Помощь в написании студенческих работ
Антистрессовый сервис

Получение искусственных биокатализаторов на основе антител, способных осуществлять «ковалентный катализ»

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Особого внимания в современной абзимологии, имеющей как чисто фундаментальные, так и прикладные задачи, заслуживают реакции, субстратами которых являются биополимеры. Биокатализаторы иммуноглобулиновой природы могут быть применены для терапии различных заболеваний. Среди потенциальных мишеней каталитических антител можно назвать поверхностные белки вирионов, цитокины, различные патогены белковой… Читать ещё >

Получение искусственных биокатализаторов на основе антител, способных осуществлять «ковалентный катализ» (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ВВЕДЕНИЕ
  • 2. ОБЗОР ЛИТЕРАТУРЫ
    • 2. 1. Искусственные ферменты
      • 2. 1. 1. Искусственные ферменты на основе циклодекстринов
      • 2. 1. 2. Синтетические полимеры с фермент-подобной каталитической активностью
      • 2. 1. 3. Инженерия ферментов
      • 2. 1. 4. Целенаправленное изменение ферментов
      • 2. 1. 5. Метод фагового дисплея как инструмент для целенаправленного изменения ферментов
    • 1. 1. Каталитические антитела
      • 2. 2. 1. Антитела на аналоги переходных состояний
      • 2. 2. 2. Абзимы, содержащие кофакторы
      • 2. 2. 3. Введение каталитических аминокислотных остатков в связывающий центр антитела путем химической модификации или сайт-направленного мутагенеза
      • 2. 2. 4. Реакционная иммунизации
      • 2. 2. 5. Природные каталитические антитела
      • 2. 2. 6. Природные протеолитические антитела
      • 2. 2. 7. Каталитические антиидиотипические антитела
  • 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. Индукция эпитоп-специфического каталитического ответа методом «реакционной иммунизации»
    • 3. 2. Реакционная селекция антител из синтетической библиотеки генов иммуноглобулинов человека
  • 4. МАТЕРИАЛЫ И МЕТОДЫ
    • 4. 1. Химические реактивы и материалы
    • 4. 2. Методы

Сложные химические превращения, регулирующие жизненно важные процессы, в большинстве своем являются каталитическими и происходят при участии высокоспецифичных и эффективных биокатализаторов-ферментов. «Ковалентный катализ» является одним из основополагающих механизмов, обеспечивающих уникальные свойства ферментов как наиболее эффективных биокатализаторов. Разработка путей создания искусственных ферментов, способных осуществлять ковалентный катализ, является актуальной задачей энзимологии, биохимии и молекулярной биологии. Решение такой задачи может помочь понять пути эволюции биокаталитических функций. Создание искусственных биокатализаторов может найти также практическое применение в фармацевтике и биотехнологии. Стратегии их получения в последнее время расширились до функциональной селекции комбинаторных библиотек диверсифицированных белковых доменов. Лиганды, способные взаимодействовать с активным центром ферментов, в том числе аналоги переходных состояний реакции, конформационные ингибиторы и суицидальные субстраты/ ингибиторы, были использованы для аффинного и ковалентного отбора функциональных молекул ферментов. Способность ферментов образовывать ковалентные комплексы с механизм-зависимыми ингибиторами позволяет проводить их отбор посредством нуклеофильных остатков, принимающих непосредственное участие в «ковалентном катализе». Эффективная дискриминация на основании такой функциональной реакционной способности имеет широкое применение для идентификации и селекции потенциальных биокатализаторов.

