠ΅Π² И. П. (1988) Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ характСристики Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. М.: Наука, 1988.

22. Π¨Π°Ρ€ΠΎΠ²Π° Π•. Π’., ΠžΠ±Ρ€Π°Π·Ρ†ΠΎΠ²Π° Π•. Π ., Π—Π°ΠΉΡ†Π΅Π² О. Π‘., ΠšΡƒΠ»ΠΈΠΊΠΎΠ² М. М., Π£Ρ€Π°ΠΊΠΎΠ² Π‘. Π’. (2001) ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ Π­Π­Π“ ΠΏΡ€ΠΈ посттравматичСском ΠšΠΎΡ€ΡΠ°ΠΊΠΎΠ²ΡΠΊΠΎΠΌ синдромС. Π–. Π½Π΅Π²Ρ€ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΏΡΠΈΡ…ΠΈΠ°Ρ‚Ρ€ΠΈΠΈ ΠΈΠΌ. Π‘. Π‘. ΠšΠΎΡ€ΡΠ°ΠΊΠΎΠ²Π°. Π’. 101, с. 32−38.

23. Π¨Π΅Π²Π΅Π»Π΅Π² Π˜Π›. (2001) Π’ΠΎΠ»Π½ΠΎΠ²Ρ‹Π΅ процСссы Π² ΠΊΠΎΡ€Π΅ ΠΌΠΎΠ·Π³Π° ΠΈ Π·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ восприятиС. ΠŸΡ€ΠΈΡ€ΠΎΠ΄Π°. № 12 Π·Π° 2001 Π³., с. 28−35.

24. Шишкин Π‘Π›., Бродский Π‘. Π•., Дарховский Π‘. Π‘., Каплан А. Π―. (1997) Π­Π­Π“ ΠΊΠ°ΠΊ нСстационарный сигнал: ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ нСпарамСтричСской статистики. Ѐизиология Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π’. 23, N 4. Π‘.124−126.

25. Abeyratne U.R., Kinouchi К, Oki Н., Okada J., Shichijo F., Maisumoto K. (1991) Artificial neural networks for source localization in the human brain. Brain Topogr. V. 4, p. 3−21.

26. Abeyratne U.R., Zhang G., Saratchandran P. (2001) EEG source localization: a comparative study of classical and neural network methods. Int. J. Neural Syst. V. 11, p. 349−360.

27. Adrian E.D., Matthews B.H.C. (1934) The Berger rhythm: potential changes from occipital lobes in man. Brain. V. 57. N 2. P. 355−385.

28. Bankman I.N., Sigilliti V.G., Wise Π―Π›., Smith P.L. (1992) Feature-based detection of the K-complex wave in the human electroencephalogram using neural networks. IEEE Trans. Biomed. Eng. V. 39, p. 1305−1310.

29. Barlow J.S. (1979) Computerized clinical electroencephalography in perspective. IEEE Trans. Biomed. Engng. V. BME-26. P. 377−391.

30. BasarE., Bullock Π’.Н. (1992) Induced rhythms in the brain. Birkhaeuster, Boston-BaselBerlin.

31. BergerH. (1929) Uber das Elektrenkephalogramm des Menschen. Arch. Psychiat. Nervenkr. V. 87, p. 527−570.

32. Bickford R.G., Fleming N.I., Billinger T.W. (1971) Compresion of EEG data. Trans. Am. Neurol Asoc. V. 36. P. 118−122.

33. Blankertz B, Dornhege G, KrauledatM, Curio G" Mutter K-R. (2006) The Berlin brain-computer interface: Machine learning based detection of user specific brain states.

34. Burgess A.P., Gruzelier J.H. (1993) Individual reliability of amplitude distribution in topographical mapping of EEG. Electrenceph. Clin. Neurophysiol. V. 86, p. 218−223.

35. Burgess A.P., Gruzelier J. (1997) How reproducible is the topographical distribution of EEG amplitude? Int. J. Psychophysiol. V. 26, p. 113−119.

36. Coen, R.J. Tharp, B.R. (1985) Neonatal electroencephalography. Adv. Perinatal Med. London. V.4. P. 267−297.

37. Cooley J.W.y Lewis PA.W., Welch P.D. (1967) Historical notes on the fast Fourier transform. IEEE Trans. Audio Electroacoust. V. AU-15. P. 76−79.

