Помощь в написании студенческих работ
Антистрессовый сервис

Исследование участия каспаз зрелого мозга крыс в механизмах памяти и обучения

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Ингибитор каспазы-3 при интрацеребровентрикулярном введении в дозе, оказывающей влияние на формирование долговременной памяти, инициирует гетерогенные и разновременные изменения биохимических маркеров апоптоза — активности каспазы-3 и межнуклеосомальной фрагментации ДНК в амигдале и гиппокампе крыс, что указывает на участие каспазозависимых и каспазонезависимых процессов апоптоза, протекающих… Читать ещё >

Исследование участия каспаз зрелого мозга крыс в механизмах памяти и обучения (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • I. ВВЕДЕНИЕ
  • II. ОБЗОР ЛИТЕРАТУРЫ
  • 1. Общая характеристика апоптоза
    • 1. 1. Роль апоптоза в многоклеточном организме
    • 1. 2. Морфологические процессы при апоптозе
    • 1. 3. Молекулярные процессы при апоптозе
      • 1. 3. 1. Каспазы и их участие в апоптозе клеток
      • 1. 3. 2. Пути реализации программированной клеточной гибели
  • 2. Нейрогенез и апоптоз в зрелом мозге
  • 3. Неапоптотические функции каспаз в нервной ткани
  • 4. Участие каспаз в обеспечении механизмов памяти и обучения
  • III. МЕТОДЫ ИССЛЕДОВАНИЯ
  • 1. Экспериментальные животные и условия их содержания
  • 2. Протокол использования веществ
  • 3. Экспериментальные модели оценки поведения животных
    • 3. 1. Экспериментальные исследования на модели водного лабиринта Морриса
    • 3. 2. Экспериментальные исследования с использованием метода условно-рефлекторного замирания
    • 3. 3. Экспериментальные исследования с использованием методики угашения акустической стартл-реакции
  • 4. Методы количественного определения активности каспазы-3 и межнуклеосомальной фрагментации ДНК в образцах ткани зрелого мозга крыс
  • 5. Статистический анализ данных
  • IV. РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ
  • 1. Влияние ингибитора активности каспаз z-VAD-fmk на формирование и консолидацию/хранение пространственного навыка в водном лабиринте Морриса
  • 2. Действие ингибиторов каспаз z-VAD-fmk и z-DEVD-fmk на формирование, консолидацию/хранение и воспроизведение поведения замирания у крыс
  • 3. Влияние специфического ингибитора каспазы-3 z-DEVD-fmk на формирование, хранение и воспроизведение долговременного угашения АСР и условного страха у крыс
  • 4. Эффекты интрацеребровентрикулярного введения ингибитора каспазы-3 на биохимические показатели апоптоза в различных структурах зрелого мозга крыс
  • V. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • ВЫВОДЫ

Исследования апоптоза (программированной гибели клеток) в мозге относятся к числу наиболее приоритетных и актуальных в современной нейробиологии. Одним из центральных звеньев процесса апоптоза являются каспазы — семейство цистеинсодержащих протеолитических ферментов, расщепляющих пептидную связь у остатка аспартата (Chinnaiyan et al., 1996). Особое внимание уделяют каспазе-3, которую считают узловым фактором терминальной стадии апоптотической гибели нервных и глиальных клеток (Nunez, 1998, Robert et al., 2003, Yuan, Yankner, 2000, Timmer, Salvesen, 2007).

Получены убедительные свидетельства важной роли каспазозависимых процессов апоптоза в патогенезе многих распространенных заболеваний нервной системы (цереброваскулярные, нейродегенеративные заболевания и др.) (Гомазков 2006, Dlamini et al., 2004). Разрабатываются и применяются в клинике новые препараты, оказывающие специфическое воздействие на активность цистеиновых протеаз, в частности, созданные на основе ингибиторов каспаз (Barut et al., 2005; Liu et al., 2005; Narkilahti et al., 2003).

В настоящее время изучение роли каспаз в механизмах обучения и памяти находится на этапе все более активного экспериментального поиска (Гуляева 2003, Sherstnev et al., 2004, 2006; Gemma et al., 2005, Stepanichev et al., 2005; Huesmann, Clayton, 2006). Значительные сложности в разработке данной проблемы обусловлены тем, что факторы, вовлеченные в регуляцию апоптоза, могут принимать участие в других клеточно-молекулярных событиях, протекающих в нервной системе. Это в полной мере касается каспаз, которые непосредственно вовлечены в регуляцию клеточной гибели по типу апоптоза и, вместе с тем, регулируют клеточный цикл, пролиферацию, дифференцировку, а также пластические перестройки клеток мозга (Гуляева, 2003, Cohen, 1997, Concha and Abdel-Meguid, 2002). При экспериментальном изучении указанных вопросов широко используются ингибиторы активности каспаз (Fan et al., 2004). В ряде работ исследовано влияние ингибиторов каспаз на обучение, поведение и память. Так, ингибитор каспазы-1 нарушал выработку обстановочного условнорефлекторного страха у крыс (Gemma et al., 2005). Установлено, что у птиц привыкание к видоспецифической песне сопровождается быстрым (в течение нескольких минут) повышением уровня каспазы-3 в синаптических зонах дендритов нейронов тех отделов переднего мозга, активация которых связана с процессом привыкания (Huesmann, Clayton, 2006). Обнаружено, что ингибитор каспазы-3 блокирует длительную потенциацию в срезах гиппокампа и предотвращает развитие долговременного облегчения синаптической связи идентифицированных нейронов ЦНС виноградной улитки (Bravarenko et al., 2006). При введении в мозг зрелых крыс специфический ингибитор каспазы-3 подавляет консолидацию долговременной пространственной памяти в водном лабиринте Морриса, не оказывая действия на кратковременную память (Dash at al., 2000).