В ряду каталитически активных молекул особое место занимают рибозимыкаталитические РНК, и абзимы — каталитические антитела. Антитела представляют собой белковые молекулы, способные взаимодействовать с высокой специфичностью практически со всеми природными или синтетическими антигенами. Разнообразие антител, в отличие от ферментов, практически не лимитировано. Высокая вариабельность и специфичность антител делает их идеальными матрицами для создания искусственных биокатализаторов. Каталитические антитела представляют интерес как с точки зрения исследования структурно-функциональных закономерностей, обуславливающих их каталитическую функцию, так и с позиций изучения механизма биокатализа, в частности анализа кинетических закономерностей рассматриваемых превращений. Структурно-функциональный анализ искусственных биокатализаторов на основе антител может обеспечить пути познания «эволюционно совершенного» биокатализатора. Направленный дизайн каталитических антител поможет создать методологию получения биокатализаторов заданной специфичности. В настоящее время имеются широкие возможности для получения биокатализаторов de novo, основываясь на свойстве гипервариабильности суперсемейства иммуноглобулинов. С помощью каталитических антител (абзимов) удалось осуществить биокаталитические превращения, для которых нет соответствующих ферментативных аналогов. Следует заметить, что значительный прогресс, достигнутый в абзимологии за столь короткий срок, указывает на огромные практические возможности этой области науки. Однако эффективный катализ антителами реакций, проходящих через образование высокоэнергетических переходных состояний и достигаемый ферментами с помощью сложного комплекса механизмов, в настоящий момент до конца не реализован. Зачастую абзимы характеризуются невысокими скоростями катализируемых реакций. В настоящий момент представляется очевидным, что катализ путем стабилизации переходного состояния реакции может обеспечить лишь умеренный уровень ускорения реакции. В то же время, при катализе реакций природными ферментами обнаруживаются дополнительные механизмы, такие как дестабилизация исходного субстрата, сближение каталитически активных групп и атакуемой химической связи в активном центре, динамика активного центра и ряд других. Направленное получение абзимов, обладающих несколькими свойствами ферментов, является сложной задачей и требует комбинированных подходов в получении каталитически активных молекул. В связи с этим особый интерес вызывает развитие новых методологий в получении абзимов. Количество реакций, катализируемых антителами, равно как и методик их получения, неуклонно растет. Современная абзимология опирается на синтез разнообразных аналогов переходных состояний реакций, введение кофакторов и каталитических групп в уже существующие антитела, сайт-направленный мутагенез. Большинство известных каталитических антител было получено данными методами, однако, развиваются и альтернативные подходы — получение антиидиотипических антител, реакционная иммунизация, поиск и клонирование природных каталитических антител, а так же различные методологии скринига и селекции каталитических молекул из комбинаторных библиотек.

Особого внимания в современной абзимологии, имеющей как чисто фундаментальные, так и прикладные задачи, заслуживают реакции, субстратами которых являются биополимеры. Биокатализаторы иммуноглобулиновой природы могут быть применены для терапии различных заболеваний. Среди потенциальных мишеней каталитических антител можно назвать поверхностные белки вирионов, цитокины, различные патогены белковой природы. Терапевтические средства на основе каталитических антител могут обладать рядом важных преимуществ, среди которых высокая специфичность связывания мишени и возможность длительного существования в кровотоке.

Кроме того, антитела, способные ковалентно взаимодействовать с токсичными фосфорорганическими соединениями, могут выступать в качестве специфических «каталитических акцепторов» или «ловушек» для фосфорорганических соединенийотравляющих веществ (ОВ), и их аналогов. В течение многих лет предпринимаются попытки получить эффективные антидоты к этим отравляющим веществам. В их качестве может выступать ацетилхолинэстераза, однако гораздо эффективнее представляется использование антител, имитирующих способность фермента являться специфическими акцепторами этих соединений. Свойства антител делают их идеальным инструментом для дизайна диагностических агентов нового поколения, основанных на технологии рекомбинантной ДНК.

2. ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. Показана принципиальная возможность получения методом реакционной иммунизации каталитических антител, способных специфично ковалентно взаимодействовать с пептидил дифенил фосфонатом.

2. В результате реакционной селекции фаг-дисплейной библиотеки получены рекомбинантные антитела, способные осуществлять «ковалентный катализ» .

3. Проведен структурно-функциональный анализ полученных рекомбинантных антител. Показано, что для ковалентного взаимодействия с реакционным фосфонатом необходимо наличие VII и VH4 семейств зародышевых линий легкой и тяжелой цепей антител соответственно.

4. Методом масс-спектрометрии определены аминокислотные остатки, проявляющие нуклеофильные свойства при ковалентном катализе. Показана роль данных остатков в ковалентном катализе при помощи сайт направленного мутагенеза.

5. Исследована кинетика модификации одноцепочечных антител реакционным фосфонатом. Оценены кинетические параметры реакции амидолиза, катализируемой антителом А.17.