38. Donchin E, Smith DB. (1970) The contingent negative variation and the late positive wave of the average evoked potential. Electroenceph clin Neurophysiol 29:201−203.

39. Donogltue J.P. (2002) Connecting cortex to machines: recent advances in brain interface. Nature Nauroscience. V.5, 1085−1088.

40. Dummermuth G. (1971) Electronic data processing in pediatric EEG research. Neuropediatric. V. 4. P. 349−374.

41. Engel A.K., Singer W. (2001) Temporal binding and the neural correlations of sensory awareness. Trends in cognitive sciences. V. 5, p. 16−26.

42. Ferber G. (1987) Treatment of some nonstationarities in the EEG. Neuropsyhobiology. V. 17. P. 100−104.

43. Ford J.M., Mathalon D.H. (2004) Schizophrenia and hallucinations: evidence from event related brain potentials and functional magnetic resonance imaging. Int. J. Psychophysiol. V. 54, p. 3.

44. Fukuda O., Tsuji T., Kaneko M. (1995) Pattern classification of EEG signals using a log-linearized Gaussian mixture neural network. Proc. IEEE Int. Conf. Neural Networks, Perth Western Australia, 27 Nov-1 Dec, 1995. pp. 2479−2484.

45. Gabor A.J., Leach R.R., Dowla F.U. (1996) Automated seizure detection using a self-organizing neural network. Electroencephalography and Clinical Neurophysiology. V. 99, p. 257−266.

46. Gatli I., Lehmann D., Bar-On E. (1983) Fuzzy clustering of the EEG signal and vigilance performance. Intern. J. Neuroscience. V. 20, N 3−4. P. 303−312.

47. Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243: 234−236.

48. Gevins A.S., Yeager C.L., Diamond S.L., Spire J.P., Zeitlin G.M., Gevins A.H. (1975) Automated analysis of the electrical activity of the human brain (EEG): a progress report. Proc IEEE. V. 63. P. 1382−1399.

49. Gevins A.S., Smith M.E. (1997) Detecting transient cognitive impairment with EEG pattern recognition method. Aviation and Space Environmental Medicine. V. 70, p. 10 281 024.

50. Grass A.M., Gibbs F.A. (1985) A Fourier transform of the electroencephalogram. J. Neurophysiol. V. 2. P. 521−526.

51. Hari R., Salmelin R., Makela J.P., Salenius S, Helle M. (1997) Magnetoencphalographic cortical rhythms. Int. J. Psychophysiol. V. 26, p. 51−62.

52. HebbD.O. (1949) The organization of behavior. New-York: Wiley, 1949.

53. Hinton G.E., Sejnowsky T.J., Ackley D.H. (1984) Boltzmann machines: Constraint satisfaction networks that learn. Tech. Rep. CMU-CS-84−119. Pittsburgh: Carnegie-Mellon University, Department of Computer Science.

54. Hopfield J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA. V. 79, p. 2554−2558.

55. I. Huang J.W., Lu Y.Y., Nayak A., Roy R.J. (1999) Depth of anesthesia estimation and control. IEEE Transactions on Biomedical Engineering. V. 46, p. 71−81.

56. Huuponen E., Varri A., Himanen S.L., Hasan J., Lehtokangas M., Saarinen J. (2000) Autoassociative MLP in sleep spindle detection. J. Med. Syst. V. 24, p. 183−193.

57. Jansen B.H., Cheng W.-K. (1988) Structural EEG analysis: an explorative study. Internat. J. Bio-Med. Comput. V. 23, N 3−4. P. 221−237.

58. Kaplan A.Ya., Byeon J-G., Lim J-J., Jin K-S.f Park B-W. (2005) Unconscious operant conditioning in the paradigm of brain-computer interface based on color perception. Intern. J. Neuroscience. V. 115, p. 781−802.

59. Kleiner B. (1973) Some comments on the use of an EEG autoregressive model for the time-saving calculation of spectral power density distributions with a digital computer. EEG Clin. Neurophysiol. V. 35. P. 331−332.