Несмотря на очевидную теоретическую и практическую значимость, работы посвященные изучению участия и роли каспаз мозга в механизмах обучения и памяти сравнительно немногочисленны, а результаты их противоречивы. До сих пор не изучен вопрос о закономерности участия каспаз в нейрохимических механизмах иптегративной деятельности мозга, а так же особенности вовлечения этих ферментов в обеспечение различных форм поведения и памяти. Практически отсутствуют данные о действии ингибиторов каспаз на показатели развития и гибели клеток в зрелом мозге. Остается неясным, связаны ли центральные эффекты ингибиторов с изменениями «неапоптозных» функций каспаз, в частности, свойств нейропластичности или влиянием на неонейрогенез и апоптоз.

Цели и задачи исследования.

Целью данной работы явилось исследование участия цистеиновых протеаз — каспаз мозга в механизмах обучения и памяти у взрослых животных.

Для достижения поставленной цели были сформулированы следующие задачи:

1. Изучить влияние ингибиторов активности каспаз при внутримозговых введениях на различные виды поведения и формы памяти у взрослых крыс.

2. Провести сравнительный анализ действия ингибитора активности каспаз широкого спектра действия z-VAD-fmk и специфического ингибитора каспазы-3 z-DEVD-fmk на обучение и память у половозрелых крыс.

3. Выявить эффекты интрацеребровентрикулярного введения специфического ингибитора каспазы-3 на биохимические маркеры апоптоза — межнуклеосомальную фрагментацию ДНК и активность каспазы-3 в различных структурах зрелого мозга крыс.

Научная новизна работы.

В работе впервые исследовано влияние ингибитора активности каспазы широкого спектра действия и специфического ингибитора каспазы-3 на различные виды поведения и формы памяти у взрослых животных. Впервые проведено одновременное количественное определение биохимических маркеров апоптоза — активности каспазы-3 и межнуклеосомальной фрагментации ДНК в различных отделах зрелого мозга при действии специфического блокатора каспазы-3. Установлено, что каспазы мозга избирательно вовлекаются в молекулярные механизмы, обеспечивающие формирование, хранение и воспроизведение различных поведенческих навыков у крыс. Выявлены избирательные и гетерохронные изменения биохимических маркеров апоптоза в релевантных структурах мозга при интрацеребровентрикулярном введении специфического ингибитора каспазы-3 в дозе, вызывающей облегчение формирования долговременной памяти. Получены новые экспериментальные свидетельства участия каспазы-3 как в процессах апоптоза, так и нейрональной пластичности в зрелом мозге.

Научно-практическое значение работы.

Результаты работы расширяют и уточняют современные представления о молекулярных основах обучения и памяти, а также роли процессов программированной клеточной гибели в обеспечении интегративной деятельности зрелого мозга. Полученные данные помогут в понимании роли каспаз в механизмах апоптоза и нейрональной пластичности в норме и при развитии заболеваний нервной системы. Результаты работы могут быть использованы при разработке новых фармакологических средств коррекции нарушений когнитивных функций на основе направленного воздействия на активность каспаз. Научно-теоретические положения работы могут быть привлечены в качестве дополнительного материала в учебно-педагогическом процессе в высших учебных заведениях медицинского и биологического профиля.

Основные положения, выносимые на защиту.

Каспазы мозга, в частности, каспаза-3, которая играет ключевую роль в центральных эффектах семейства цистеиновых протеаз, избирательно и гетерохронно вовлекаются в обеспечение нейрохимических механизмов обучения и памяти у взрослых животных, участвуя в процессах программированной клеточной гибели (апоптоза) и нейрональной пластичности.

ВЫВОДЫ.

1. Ингибитор каспаз широкого спектра действия z-VAD-fmk, вводимый внутрь желудочков мозга, оказывает избирательное влияние на разные формы и стадии памяти: облегчает формирование долговременной пространственной памяти, нарушает процессы консолидации/хранения долговременной пространственной памяти, не действуя на кратковременную пространственную память в модели водного лабиринта Морриса.