Показать весь текст

Список литературы

  1. Breslow, R.e., Artificial Enzymes. 2005: WILEY-VCH Verlag GmbH& Co.KGaA. 1−31.
  2. Gouverneur, V.E., et al., Control of the exo and endo pathways of the Diels-Alder reaction by antibody catalysis. Science, 1993.262(5131): p. 204−8.
  3. Ulrich, H.D., E.M. Driggers, and P.G. Schultz, Antibody catalysis of pericyclic reactions. Acta Chem Scand, 1996.50(4): p. 328−32.
  4. Breslow R., E.K., A g-Cyclodextrin Thiazolium Salt Holoenzyme Mimic for the Benzoin Condensation. Tetrahedron Lett., 1988.29: p. 1635−1638.
  5. Hilvert D., R.B., Functionalized Cyclodextrins as Holoenzyme Mimics of Thiamine-Dependent Enzymes. Bioorganic Chemistry, 1984.12: p. 206−220.
  6. Breslow, R., Artificial enzymes. Science, 1982. 218(4572): p. 532−7.
  7. Emert J., R.B., Modification of the Cavity ofBeta-Cyclodextrin by Flexible Capping. J. Am. Chem. Soc., 1975.97(3): p. 670−671.8.. Czarniecki M.F., В., Very Fast Acylation of Beta-Cyclodextrin by Bound p-Nitrophenyl
  8. Ferrocinnamate. J. Am. Chem. Soc., 1978.100(24): p. 7771−7772.
  9. Breslow R., O.L.E., An 'Artificial Enzyme' Combining a Metal Catalytic Group and a Hydrophobic Binding Cavity. J. Am. Chem. Soc., 1970.92(4): p. 1075−1077.
  10. Koltz, I.M., Suh, J., Artificial Enzymes, ed. R. Breslow. 2005: WILEY-VCH Verlag GmbH& Co.KGaA. 63−88.
  11. Klotz, I.M., G.P. Royer, and A.R. Sloniewsky, Macromolecule—small molecule interactions. Strong binding and cooperativity in a model synthetic polymer. Biochemistry, 1969.8(12): p. 4752−6.
  12. Royer, G.P., Klotz, I.M., Enhanced rates due to apolar interactions between polymer and substrate. J. Am. Chem. Soc., 1969.91(21): p. 5885−5886.
  13. Suh, J., Hah, S. S., Organic Artificial Proteinase with Active Site Comprising Three Salicylate Residues. J. Am. Chem. Soc., 1998.120(39): p. 10 088−10 093.
  14. Socolich, M., et al., Evolutionary information for specifying a protein fold. Nature, 2005. 437(7058): p. 512−8.
  15. Russ, W.P., et al., Natural-like function in artificial WW domains. Nature, 2005. 437(7058): p. 579−83.
  16. Minshull, J., et al., Predicting enzyme function from protein sequence. Curr Opin Chem Biol, 2005.9(2): p. 202−9.
  17. Russ, W.P. and R. Ranganathan, Knowledge-based potentialfunctions in protein design. Curr Opin Struct Biol, 2002.12(4): p. 447−52.
  18. Schultz, P.G., J. Yin, and R.A. Lerner, The chemistry of the antibody molecule. Angew Chem Int Ed Engl, 2002.41(23): p. 4427−37.
  19. Fletcher, M.C., et al., Creation of a ribonuclease abzyme through site-directed mutagenesis. Nat Biotechnol, 1998.16(11): p. 1065−7.
  20. Altamirano, M.M., et al., Directed evolution of new catalytic activity using the alpha/ beta-barrel scaffold. Nature, 2000.403(6770): p. 617−22.
  21. Quemeneur, E., et al., Engineering cyclophilin into a proline-specific endopeptidase. Nature, 1998.391(6664): p. 301−4.
  22. Bolon, D.N. and S.L. Mayo, Enzyme-like proteins by computational design. Proc Natl Acad Sci U S A, 2001. 98(25): p. 14 274−9.
  23. Dwyer, M.A., L.L. Looger, and H.W. Hellinga, Computational design of a biologically active enzyme. Science, 2004.304(5679): p. 1967−71.
  24. Looger, L.L., et al., Computational design of receptor and sensor proteins with novel functions. Nature, 2003.423(6936): p. 185−90.
  25. Aharoni, A., A.D. Griffiths, and D.S. Tawfik, High-throughput screens and selections of enzyme-encoding genes. Curr Opin Chem Biol, 2005. 9(2): p. 210−6.
  26. Fernandez-Gacio, A., M. Uguen, and J. Fastrez, Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol, 2003.21(9): p. 408−14.
  27. Kaur, J. and R. Sharma, Directed evolution: an approach to engineer enzymes. Crit Rev Biotechnol, 2006.26(3): p. 165−99.
  28. Wong, T.S., D. Zhurina, and U. Schwaneberg, The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen, 2006.9(4): p. 271−88.