60. Klimesch W. (1997) EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. V. 26, p. 319−340.

61. Klimesch W., Sauseng P., Hanslmayr S. (2007) EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Rewiews. V. 53. P. 63−88.

62. Kloppel B. (1994) Classification by neural networks of evoked potentials. Neuropsychology. V. 29, p. 47−52.

63. Knyazeva M.G., Fornari E., Meuli R., Innocenti G., Maeder P. (2006) Imaging of a synchronous neuronal assembly in the human visual brain. Neuroimage. V. 29, p. 593 604.

64. Kohonen T. (1995) Self-Organizing Maps. Springer-Verlag, Heidelberg, 1995.

65. Kubier A, Kotclioubey B, Kaiser J, Wolpaw JR, Birbaumer N. (2001) Brain-computer communication: unlock the locked-in. Psychol Bull 127:358−375.

66. Lashley KS. (1950) In search of the engram. In: Society of experimental biology symposium No. 4: Psychological mechanisms of animal behavior. London: Cambridge University Press, 1950. p. 478−505.

67. Laubach M. (2004) Wavelet-based processing of neuronal spike trains prior to discriminant analysis. J. Neurosci. Methods, v. 134, pp. 159−168.

68. Lopes da Silva F.H., Dijk A., Smits H. (1975) Detection of non-stationarities in EEGs using thy autoregressive model — an application to the EEG of epileptics. CEAN-computerizedEEG analysis. (Eds.) G. Dolce, H. Kunkel. Stuttgart: Fischer. P. 180−199.

69. Lopes da Silva F.H., Vos J.E., Mooibroek J., Van Rotterdam A. (1981) Relative contributions of intracortical and thalamocortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. EEG Clin. Neuroph. V. 50, p. 449−456.

70. Lopes da Silva F.H. (1982) EEG analysis: theory and practice. Electroencephalographybasic principles, clinical applications and related fields. (Eds.) E. Niedermeyer, F.H. Lopes da Silva. Baltimore: Urban & Schwarzenberg. P. 685−711.

71. Lopes da Silva F.H., Mars N.J.I. (1987) Parametric methods in EEG analysis. EEG handbook: Revised series. V. 1. Methods of analysis of brain electrical and magnetic signals. A.S.Gevins, A. Remond (Eds.). Amsterdam: Elsevier. P. 243−260.

72. Lopes da Silva F. (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. EEG Clin. Neuroph. V.79, p. 81−93.

73. Miller A.S., Blott B.H., Hames T.K. (1992) Review of neural network applications in medical imaging and signal processing. Medical and Biological Engineering and Computing. V. 30, p. 449−464.

74. Miller R. (1991) Cortico-hippocampal interplay and the representation of contexts of the brain. Springer Verlag, Berlin Heidelberg New York, 1991.

75. Mitra S., Sarbadhikan S.N., Pal S.K. (1996) An MLP-based model for identifying qEEG in depression. Int. J. Biomed. Comput. V. 43, p. 179−187.

76. Morrel F. (1967) The Neurosciences. A study program. N.Y. Rockfeller Univ. Press. P. 452.

77. Morrell L.K. (1966) Some characteristics of stimulus-provoked alpha activity. Electroencephalogr. clin. Neurophysiol. V. 21, N 6. P. 552−561.

78. Mulcholland T., Goodman D. (1980) Hypotesis of background EEG. Rhytmic EEG activities and cortical functioning. Amsterdam ect.: Elsevier. P. 277−286.

79. Murthy V.N., Fetz E.E. (1992) Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. U SA. V. 89, p. 5670−5674.

80. Nashmi R., Mendonca A. J., MacKay W.A. (1994) EEG rhythms of the sensorimotor region during hand movements. Electroencephalogr. Clin. Neurophys. V. 91, p.456−467.

81. Niedermeyer N. (1997) Alpha rhythms as physiological and abnormal phenomena. Int. J. Psychophysiol. V. 26, p. 31−49.

82. Peltoranta M., Pfurtscheller G. (1994) Neural network based classification of non-averaged event-related EEG responses. Medical & Biological Engineering & Computing. V. 32, p. 189−196.

83. Penny W.D., Roberts S.J. (1999) EEG-based communication via dynamic neural network models. Proc. Int. Joint Conf. Neural Networks, 1999. p. 5.