2. Специфический ингибитор каспазы-3 z-DEVD-fmk при аппликации на червь мозжечка избирательно модулирует различные виды поведения — стимулирует формирование угашения АСР, не оказывает влияния на поведение замирания, снижает выраженность стереотипий и увеличивает время груминга у крыс.

3. Ингибитор активности каспаз z-VAD-fmk и специфический ингибитор каспазы-3 z-DEVD-fmk в условиях центрального введения вызывают избирательные, сходные по выраженности и направленности эффекты на процессы обучения и памяти в модели условно-рефлекторного замирания. Это подтверждает представление о ведущей роли каспазы-3 в реализации действия цистеиновых протеаз в зрелом мозге.

4. Ингибитор каспазы-3 при интрацеребровентрикулярном введении в дозе, оказывающей влияние на формирование долговременной памяти, инициирует гетерогенные и разновременные изменения биохимических маркеров апоптоза — активности каспазы-3 и межнуклеосомальной фрагментации ДНК в амигдале и гиппокампе крыс, что указывает на участие каспазозависимых и каспазонезависимых процессов апоптоза, протекающих в лимбических структурах мозга, в обеспечение механизмов памяти.

5. Полученные экспериментальные результаты свидетельствуют, что каспазы мозга, в частности, каспаза-3, вовлекаются в обеспечение молекулярных механизмов обучения и памяти на основе принципов специфичности и гетерохронии, участвуя как в процессах программированной клеточной гибели, так и нейрональной пластичности.