  29. Chen, W. and G. Georgiou, Cell-Surface display of heterologous proteins: From high-throughput screening to environmental applications. Biotechnol Bioeng, 2002. 79(5): p. 496−503.
  30. Lee, S.Y., J.H. Choi, and Z. Xu, Microbial cell-surface display. Trends Biotechnol, 2003. 21(1): p. 45−52.
  31. Kawarasaki, Y., et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res, 2003.31(21): p. el26.
  32. Freeman, A., et al., Screening of large protein libraries by the cell immobilized on adsorbed bead approach. Biotechnol Bioeng, 2004. 86(2): p. 196−200.
  33. Tawfik, D.S. and A.D. Griffiths, Man-made cell-like compartments for molecular evolution. Nat Biotechnol, 1998.16(7): p. 652−6.
  34. Varadarajan, N., et al., Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity. Proc Natl Acad Sci USA, 2005.102(19): p. 6855−60.
  35. Hoess, R.H., Protein design and phage display. Chem Rev, 2001.101(10): p. 3205−18.
  36. Smith, G.P. and V.A. Petrenko, Phage Display. ChemRev, 1997.97(2):p. 391−410.
  37. Winter, G., et al., Making antibodies by phage display technology. Annu Rev Immunol, 1994.12: p. 433−55.
  38. Smith, G.P., Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985. 228(4705): p. 1315−7.
  39. Widersten, M., et al., Use of phage display and transition-state analogs to select enzyme variants with altered catalytic properties: glutathione transferase as an example. Methods Enzymol, 2000. 328: p. 389−404.
  40. Widersten, M. and B. Mannervik, Glutathione transferases with novel active sites isolated by phage display from a library of random mutants. J Mol Biol, 1995. 250(2): p. 115−22.
  41. Hansson, L.O., M. Widersten, and B. Mannervik, Mechanism-based phage display selection of active-site mutants of human glutathione transferase Al-1 catalyzing SNAr reactions. Biochemistry, 1997.36(37): p. 11 252−60.
  42. Hansson, L.O., M. Widersten, and B. Mannervik, An approach to optimizing the active site in a glutathione transferase by evolution in vitro. Biochem J, 1999.344 Pt 1: p. 93 100.
  43. Baca, M., et al., Phage display of a catalytic antibody to optimize affinity for transition-state analog binding. Proc Natl Acad Sci USA, 1997. 94(19): p. 10 063−8.
  44. Takahashi, N., et al., In vitro abzyme evolution to optimize antibody recognition for catalysis. Nat Biotechnol, 2001.19(6): p. 563−7.
  45. Soumillion, P., et al., Phage display of enzymes and in vitro selection for catalytic activity. Appl Biochem Biotechnol, 1994.47(2−3): p. 175−89- discussion 189−90.
  46. Soumillion, P., et al., Selection ofbeta-lactamase on filamentous bacteriophage by catalytic activity. J Mol Biol, 1994. 237(4): p. 415−22.
  47. Vanwetswinkel, S., B. Avalle, and J. Fastrez, Selection ofbeta-lactamases and penicillin binding mutants from a library ofphage displayed TEM-1 beta-lactamase randomly mutated in the active site omega-loop. J Mol Biol, 2000. 295(3): p. 527−40.
  48. Danielsen, S., et al., In vitro selection of enzymatically active lipase variants from phage libraries using a mechanism-based inhibitor. Gene, 2001. 272(1−2): p. 267−74.
  49. Paul, S., et al., Phosphonate ester probes for proteolytic antibodies. J Biol Chem, 2001. 276(30): p. 28 314−20.
  50. Cesaro-Tadic, S., et al., Turnover-based in vitro selection and evolution of biocatalysts from a fully synthetic antibody library. Nat Biotechnol, 2003. 21(6): p. 679−85.
  51. Yin, J., J.H. Mills, and P.G. Schultz, A catalysis-based selection for peroxidase antibodies with increased activity. J Am Chem Soc, 2004.126(10): p. 3006−7.
  52. Pedersen, H., et al., A methodfor directed evolution andfunctional cloning of enzymes. Proc Natl Acad Sci USA, 1998.95(18): p. 10 523−8.
  53. Demartis, S., et al., A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. J Mol Biol, 1999.286(2): p. 617−33.
  54. Heinis, C., et al., Selection of catalytically active biotin ligase and trypsin mutants by phage display. Protein Eng, 2001.14(12): p. 1043−52.