84. Peters B.O., Pfurtscheller G., Flyvbjerg H. (1998) Mining multi-channel EEG for its information content: an ANN-based method for a brain-computer interface. Neural Networks. V. 11, p. 1429−1433.

85. Peters B.O., Pfurtscheller G., Flyvbjerg H. (2001) Automatic differentiation of multichannel EEG signals. IEEE Trans. Biomed. Eng. V. 48, p. 111−116.

86. Petrosian AA., Prokhodov D.V., Lajara-Nanson W., Schiffer R.B. (2001) Recurrent neural network based approach for early recognition of Alzheimer’s disease in EEG. Clinical Neurophysiology. V. 112, p. 1378−1387.

87. Petsche H., Rappelsberger P. (1992) Is there any message hidden in the human EEG? Induced Rhythms in the Brain. E. Basar, T.H.Bullock (Eds.). Boston: Birkhauser. P. 103−116.

88. Pfurtscheller G., Flotzinger D., Mohl W., Peltoranta M. (1992) Prediction of the side of hand movements from single trial multi-channel EEG data using neural networks. Electroencephalogr. Clin. Neurophysiol. V. 82, p. 313−315.

89. Pfurtscheller G, Flotzinger D, Pregenzer W, Wolpaw JR, McFarland J) J. (1996) EEG-based brain-computer interface (BCI): search for optimal electrode positions and frequency components. Med Prog Technol 21:111—121.

90. Pfurtscheller G., Neuper Ch., Andrew C., Edlinger G. (1997) Foot and hand area mu rhythms. Int. J. Psychophys. V. 26, p. 121−135.

91. Pfurtscheller G., Lopes da Silva F.H. (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. V. 110, p. 1842−1857.

92. Posner M.I., Raichle M.E. (1994) Images of mind. New York.

93. Robert G, Karasinski P., Natowitz R., Limoge A. (1996) Adalt rat vigilance states discrimination by artificial neural network using a single EEG channel. Physiology & Behavior. V. 59, p. 1051−1060.

94. Robert C., Gaudy J.F., Limoge A. (2002) Electroencephalogram processing using neural networks. Clinical Neurophysiology. V. 113, p. 694−701.

95. Roberts SJ, Penny WD. (2000) Real-time brain-computer interfacing: a preliminary study using Bayesian learning. Med Biol Eng Comput 38:56−61.

96. Roschke J., Fell J., Mann K. (1997) Non-linear dynamics of alpha and theta rhythm: correlation dimensions and Lyapunov exponents from healthy subject’s spontaneous EEG. Int. J. Psychophysiol. V. 26, p. 251−261.

97. Rosenblatt F. (1958) The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. V. 65, p. 386−408.

98. Rosenblatt F. (1962) Principles of neurodynamics. New-York, Spartan, 1962.

99. Rougeul-Buser A., Buser P. (1997) Rhythms in the alpha band in cats and their behavioral correlates. Int. J. Psychophysiol. V. 26, p. 191−203.

100. Rumelhart D.E., Hinton C.E., Williams R.J. (1986 a) Learning representations by back-propagating errors. Nature. V. 323, p. 533−536.

101. Rumelhart D.E., McClelland J.L., and the PDP research group. (1986 6) Parallel distributed processing. Cambridge, Mass.: MIT Press, 1986.

102. Salmelin R., Mamalainen M., Kajola M., Hari R. (1995) Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage. V. 2, p. 237−243.

103. Saunders M. (1963) Amplitude probability density studies of alpha and alpha-like patterns. EEG and Clin. Neurophysiol. V. 15. No 5. P. 761−777.

104. Schack B., Weiss S., Rappelsberger P. (1996) Dynamic topographic methods of coherence analysis of cognitive processes. Medical & Biological Engineering & Computing. V. 34, p. 207−208.

105. Sun M., Sclabassi R.J. (2000) The forward EEG solutions can be computed using artificial neural networks. IEEE Trans. Biomed. Eng. V. 47, p. 1044−1050.

106. Suzuki H. (1974) Phase relationships of alpha rhythm in man. Japan J. Physiol. V. 24, N 6. P. 569−586.

107. Sveinsson J.R., Benediktsson J^A., Stefansson S.B., Davidsson K. (1997) Parallel principal component neural network for classification of event-related potential waveforms. Med. Eng. Phys. V. 19, p. 15−20.

