Помощь в написании студенческих работ
Антистрессовый сервис

Синтез и исследование кислородпроводящих систем на основе силикатов лантана

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Личный вклад соискателя. Автор участвовал в постановке целей и задач исследования, самостоятельно проводил или участвовал в проведении основных экспериментов, обрабатывал, анализировал и обобщал полученные различными методами результаты, участвовал в их интерпретации. Автором самостоятельно выполнены оптимизация параметров механохимического синтеза допированных CJ1A, синтез образцов CJIA, анодных… Читать ещё >

Синтез и исследование кислородпроводящих систем на основе силикатов лантана (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Силикаты и германаты лантана со структурой апатита
      • 1. 1. 1. Апатит как структурный тип
      • 1. 1. 2. Особенности структуры, фазовые границы и кислородная ионная проводимость кремниевых и германиевых оксоапатитов
      • 1. 1. 3. Допирование как способ управления кислородной ионной проводимостью в электролитах со структурой апатита
      • 1. 1. 4. Сравнение германиевых и кремниевых оксоапатитов
      • 1. 1. 5. Механизм кислородной ионной проводимости в оксоапатитах
      • 1. 1. 6. Исследования силикатов лантана со структурой апатита методами колебательной спектроскопии
    • 1. 2. Синтез силикатов и германатов со структурой апатита
    • 1. 3. Анодные и катодные материалы
      • 1. 3. 1. Проблемы зауглероживания и активности анодных материалов
      • 1. 3. 2. Перспективные катодные материалы для среднетемпературных твердооксидных топливных элементов
      • 1. 3. 3. Электроды для топливных элементов на основе оксоапатитов

Интерес к твердым кислородпроводящим материалам обусловлен разработкой твердооксидных топливных элементов (ТОТЭ) с прямым каталитическим окислением углеводородного топлива, которые являются высокоэффективными и экологически чистыми источниками электрической энергии [1−5]. Одна из основных проблем, препятствующих выходу существующей технологии ТОТЭ на широкий рынок, — слишком высокие рабочие температуры 1000°С), необходимые для обеспечения высокой проводимости используемого в ячейке электролита на основе оксида циркония, стабилизированного иттрием (YSZ) [2, 6]. Это требует применения дорогих конструкционных материалов и приводит к достаточно быстрой деградации элемента. Снижение рабочей температуры ТОТЭ ниже 800 °C может уменьшить общую стоимость производимой им электроэнергии, повысить его надежность, а также расширить область применения [2, 7].

Перспективным направлением разработки среднетемпературных (СТ) ТОТЭ является применение твердых электролитов с более высокой по сравнению с YSZ ионной проводимостью при пониженных температурах [3, 8, 9]. Несмотря на многочисленные исследования, направленные на поиск и изучение новых электролитов, эта проблема до сих пор не решена и остается актуальной [3, 8, 9], что обусловлено дополнительными требованиями, предъявляемыми к материалу электролита, такими как низкая электронная проводимость, механическая прочность, структурная устойчивость и химическая стабильность в окислительной и восстановительной средах при температурах сборки и работы элемента [1−3]. В этой связи одними из наиболее перспективных кислородных ионных проводников являются силикаты и германаты редкоземельных элементов со структурой апатита [8−12]. Особенности структуры этих соединений обеспечивают их высокую кислородную проводимость в области средних температур, низкие энергии активации проводимости, устойчивость в восстановительных средах, а также возможность изоморфного замещения (допирования) различными элементами, позволяющего модифицировать их транспортные свойства [12−19]. Однако, применение оксоапатитов как электролитов в СТ ТОТЭ требует разработки простых и недорогих методов синтеза и проведения систематических исследований структурных и транспортных свойств допированных соединений для получения материалов с оптимальными физико-химическими характеристиками. 4.

Среди известных методов синтеза недопированных силикатов и германатов со структурой апатита (керамический, золь-гель метод и его модификации, соосаждение и др.) механическая активация представляется наиболее перспективным, поскольку является простым и экологичным способом и позволяет получать оксоапатиты уже при комнатной температуре [20−38]. Однако, данные по механохимическому синтезу допированных образцов, представляющих с точки зрения транспортных свойств наибольший интерес, в литературе отсутствуют.