Показать весь текст

Список литературы

  1. П.К. (1968) Биология и физиология условного рефлекса. М.: «Медицина», 548с.
  2. П.К. (1974) Системный анализ интегративной деятельности нейрона. Успехи физиол. наук 5(2): 5−92
  3. А.В., Калимуллина Л. В. (2006) Электронномикроскопическая характеристика нейроэндокринных нейронов миндалевидного тела мозга у самцов и самок на разных стадиях астрального цикла. Морфология, 130(6):25−9.
  4. П.М., Гуляева Н. В. (2006) Общность молекулярных механизмов нейропластичности и нейропатологии: интегративный подход. Рос. физиол. журн.им. И. М. Сеченова, 92(2): 145−151.
  5. Ю.Б. (2005) Этическая экспертиза биомедицинских исследований. Практические рекомендации. «Российское общество клинических исследователей» М. 157с.
  6. А.Г. (2007) Дифференцировка клеток радиальной глии в астроциты вероятный механизм старения млекопитающих. Журнал общей биологии, 68(1):35−51.
  7. О.С. (1975) Гиппокамп и память. М.: «Наука» 322с.
  8. О.А. (2006) Нейротрофическая регуляция и стволовые клетки мозги мозга. М.: «Икар», 332с.
  9. Н.В. (2003) Неапоптотические функции каспазы-3 в нервной ткани. Биохимия, 68(11): 1459−1470.
  10. В.Н., Гавриленко Т. И., Фильченков А. А. (2002) Апоптоз при ишемии и реперфузии миокарда. Врачебное дело, 1:8−15.
  11. С.А., Никитин В. П., Шеретнев В. В. (2008) Синапс-специфическая пластичность в командных нейронах при обучении виноградных улиток в условиях действия ингибиторов каспаз. Бюлл. эксперим. биол. и мед. 144(12):604.
  12. И.Е., Яковлев А. А., Кудряшова И. В., Гуляева Н. В. (2003) Ингибировапие каспазы-3 блокирует длительную потенциацию в срезах гиппокампа. Журнал высшей нервной деятельности, 53(5):537−540.
  13. Е.Ф., Абросимов А. Ю. (2001) Гибель клетки (апоптоз). М.: «Медицина», 192с.
  14. М.А. (2002) Молекулярная медицина и прогресс фундаментальных наук. Вестник российской академии, 72(1): 13−21.
  15. М.В., Труфакин В. А. (1999) Апоптоз и цитокииы. Успехи совр. Биол., 119(4):359−367.
  16. В.Д. (2001) Биохимия программируемой клеточной смерти (апоптоза) у животных. СОЖ, 10:18−25.
  17. И.А., Ермоленко Н. А. (2003) Развитие нервной системы у детей в норме и патологии. М.: «МЕДпресс-информ», 368с.
  18. М.Ю., Кудряшова И. В., Яковлев А. А., Воронцова О. Н., Лазарева Н. А., Гуляева Н. В. (2006) Влияние ингибитора активности каспазы-3-Z-DEVD-FMK на поведение крыс при введении в желудочки мозга. Журн. Высш. Нервн. Деят., 56(2):247−56.
  19. С.Р. (1996) Апоптоз: молекулярный клеточный механизм. Журнал молекулярной биологии, 30(3):487−502.
  20. В. В. (1998) Гетерохрония нейрохимической организации процессов обучения и памяти. Труды научного совета РАМН по экспериментальной и прикладной физиологии, 7:194−204.
  21. В.В., Грудень М. А., Сторожева З. И., Прошин А. Т. (2001) Гетерохрония участия нейротрофических факторов в нейрохимической организации процессов обучения и памяти в зрелом организме. Рос. физиол. журн. Им. И. М. Сеченова, 87(6):752−761.
  22. В.В., Юрасов В. В., Сторожева З. И., Грудень М. А., Яковлева Н. Е. (2005) Биохимические маркеры апоптоза в различных отделах мозга при обучении. Журн. Высш. Нерв. Деят., 55(6):729−33.
  23. А.А., Онуфриев М. В., Степаничев М. Ю., Браун К., Гуляева Н. В. (2001) Активность каспазы-3 в отделах мозга грызунов разных видов. Нейрохимия, 18(1):41−43.
  24. А.А., Семенова Т. П., Онуфриев М. В., Михалев C.JL, Гуляева Н. В. (2002) Изменение активности каспазы-3 в отделах мозга сусликов citellus undulatus в течение гибернационного цикла. Нейрохимия, 19(1):33−36.
  25. А.А. (1998) Апоптоз. Природа феномена и его роль в целостном организме. Пат. физиол., 2:38−48.
  26. Abrous D.N., Koehl М., Le Moal М. (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev. 85(2):523−69.
  27. F., Roger M., Coronas V. (2004) Neurogenic and intact or apoptotic non-neurogenic areas of adult brain release diffusible molecules that differentially modulate the development of subventricular zone cell culture. Eur J Neurosci, 19(6): 1459−68.
  28. Y.I. (2006) Learning and memory: traditional and systems approaches. Neurosci Behav Physiol., 36(9):969−85.
  29. P., Orsini L., Mancini C., Ferri P., Ciaroni S., Cuppini R. (2004) Learning may reduce neurogenesis in adult rat dentate gyrus. Neurosci Lett., 359(l-2):13−6.
  30. M. (2003) Newborn Neurons Search for Meaning. Science, 299(5603):32−4.
  31. S., Unlu Y.A., Karaoglan A., Tuncdemir M., Dagistanli F.K., Ozturk M., Colak A. (2005) The neuroprotective effects of z-DEVD-fmk, a caspase-3 inhibitor, on traumatic spinal cord injury in rats. Surg Neurol., 64(3):213−20.
  32. P.J., Bedard A., Vinet J., Levesque M., Parent A. (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc. Natl. Acad. Sci. USA, 99(17): 11 464−11 469.