  55. Atwell, S. and J. A. Wells, Selection for improved subtiligases by phage display. Proc Natl Acad Sci USA, 1999. 96(17): p. 9497−502.
  56. Brunet, E., et al., A novel strategy for the functional cloning of enzymes using filamentous phage display: the case of nucleotidyl transferases. Nucleic Acids Res, 2002. 30(9): p. e40.
  57. Jestin, J.-L., P. Kristensen, and G. Winter, A Methodfor the Selection of Catalytic Activity Using Phage Display and Proximity Coupling. Angewandte Chemie International Edition, 1999.38(8): p. 1124−1127.
  58. Xia, G., et al., Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc Natl Acad Sci USA, 2002.99(10): p. 6597−602.
  59. Fa, M., et al., Expanding the substrate repertoire of a DNA polymerase by directed evolution. J Am Chem Soc, 2004.126(6): p. 1748−54.
  60. Strobel, H., D. Ladant, and J.L. Jestin, In vitro selection for enzymatic activity: a model study using adenylate cyclase. J Mol Biol, 2003.332(1): p. 1−7.
  61. Ponsard, I., et al., Selection of metalloenzymes by catalytic activity using phage display and catalytic elution. Chembiochem, 2001.2(4): p. 253−9.
  62. Schultz, P.G. and R.A. Lerner, From molecular diversity to catalysis: lessons from the immune system. Science, 1995. 269(5232): p. 1835−42.
  63. Pauling, L., Chem Eng News, 1946.36: p. 1375−77.
  64. Jenks, W.P., Catalysis in Chemistry andEnzymology. New York: McGraw-Hill., 1969.
  65. Tramontano, A., K.D. Janda, and R.A. Lerner, Catalytic antibodies. Science, 1986. 234(4783): p. 1566−70.
  66. Pollack, S.J., J.W. Jacobs, and P.G. Schultz, Selective chemical catalysis by an antibody. Science, 1986.234(4783): p. 1570−3.
  67. Benkovic, S.J., Catalytic antibodies. Annu Rev Biochem, 1992. 61: p. 29−54.
  68. Hilvert, D., Critical analysis of antibody catalysis. Annu Rev Biochem, 2000. 69: p. 751 -93.
  69. Shokat, K.M. and P.G. Schultz, Catalytic antibodies. Annu Rev Immunol, 1990.8: p. 335−63.
  70. Tanaka, F., Catalytic antibodies as designer proteases and esterases. Chem Rev, 2002. 102(12): p. 4885−906.
  71. Charbonnier, J.B., et al., Structural convergence in the active sites of a family of catalytic antibodies. Science, 1997.275(5303): p. 1140−2.
  72. Gigant, В., et al., Crossreactivity, efficiency and catalytic specificity of an esterase-like antibody. J Mol Biol, 1998.284(3): p. 741−50.
  73. Tawfik, D.S., et al., Efficient and selectivep-nitrophenyl-ester-hydrolyzing antibodies elicited by ap-nitrobenzylphosphonate hapten. Eur J Biochem, 1997.244(2): p. 619−26.
  74. Kristensen, 0., et al., A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution. J Mol Biol, 1998.281(3): p. 501−11.
  75. Miyashita, H., et al., Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization. J Mol Biol, 1997.267(5): p. 1247−57.
  76. Miyashita, H., et al., A common ancestry for multiple catalytic antibodies generated against a single transition-state analog. Proc Natl Acad Sci USA, 1994.91(13): p. 6045−9.
  77. Suzuki, H., et al., A catalytic antibody that accelerates the hydrolysis of carbonate esters. Prediction of the binding-site structure of the substrate. J Protein Chem, 1998.17(3): p. 273−8.
  78. Tramontano, A., Ammann, A.A. and Lerner R.A., Antibody catalysis approaching the activity of enzymes. Am. Chem. Soc., 1988.110(7): p. 2282 2286.
  79. Blackburn, G.M., et al., Catalytic antibodies. Biochem J, 1989.262(2): p. 381−90.
  80. Janda, K.D., et al., Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science, 1988.241(4870): p. 1188−91.
  81. Thayer, M.M., et al., Structural basis for amide hydrolysis catalyzed by the 43C9 antibody. J Mol Biol, 1999.291(2): p. 329−45.
  82. Miyashita, H., et al., Prodrug activation via catalytic antibodies. Proc Natl Acad Sci U S A, 1993. 90(11): p. 5337−40.
  83. Landry, D.W., et al., Antibody-catalyzed degradation of cocaine. Science, 1993. 259(5103): p. 1899−901.