108. Tallon-Baudry C., Bertrand O., Fischer C. (2001) Oscillatory synchrony between human extrstriate areas during visual short-term memory maintenance. J. Neurosci. V. 21, p. RC177- 1-RC177−5.

109. Tallon-Baudry C. (2003) Oscillatory synchrony and human visual cognition. Journal of Physiology Paris V. 97, p. 355−363.

110. Thatcher R.W., Krause P.J., Hrybyk M. (1986) Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroenceph. clin. Neurophysiol. V. 64. P. 123−143.

111. Tuulik K, Raja A., Meister A., Lossmann E. (1997) Neural network method to determine the vigilance levels of the central nervous system, related to occupational chronic chemical stress. Technology of Health Care. N 5 (1997), p. 243−251.

112. Van Hoey G., de Clercq J., Vanrumste B., van de Walle R., Lemahieu I., D’Have M., Boon P. (2000) EEG dipole source localization using artificial neural network. Physics in Medicine and Biology V. 45, p. 997−1011.

113. Varela F., Lachaux J-P., Rodriguez E. and Martinerie J. (2001) The brainweb: phasesynchronization and large-scale integration. Nature rewiews. v. 2, pp. 229−239.

114. Vargha-Khadent F., Gadian D. G., Mislikin M. (2001) Dissociation in cognitive memory: the syndrom of developmental amnesia. Phil. Trans. R. Soc. Lond. V. 356, p. 1435−1440.

115. Walczak S., Novak W.J. (2001) An artificial neural network approach to diagnosing epilepsy using lateralized bursts of theta EEGs. Journal of Medical Systems. V. 25, p. 920.

116. Walter D.O., Rhodes J.M., Adey W.P. (1967) Discriminating among states of consciousness by EEG measurements: a study of four subjects. EEG and Clin. Neurophysiol. V. 22. No 1. P. 22−29.

117. Webber W.R.S., Lesser R.P., Richardson R., Wilson K. (1996) An approach to seizure detection using an artificial neural network (ANN). Electroencephalography and Clinical Neurophysiology. V. 98, p. 250−272.

118. Weiss T.F. (1960) Masters thesis. Dept Electr Engng. M.I.T. P. 132.

119. Whitham EM, Pope KJ, Fitzgibbon SP, et al (2007). «Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG». Clin Neurophysiol 118 (8): 1877−88.

120. Whitham EM, Lewis T, Pope KJ, et al (2008). «Thinking activates EMG in scalp electrical recordings». Clin Neurophysiol 119 (5): 1166−75.

121. Wilson S.B. (2005) A neural network method for automatic and incremental learning applied to patient-dependent seizure detection. Clinical Neurophysiology. V. 116 p. 1785−1795.

122. Wolpaw J. R, McFarland DJ. (2004) Control of two-dimensional movement signal by a noninvasive brain-computer interface in humans. PNAS. V. 101, N 51, 17 849−17 854.

123. Wu F.G., Slater J.D., Ramsay R.E. (1994) Neural network approach in multichannel auditory event-related potentials analysis. Int. J. Biomed. Comput. V. 35, p. 157−168.

124. YoshiiN., Yamaguchi V. (1962) Med. J. Osaka Univ. V. 13. No 1. P. 11.

125. Yuasa M., Zhang Q., Nagashino H., Kinouchi Y. (1998) EEG source localization for two dipoles by neural networks. Proc. IEEE 20th Ann. Int. Conf. IEEE/EMBS. Hong Kong, 1998. p. 2190−2192.

126. Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (2008). «Transient induced gamma-band response in EEG as a manifestation of miniature saccades». Neuron 58 (3): 429−41.

127. Yylmaz Y.K., Demiralp T., Giilcur H.O. (1998) Classification of P300 component in single trial event related potentials using artificial neural network classifier. Int. J. Psychophysiology. V.30, p. 226.

128. Zhang X.S., Roy R.J. (2001) Derived fuzzy logic model for estimating the depth of anesthesia. IEEE Transactions on Biomedical Engineering. V. 48, p. 312−323.h.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