  33. N., Cheng K., Roder J.C., Wang Y.T., Hayden M.R. (2007) NMDA receptor function and NMDA receptor-dependent phosphorylation of huntingtin is altered by the endocytic protein HIP1. J. Neurosci., 27(9):2298−308.
  34. N.I., Onufriev M.V., Stepanichev M.Y., Ierusalimsky V.N., Balaban P.M., Gulyaeva N.V. (2006) Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix. Eur. J. Neurosci. 23(l):129−40.
  35. J., Naughton J., Rolls M.M., Zingler K., Young J.A. (1996) CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell., 87(5):845−55.
  36. Bruel-Jungerman E., Laroche S., Rampon C. (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur. J. Neurosci., 21(2):513−21.
  37. C., Cecconi F., Dessen P., Kroemer G. (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J. Cell. Sci., 115(24):4727−34.
  38. Т., Peterson D.A. (2005) Cytoarchitecture of fibroblast growth factor receptor 2 (FGFR-2) immunoreactivity in astrocytes of neurogenic and non-neurogemic regions of young adult and aged rat brain. Neuroscience, 136(2):579−91.
  39. R.A., Potenza M.N., Hoffman R.E., Miranker W. (2004) Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology, 29(4):747−58.
  40. S.L., Mattson M.P. (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res. 58(1): 167−90.
  41. Cheng H.-Y., Clayton D.F. (2004) Activation and Habituation of Extracellular Signal-Regulated Kinase Phosphorylation in Zebra Finch Auditory Forebrain during Song Presentation. The Journal of Neuroscience, 24(34):7503−7513.
  42. A.M., Dixit V.M. (1996) The cell-death machine. Curr Biol., 6:555−562.
  43. Clements K.M., Burton-Wurster N., Nuttall M.E., Lust G. (2005) Caspase-3/7 inhibition alters cell morphology in mitomycin-C treated chondrocytes. J. Cell Physiol., 205(1): 133−40.
  44. G.M. (1997) Caspases: the executioners of apoptosis. Biochem J., 326(1): 1−16.
  45. Concha N.O., Abdel-Meguid S.S. (2002) Controlling apoptosis by inhibition of caspases. Curr. Med. Chem., 9(6):713−26.
  46. K., Blum S., Moore A.N. (2000) Caspase activity plays an essential role in long-term memory. NeuroReport, 11:2811−2816.
  47. Del Rio L.A., Pastori G.M., Palma J.M., Sandalio L.M., Sevilla F., Corpas F.J., Jimenez A., Lopez-Huertas E., Hernandez J.A. (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol., 116:1195−1200.
  48. Z., Mbita Z., Zungu M. (2004) Genealogy, expression, and molecular mechanisms in apoptosis. Pharmacol. Ther. 101(1):1−15.
  49. M., Sakahira H., Yokoyama H., Okawa K., Iwamatsu A., Nagata S. (1998) A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD. Nature, 391:43−50.
  50. Fan T.J., Han L.H., Cong R.S., Liang J. (2004) Caspase family proteases and apoptosis. Acta. Biochim. Biophys. Sin. (Shanghai), 37(ll):719−27.
  51. Fanselow M.S., DeCola J.P., Young S.L. (1993) Mechanisms responsible for reduced contextual conditioning with massed unsignaled unconditional stimuli. J. Exp. Psychol. Anim. Behav. Process, 19(2): 121−37.
  52. A., Bethke P.C., Jones R.L. (1999) Barley aleurone cell death is not ap opto tic: characterization of nuclease activities and DNA degradation. Plant J., 20:305−315.
  53. Font E., Desfilis E., P6rez-Canellas M.M., Garcfa-Verdugo J.M. (2001) Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav. Evol., 58(5):276−95.
  54. H. (1997) Tracheary Element Differentiation. Plant Cell., 9:11 471 156.
  55. Gavrieli Y., Sherman Y., Ben-Sasson S.A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol., 119(3):493−501.
  56. C., Fister M., Hudson C., Bickford P.C. (2005) Improvement of memory for context by inhibition of caspase-1 in aged rats. Eur. J. Neurosci. 22(7): 1751−6.
  57. S.A., (1998) Adult neurogenesis: from canaries to the clinic. J. Neurobiol., 36(2):267−86.
  58. S.A., Nottebohm F. (1983) Neuronal production. Migration and differentiation in a vocal control nucleus of the adult famale canary brain. Proc. Natl. Acad. Sci. USA, 80(8):2390−2394.
  59. E., Beylin A., Tanapat P., Reeves A., Shors T.J. (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci., 2(3):260−5.
  60. E., Reeves A.J., Graziano M.S., Gross C.G. (1999) Neurogenesis in the neocortex of adult primates. Science, 286(5439):548−52.
  61. E. (1999) Serotonin and hippocampal neurogenesis. Neuropsychopharmacology, 21 (2):46S-51S.
  62. E., Gross C.G. (2002) Neurogenesis in adult mammals: some progress and problems. J. Neurosci., 22(3):619−623.
  63. Grahame J., Coleman C.C.A., Bernard Ora Bernard. (1999) Bcl-2 transgenic mice with increased number of neurons have a greater learning capacity. Brain Research, 832:188−194.
  64. D.R., Beere H.M. (2001) Apoptosis. Mostly dead. Nature, 412:133 135.
  65. D.R., Reed J.C. (1998) Mitochondria and Apoptosis. Science, 281:1309−1312.
  66. J.T. (1997) Programmed cell death in plant-pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:525−545.