  84. Mets, В., et al., A catalytic antibody against cocaine prevents cocaine’s reinforcing and toxic effects in rats. Proc Natl Acad Sci USA, 1998. 95(17): p. 10 176−81.
  85. Janda, K.D., Weinhouse, M.I., Schloeder, D.M., Lerner, R.A. and Benkovic, S.J., Bait and switch strategy for obtaining catalytic antibodies with acyl-transfer capabilities. J. Am. Chem. Soc., 1990.112(3): p. 1274 1275.
  86. Wentworth, P., Jr., et al., A bait and switch hapten strategy generates catalytic antibodies for phosphodiester hydrolysis. Proc Natl Acad Sci USA, 1998.95(11): p. 5971−5.
  87. Iverson, B.L. and R.A. Lerner, Sequence-specific peptide cleavage catalyzed by an antibody. Science, 1989.243(4895): p. 1184−8.
  88. Baldwin, E. and P.G. Schultz, Generation of a catalytic antibody by site-directed mutagenesis. Science, 1989.245(4922): p. 1104−7.
  89. Mahy, J.P., et al., Hemoabzymes. Different strategies for obtaining artificial hemoproteins based on antibodies. Appl Biochem Biotechnol, 1998. 75(1): p. 103−27.
  90. Luo, G.M., et al., Generation of selenium-containing abzyme by using chemical mutation. Biochem Biophys Res Commun, 1994.198(3): p. 1240−7.
  91. Zhu, Z.Q., et al., Some physicochemical and enzymic properties of selenium-containing abzyme. Biochem Biophys Res Commun, 1994.202(3): p. 1645−50.
  92. Ding, L., et al., Biochemical characterization of selenium-containing catalytic antibody as a cytosolic glutathione peroxidase mimic. Biochem J, 1998. 332 (Pt 1): p. 251−5.
  93. Qi, D.H., et al., Protection of myocardial mitochondria against oxidative damage by selenium-containing abzyme m4G3. Appl Biochem Biotechnol, 1999. 82(3): p. 167−73.
  94. Wirsching, P., et al., Reactive immunization. Science, 1995.270(5243): p. 1775−82.
  95. Lerner, R.A. and C.F. Barbas, 3rd, Using the process of reactive immunization to induce catalytic antibodies with complex mechanisms: aldolases. Acta Chem Scand, 1996. 50(8): p. 672−8.
  96. , C.F., 3rd, et al., Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science, 1997. 278(5346): p. 2085−92.
  97. Sinha, S.C., C.F. Barbas, 3rd, and R.A. Lerner, The antibody catalysis route to the total synthesis ofepothilones. Proc Natl Acad Sci USA, 1998.95(25): p. 14 603−8.
  98. Shabat, D., et al., Multiple event activation of a generic prodrug trigger by antibody catalysis. Proc Natl Acad Sci USA, 1999.96(12): p. 6925−30.
  99. Shamis, M., H.N. Lode, and D. Shabat, Bioactivation of self-immolative dendritic prodrugs by catalytic antibody 38C2. J Am Chem Soc, 2004.126(6): p. 1726−31.
  100. Sinha, S.C., et al., Prodrugs of dynemicin analogs for selective chemotherapy mediated by an aldolase catalytic Ab. Proc Natl Acad Sci USA, 2004.101(9): p. 3095−9.
  101. Shabat, D., et al., In vivo activity in a catalytic antibody-prodrug system: Antibody catalyzed etoposide prodrug activation for selective chemotherapy. Proc Natl Acad Sci U SA, 2001.98(13): p. 7528−33.
  102. Rader, C., et al., A humanized aldolase antibody for selective chemotherapy and adaptor immunotherapy. J Mol Biol, 2003.332(4): p. 889−99.
  103. Stewart, J.D. and S.J. Benkovic, Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature, 1995. 375(6530): p. 388−91.
  104. Paul, S., et al., Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Science, 1989.244(4909): p. 1158−62.
  105. Shuster, A.M., et al., DNA hydrolyzing autoantibodies. Science, 1992.256(5057): p. 6657.
  106. Mei, S., et al., Vasoactive intestinal peptide hydrolysis by antibody light chains. J Biol Chem, 1991. 266(24): p. 15 571−4.
  107. Gao, Q.S., et al., Molecular cloning of a proteolytic antibody light chain. J Biol Chem, 1994.269(51): p. 32 389−93.
  108. Sun, M., et al., Proteolytic activity of an antibody light chain. J Immunol, 1994.153(11): p. 5121−6.
  109. Gao, Q.S., et al., Site-directed mutagenesis of proteolytic antibody light chain. J Mol Biol, 1995.253(5): p. 658−64.