  67. P., Rossi F. (2006) Lack of neurogenesis in the adult rat cerebellum after Purkinje cell degeneration and growth factor infusion. Eur. J. Neurosci., 23(10):2657−68.
  68. Groover A., DeWitt H., Jones A. (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma, 196:197−211.
  69. Gross A., McDonnell J.M., Korsmeyer S.J. (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev., 13(15): 1899−911.
  70. He C.-J., Morgan P.W., Drew M.C. (1996) Transduction of an Ethylene Signal Is Required for Cell Death and Lysis in the Root Cortex of Maize during Aerenchyma Formation Induced by Hypoxia. Plant Physiol., 112:463 472.
  71. M.C. (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur. J. Plant Physiol., 104:117−124.
  72. M.O. (2000) The biochemistry of apoptosis. Nature, 407:770−776.
  73. M.O., Horvitz H.R. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell, 76(4):665−76.
  74. D.M. (1995) bcl-2, a novel regulator of cell death. Bioessays., 17(7):631−8.
  75. G.R., Clayton D.F. (2006) Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron., 52(6): 1061−72.
  76. Ito. M. (2001) Cerebellar Long-Term Depression: Characterization, Signal Transduction, and Functional Roles. Physiologycal. reveiws., 81(3): 11 431 195.
  77. M.D., Weil M., Raff M.C., (1997) Programmed cell death in animal development. Cell. 88(3):347−54.
  78. Kariagina A., Romanenko D., Ren S.G., Chesnokova V., (2004) Hypothalamic-pituitary cytokine network. Endocrinology, 145(1): 104−112.
  79. G., Becker A., Grecksch G., Bernstein H.G., Wolf G. (2006) Cell proliferation is influenced by bulbectomy and normalized by imipramine treatment in a region-specific manner. Neuropsychopharmacology, 31(6): 1165−76.
  80. Kempermann G., van Praag H., Gage F.H. (2000) Activity-dependent regulation of neuronal plasticity and self repair. Prog. Brain Res., 127:35−48.
  81. Kerr J.F.R., Wyllie A.H., Currie A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit. J. Cancer, 26:239−257.
  82. S., Shiraishi Т., Nakagawa S., Toda K., Tabuchi K. (1994) Visualization of DNA double strand breaks in the gerbil hippocampal CA1 following transient ischemia. Neurosci. Lett., 175(1−2): 133−6.
  83. D., Mikami A., Miyamoto Y., Hisatsune T. (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J. Neurosci., 23(3):937−42.
  84. I.E., Onufriev M.V., Kudryashova I.V., Gulyaeva N.V. (2001) Periods of postnatal maturation of hippocampus: synaptic modifications and neuronal disconnection. Dev. Brain. Res., 132:113−120.
  85. I.V., Kudryashov I.E., Gulyaeva N.V. (2006) Long-term potentiation in the hippocampus in conditions of inhibition of caspase-3: analysis of facilitation in paired-pulse stimulation. Neurosci. Behav. Physiol., 36(8):817−24.
  86. A.M., Ottaviani G., Terni L., Matturri L. (2006) Histological and biological developmental characterization of the human cerebellar cortex. Int. J. Dev. Neurosci., 24(6):365−71.
  87. LeBlanc A.C. (2003) Natural cellular inhibitors of caspases. Prog. Neuropsychopharmacol. Biol. Psychiatry., 27(2):215−29.
  88. LeDoux J.E., Iwata J., Cicchetti P., Reis D.J.J (1998) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. Neurosci., 8(7):2517−29.
  89. M., Single В., Castoldi A.F., Kuhnle S., Nicotera P. (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med., 185:1481−1486.
  90. В., Gould E., Shors TJ. (2006) Is there a link between adult neurogenesis and learning? Hippocampus. 16(3):216−24.
  91. A., Pennell I., Alvarez M.E., Palmer R., Lamb C. (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol., 6:427−437.
  92. Liu S.Z., Mao J.F., Wen D., Tan X.P., Fu C.Y. (2005) The treatment of retinal apoptosis by Caspase-3 inhibitor Ac-DEVD-CHO in experimental myopia. Zhonghua. Yan. Ke. Za. Zhi., 41(5):428−33.
  93. D.H., Parent J.M. (1999) Brain, heal thyself. Science, 283:11 261 127.
  94. Luzzati F., De Marchis S., Fasolo A., Paretto P. (2006) Neurogenesis in the caudate nucleus of the adult rabbit. J. Neurosci., 26(2):609−621.
  95. MacManus J.P., Linnik M.D. (1997) Gene expression induced by cerebral ischemia: an apoptotic perspective. J. Cereb. Blood Flow. Metab., 17(8):815−32.
  96. D., Cooke A., Owen M., Trowsdale J., Champion B. (1996) Antigen receptor molecules. Advanced Immunology, 2.1−2.2.
  97. E., Tucker A.S., Sharpe P.T. (2004) Death in the life of a tooth. J. Dent Res., 83(1): 11−6.
  98. M.P., Keller J.N., Begley J.G. (1998) Evidence for synaptic apoptosis. Exp. Neurol., 153:35−48.
  99. M.P., Duan W. (1999) Apoptotic" biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J. Neurosci. Res., 58(1): 152−66.
  100. Metzler M., Gan L., Wong T.P., Liu L., Helm J., Georgiou J., Wang Y. (2007) NMDA receptor function and NMDA receptor-dependent phosphorylation of huntingtin is altered by the endocytic protein HIP1. J. Neurosci., 27(9):2298−308.
  101. Mohapel P., Mundt-Petersen K., Brundin P., Frielingsdorf H. (2006) Working memory training decreases hippocampal neurogenesis. Neuroscience, 142(3): 609−613.
  102. R., Uehara Т., Nomura Y. (2000) Mechanism of nitric oxide-induced apoptosis in human neuroblastoma SH-SY5Y cells. FEBS Lett., 484(3):253−60.
  103. S. (1997) Apoptosis mediated by Fas and its related diseases. Nippon Ika Daigaku Zasshi, 64(5):459−62.
  104. S. (2000) Apoptotic DNA fragmentation. Exp. Cell Res., 256(1): 12−8.
  105. Nakagawa Т., Zhu H., Morishima N., Li E., Xu J., Yankner B.A., Yuan J. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 403:98−103.
  106. S., Nissinen J., Pitkanen A. (2003) Administration of caspase 3 inhibitor during and after status epilepticus in rat: effect on neuronal damage and epileptogenesis. Neuropharmacology, 44(8): 1068−88.
  107. Ng P.C., Lam C.W., Li A.M., Wong C.K., Cheng F.W., Leung T.F. (2004) Inflammatory cytokine profile in children witch severe acute respiratory syndrome. Pediatrics, 113(1−1):7−14.
  108. D.W. (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ., 6:1028−1042.
  109. P., Leist M. (1997) Energy supply and the shape of death in neurons and lymphoid cells. Cell Death Differ., 4:435−442.
  110. F. (2002) Why are some neurons replaced in adult brain? J. Neurosci., 22(3):624−628.
  111. Nunez G., Benedict M.A., Hu Y., Inohara N. (1998) Caspases: the proteases of the apoptotic pathway. Oncogene, 17:3237−3245.
  112. Oliver F.J., Menissier-de Murcia J., de Murcia G. (1999) Poly (ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am. J. Hum. Genet., 64:1282−1288.
  113. B. (2004) Natural and synthetic inhibitors of caspases: targets for novel drugs. Curr. Drug. Targets CNS Neurol. Disord., 3(4):333−40.
  114. Pan G., O’Rourke K., Chinnaiyan A.M., Gentz R., Ebner R., Ni J., Dixit V.M. (1997) The receptor for the cytotoxic ligand TRAIL. Science, 276(5309): 1113.
  115. Paxinos Watson. (1984) Rat brain in stereotaxic coordinates. Academic Press, 438.
  116. R.I., Lamb C. (1997) Programmed Cell Death in Plants. Plant Cell, 9:1157−1168.
  117. M.V., Storozheva Z.I., Sherstnev V.V. (1996) Relationship between memory and fear: Developmental and pharmacological studies. Pharmac. Biochem. and Behavior, 54(l):93−8.
  118. G., Peretto P., Bonfanti L. (2006) A subpial, transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum. Dev. Biol., 294(l):168−80.
  119. Pop C., Timmer J., Sperandio S., Salvesen G.S. (2006) The apoptosome activates caspase-9 by dimerization. Mol. Cell, 22(2):269−75.
  120. F.R., Meyer M., Rasmussen J.Z. (2003) Generation of new nerve cells in the adult human brain. Ugeskr. Laeger., 165(14): 1443−7.
  121. J., Koopmans G., Blokland A., Scheepens A. (2004) Neurobiol. Learn. Mem. 81(1): 1−11.
  122. M., Stennicke H.R., Scott F.L., Liddington R.C., Salvesen G.S. (2001) Dimer formation drives the activation of the cell death protease caspase-9. Proc. Natl. Acad. Sci. USA, 98(25): 14 250−5.
  123. Riedl S.J., FuentesPrior P., Renatus M., Kairies N., Krapp S., Huber R., Salvesen G.S., Bode W. (2001) Structural basis for the activation of human procaspase-7. Proc. Natl. Acad. Sci. USA, 98:14 790−14 795.
  124. M., Friedlander M.D. (2003) Apoptosis and Caspases in Neurodegenerative Diseases. N. Engl. J. Med., 348:1365−1375.
  125. E., Reed J. (1999) New way to activate caspases. Nature, 397:479 480.
  126. В., Scelfo В., Strata P. (2005) The cerebellum: synaptic changes and fear conditioning. Neuroscientist., 11(3):217−27.
  127. G.S., (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ., 9:3−5.
  128. M.J., Wiltgen B.J., Fanselow M.S. (2003) The place of the hippocampus in fear conditioning. Eur. J. Pharmacol., 463(1−3):217−23.
  129. Saxe M.D., Malleret G., Vronskaya S., Mendez I., Garcia A.D., Sofroniew M.V., Kandel E.R., Hen R. (2007) Paradoxical influence of hippocampal neurogenesis on working memory. Proc. Natl. Acad. Sci. USA, 104(11): 4642−2626.
  130. V.V. (2004) The role of cellular development and cell death in neurochemical organization and integrative brain functions—normal and pathological. Med. Pregl., 57(3−4): 120−4.
  131. Sherstnev V.V., Yurasov V.V., Storozheva Z.I., Gruden' M.A., Yakovleva N.E. (2006) Biochemical markers of apoptosis in different parts of the brain during learning. Neurosci. Behav. Physiol., 36(9):915−9.
  132. Shi Y. (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell, 9:45970.
  133. S., Tanino H., Fujimoto S. (2001) Differential expression of rat brain caspase family proteins during development and aging. Biochem. Biophys. Res. Commun., 289:1063−1066.
  134. S., Tanino H., Fujimoto S. (2001) Differential subcellular localization of caspase family proteins in the adult rat brain. Neurosci. Lett., 315:125−128.