  110. Gololobov, G.V., et al., DNA-protein complexes. Natural targets for DNA-hydrolyzing antibodies. Appl Biochem Biotechnol, 1994.47(2−3): p. 305−14- discussion 314−5.
  111. Ponomarenko, N.A., et al., Catalytic antibodies in clinical and experimental pathology: human and mouse models. J Immunol Methods, 2002.269(1−2): p. 197−211.
  112. Gabibov, A.G., et al., DNA-hydrolyzing autoantibodies. Appl Biochem Biotechnol, 1994. 47(2−3): p. 293−302- discussion 303.
  113. Gololobov, G.V., et al., Cleavage of supercoiledplasmid DNA by autoantibody Fab fragment: application of the flow linear dichroism technique. Proc Natl Acad Sci USA, 1995. 92(1): p. 254−7.
  114. Gololobov, G.V., et al., DNA hydrolysis by monoclonal anti-ssDNA autoantibody В V 0401: origins of catalytic activity. Mol Immunol, 1997.34(15): p. 1083−93.
  115. Tawfik, D.S., et al., Unexpectedly high occurrence of catalytic antibodies in MRL/lpr and SJL mice immunized with a transition-state analog: is there a linkage to autoimmunity? Proc Natl Acad Sci USA, 1995.92(6): p. 2145−9.
  116. Nishi, Y., Evolution of catalytic antibody repertoire in autoimmune mice. J Immunol Methods, 2002.269(1−2): p. 213−33.
  117. Thiagarajan, P., et al., Monoclonal antibody light chain withprothrombinase activity. Biochemistry, 2000.39(21): p. 6459−65.
  118. Thiagarajan, P. and S. Paul, Prothrombin cleaving antibody light chains. Chem Immunol, 2000.77: p. 115−29.
  119. Paul, S., et al., Characterization of thyroglobulin-directed andpolyreactive catalytic antibodies in autoimmune disease. J Immunol, 1997.159(3): p. 1530−6.
  120. Li, L., et al., Catalytic activity of anti-thyroglobulin antibodies. J Immunol, 1995.154(7): p. 3328−32.
  121. Ponomarenko, N.A., et al., Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen. Proc Natl Acad Sci USA, 2006.103(2): p. 281 -6.
  122. Lacroix-Desmazes, S., et al., Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat Med, 1999.5(9): p. 1044−7.
  123. Shuster, A.M., et al., Anti-idiotypic and natural catalytically active antibodies. Mol Biol (Mosk), 1991.25(3): p. 593−602.
  124. Bronshtein, I.B., et al., DNA-specific antiidiotype antibodies in the sera of patients with autoimmune diseases. FEBS Lett, 1992.314(3): p. 259−63.
  125. Avalle, В., D. Thomas, and A. Friboulet, Functional mimicry: elicitation of a monoclonal anti-idiotypic antibody hydrolizing beta-lactams. Faseb J, 1998.12(11): p. 1055−60.
  126. Lefevre, S., et al., A suicide-substrate mechanism for hydrolysis of beta-lactams by an anti-idiotypic catalytic antibody. FEBS Lett, 2001.489(1): p. 25−8.
  127. Avalle, В., et al., Catalytic mechanism of an abzyme displaying a beta-lactamase-like activity. Appl Biochem Biotechnol, 2000.83(1−3): p. 163−9- discussion 169−71,297−313.
  128. Izadyar, L., et al., Monoclonal anti-idiotypic antibodies as functional internal images of enzyme active sites: production of a catalytic antibody with a cholinesterase activity. Proc Natl Acad Sci USA, 1993.90(19): p. 8876−80.
  129. Kolesnikov, A.V., et al., Enzyme mimicry by the antiidiotype antibody approach. Proc Natl Acad Sci USA, 2000.97(25): p. 13 526−31.
  130. Aleksandrova, E.S., et al., A structure-activity study of a catalytic antiidiotype antibody to the human erythrocyte acetylcholinesterase. Bioorg Khim, 2002.28(2): p. 118−25.
  131. Guo, J., et al., Mechanistically different catalytic antibodies obtained from immunization with a single transition-state analog. Proc Natl Acad Sci USA, 1995.92(5): p. 1694−8.
  132. Zhou, G.W., et al., Crystal structure of a catalytic antibody with a serine protease active site. Science, 1994.265(5175): p. 1059−64.
  133. , B.K., Химия протеолиза. 1991, Москва.
  134. Oleksyszyn, J. and J.C. Powers, Irreversible inhibition of serine proteases by peptide derivatives of (alpha-aminoalkyl)phosphonate diphenyl esters. Biochemistry, 1991. 30(2): p. 485−93.