  135. T.J., Miesegaes G., Beylin A., Zhao M., Rydel Т., Gould E. (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410(6826):314−5.
  136. Simon W., Day C.L., Hinds M.G., Huang D.C.S., (2003) The Bcl-2-regulated apoptotic pathway. J. of Cell Science, 16:4053−4056.
  137. Soutschek J., Zupanc G. K, (1996) Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Brain Res. Dev. Brain Res. 23−97(2):279−86.
  138. Squier M.K.T., Miller A.C.K., Malkinson A.M., Cohen J.J. (1994) Calpain activation in apoptosis. J. Cell. Physiol., 159:229−237.
  139. H. (1995) Mechanisms and genes of cellular suicide. Science, 267(5203): 1445−9.
  140. M.YU., Kudryashova I.V., Yakovlev A.A. (2005) Central administration of a caspase inhibitor impairs shuttle-box performance in rats. Neuroscience, 136:579−591.
  141. Z.I., Pletnicov M.V. (1994) Habituation of acoustic startle in rats -a functional ablation study. NeuroReport, 5:2065−9.
  142. Supple W.F.J, Cranney J., Leaton R. (1988) Effects of lesions of cere-bellar vermis on VMH lesion-induced hyperdefensiveness, spontaneous mouse killing and fgeezing in rats. Physiol. Behavior, 42(2): 145−153.
  143. A., Musy P.Y., Martins L.M., Poirier G.G., Moyer R.W., Earnshaw W.C., (1996) CrmA/SPI-2 inhibition of an endogenous ICE-related protease responsible for lamin A cleavage and apoptotic nuclear fragmentation. J. Biol. Chem. 271(51):32 487−90.
  144. L.A., Ayres T.M., Wong G.H., Goeddel D.V. (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell, 74(5):845−53.
  145. J.C., Salvesen G.S. (2007) Caspase substrates. Cell Death and differ., 14:66−72.
  146. M., Nagano I., Nakamura S., Itoyama Y., Kogure K. (1995) DNA single-stxand breaks in postischemic gerbil brain detected by in situ nick translation procedure. Neurosci. Lett., 200(2):129−32.
  147. L.D., Shapiro J.P., Cope F.O. (1993) Apoptosis in C3H/10T½ mouse embryonic cells: evidence for internucleosomal DNA modification in the absence of double-strand cleavage. Proc. Natl. Acad. Sci. USA, 90(3):853−7.
  148. C.M., Salvesen G.S. (2002) Caspases on the brain. J. Neurosci. Res., 69:145−150.
  149. Y. (1997) Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ., 4:429−434.
  150. Van Praag H., Kempermann G., Gage F.H. (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2(3):266−270.
  151. Walczak H., Degli-Esposti M.A., Johnson R.S., Smolak P.J., Waugh J.Y., Boiani N., Timour M.S., Gerhart M.J., Schooley K.A., Smith C.A., Goodwin R.G., Rauch C.T. (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J. 16(17):5386−97.
  152. E.C., Kitson J., Thern A., Williamson J., Farrow S.N., Owen M.J. (2001) Genomic structure, expression, and chromosome mapping of the mouse homologue for the WSL-1 (DR3, АроЗ, TRAMP, LARD, TR3, TNFRSF12) gene. Immunogenetics, 53(l):59−63.
  153. M., Jacobson M.D., Raff M.C., (1997) Is programmed cell death required for neural tube closure? Curr. Biol., 7(4):281−4.
  154. Winner В., Cooper-Kuhn C.M., Aigner R., Winkler J., Kuhn H.G. (2002) Long-term survival and cell death of newly generated neurons in the adult rat. Eur. J. Neurosci., 16(9): 1681−9.
  155. P. (1997) Oxidative burst: an early plant response to pathogen infection. Biochem. J., 322:681−692.
  156. B.B., Schuler M., Echeverri F., Green D.R. (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J. Biol. Chem., 274(43):30 651−6.
  157. B.B., Green D.R. (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem., 274(29):20 049−52.
  158. Wu D., Chen P.J., Chen S., Hu Y., Nunez G., Ellis R.E. (1999) C. elegans MAC-1, an essential member of the AAA family of ATPases, can bind CED-4 and prevent cell death. Development, 126:2021−2031.
  159. A.H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 284(5756):555−6.
  160. Т., Tonchev A.B., Yukie M. (2007) Adult hippocampal neurogenesis in rodents and primates: endogenous, enhanced, and engrafted. Rev Neurosci., 18(l):67−82.
  161. Yan X.X., Najbauer J., Woo C.C., Dashtipour K., Ribak C.E., Leon M. (2001) Expression of active caspase-3 in mitotic and postmitotic cells of the rat forebrain. J. Сотр. Neurol., 433(l):4−22.
  162. J., Yankner B.A. (2000) Apoptosis in the nervous system. Nature, 407(6805):802−9.
  163. Zhang Y., Center D.M., Wu D.M., Cruikshank W.W., Yuan J., Andrews D.W., Kornfeld H. (1998) Processing and activation of pro-interleukin-16 by caspase-3. Processing and activation of pro-interleukin-16 by caspase-3. J. Biol. Chem., 273(2): 1144−9.
  164. Q., Salvesen G.S. (1997) Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Biochem. J., 324:361−364.
  165. G.K. (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J. Exp. Biol., 202(10): 1435−46.
  166. G.K. (2006) Neurogenesis and neuronal regeneration in the adult fish brain. J. Сотр. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol., 192(6):649−70.
Заполнить форму текущей работой