  135. Pollard, S.R., et al., CD4-binding regions of human immunodeficiency virus envelope glycoprotein gp!20 defined by proteolytic digestion. Proc Natl Acad Sci U S A, 1991. 88(24): p. 11 320−4.
  136. Theofilopoulos, A.N. and F.J. Dixon, Murine models of systemic lupus erythematosus. Adv Immunol, 1985.37: p. 269−390.
  137. Knight, J.G., D.D. Adams, and H.D. Purves, The genetic contribution of the NZB mouse to the renal disease of the NZB x NZW hybrid. Clin Exp Immunol, 1977.28(2): p. 352−8.
  138. Bernard, C.C. and P.R. Carnegie, Experimental autoimmune encephalomyelitis in mice: immunologic response to mouse spinal cord and myelin basic proteins. J Immunol, 1975. 114(5): p. 1537−40.
  139. Fujii, I., et al., Evolving catalytic antibodies in aphage-displayed combinatorial library. Nat Biotechnol, 1998.16(5): p. 463−7.
  140. Janda, K.D., et al., Chemical selection for catalysis in combinatorial antibody libraries. Science, 1997.275(5302): p. 945−8.
  141. Griffiths, A.D., et al., Isolation of high affinity human antibodies directly from large synthetic repertoires. Embo J, 1994.13(14): p. 3245−60.
  142. Tramontano, A., et al., Inhibition and labeling of enzymes and abzymes by phosphonate diesters. Appl Biochem Biotechnol, 2000.83(1−3): p. 233−42- discussion 242−3,297−313.
  143. Goletz, S., et al., Selection of large diversities of antiidiotype antibody fragments by phage display. J Mol Biol, 2002.315(5): p. 1087−97.
  144. Kitz, R. and I.B. Wilson, Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem, 1962. 237: p. 3245−9.
  145. Okerberg, E.S., et al., High-resolution functional proteomics by active-site peptide profiling. Proc Natl Acad Sci USA, 2005.102(14): p. 4996−5001.
  146. , А.Т., Масс-спектрометрия в органической химии. Методы в Химии. 2003, Москва: БИНОМ Лаборатория знаний. 493.
  147. Kabat, Е.А., Wu, T.T., Perry, Н.М., Gottesman, K.S. and Foeller, C., Sequences of Proteins of Immunological Interest. 1991.
  148. Wang, J.C., Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol, 2002.3(6): p. 430−40.
  149. Tramontano, A., K.D. Janda, and R.A. Lerner, Chemical reactivity at an antibody binding site elicited by mechanistic design of a synthetic antigen. Proc Natl Acad Sci USA, 1986. 83(18): p. 6736−40.
  150. Angeles, T.S., et al., Isoabzymes: structurally and mechanistically similar catalytic antibodies from the same immunization. Biochemistry, 1993.32(45): p. 12 128.-35.
  151. Martin, M.T., et al., Mechanistic studies of a tyrosine-dependent catalytic antibody. Biochemistry, 1991.30(40): p. 9757−61.
  152. Erhan, S. and L.D. Greller, Do immunoglobulins have proteolytic activity? Nature, 1974. 251(5473): p. 353−5.
  153. Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 1977.74(12): p. 5463−7.
  154. Arkin, M.R. and J. A. Wells, Probing the importance of second sphere residues in an esterolytic antibody by phage display. J Mol Biol, 1998. 284(4): p. 1083−94.
  155. Ponomarenko, N.A., et al., Catalytic activity of autoantibodies toward myelin basic protein correlates with the scores on the multiple sclerosis expanded disability status scale. Immunol Lett, 2006.103(1): p. 45−50.
  156. Ponomarenko, N.A., et al., Induction of a protein-targeted catalytic response in autoimmune prone mice: antibody-mediated cleavage of HIV-1 glycoprotein GP120. Biochemistry, 2006.45(1): p. 324−30.
  157. Laemmli, U.K., Cleavage ofstructural proteins during the assembly of the head of bacteriophage T4. Nature, 1970.227(5259): p. 680−5.
  158. Lee, S.Y. and S. Rasheed, A simple procedure for maximum yield of high-quality plasmid DNA. Biotechniques, 1990.9(6): p. 676−9.
  159. Hixson, C.S. and E.G. Krebs, Affinity labeling of catalytic submit of bovine heart muscle cyclic AMP-dependentprotein kinase by 5'-p-fluorosulfonylbenzoyladenosine. J Biol Chem, 1979.254(16): p. 7509−14.
Заполнить форму текущей работой