Использование новых электролитов обусловливает также необходимость создания недорогих катодных и анодных материалов, химически и термомеханически совместимых с ними и проявляющих высокую каталитическую активность в среднетемпературной области, а в случае анодов — устойчивых к зауглероживанию, которое также является актуальной проблемой ТОТЭ с внутренним окислением углеводородного топлива [1−3, 39, 40]. Разработка таких материалов, в первую очередь, связана с исследованиями композитов на основе электролита, которые позволяют улучшить характеристики ТОТЭ и решить проблемы совместимости его компонентов [39−41]. Наиболее приемлемыми анодными композитами, с точки зрения соотношения стоимости и активности, до сих пор остаются никельсодержащие металлокерамические системы, однако, необходимость улучшения гомогенности распределения компонентов, электрохимических характеристик и стабильности привлекает внимание к использованию нетрадиционных методов их синтеза — пропитки и металлорганических предшественников [40, 42]. Среди большого количества катодных материалов, наиболее перспективными представляются сложные оксиды со структурой перовскита Ьа1. хАхРе1.у.2СоуМ12Оз^ (А = Бг, Вах, у, ъ = 0−1) и композиты на их основе [43−58], но для их использования в ТОТЭ необходимы дальнейшие исследования.

Целями работы являются: 1) развитие методов синтеза и исследование структурных и транспортных свойств твердых электролитов нового типадопированных силикатов лантана со структурой апатита- 2) приготовление и исследование катодных и анодных композитов на основе допированных силикатов лантана для среднетемпературных твердооксидных топливных элементов с внутренней паровой конверсией метана.

Для достижения поставленных целей в работе решались следующие задачи: 1. Синтез силикатов лантана со структурой апатита (СЛА), допированных алюминием и железом в места кремния, общей формулы Ьа10х (8Ю4)б-у (А1,РеО4)уО245 с использованием механической активации, изучение формирования СЛА и построение феноменологических моделей их образования.

2. Исследование структурных особенностей и транспортных свойств СЛА различного состава, допированных алюминием и железом: исследование локальной структуры кремния, алюминия и железа различными физическими методами, в том числе ЯМР, ЭСДО и ИКСизучение взаимосвязи между особенностями структуры и транспортными свойствами СЛА.

3. Синтез композитных анодных материалов на основе никеля и СЛА (№-СЛА) с использованием нетрадиционных методов приготовления и исследование влияния способа приготовления, состава СЛА и введения добавок сложных оксидов на активность композитных анодов и их устойчивость к зауглероживанию в паровой конверсии метана.

4. Приготовление и исследование катодных материалов на основе оксида со структурой перовскита Ьа0.88го 2рео. б№о.40зо (Ь8РЫ): исследование взаимодействия ЬБРЫ и СЛА в композите ЬБРН-СЛАисследование электрической проводимости, транспорта кислорода и реакционной способности оксида ЬЗБЫ и композита ЬБЕМ-СЛА в активации молекулярного кислорода.

На защиту выносятся:

1. Механохимический синтез СЛА, допированных алюминием и железом в позиции кремния, и изучение формирования структуры СЛА в процессе механической активации.

2. Особенности структуры и транспортных свойств СЛА, допированных алюминием и железом, и взаимосвязь этих характеристик.

3. Результаты исследования каталитической активности и стабильности к зауглероживанию анодных композитов на основе кермета Ni-C.HA в паровой конверсии метана.

4. Результаты исследования транспортных свойств и реакционной способности катодных материалов на основе оксида Ь8Е№ и СЛА, допированного железом.

Научная новизна работы. Впервые метод механической активации был успешно использован для синтеза допированных СЛА. С использованием методов РФА, ИКС, ЭСДО, ЯМР и ПЭМ изучено влияние природы исходных соединений алюминия и железа и условий активации на формирование кремниевых апатитов и определены оптимальные условия проведения механохимического синтеза СЛА, допированных алюминием и железом в позиции кремния (А1/Ре-СЛА).

Для А1/Ре-СЛА различного состава, полученных с помощью механической активации и прокаленных при 1200 °C, проведено систематическое исследование взаимосвязи локальной структуры, изученной методами ЯМР, ИКС, ЯГР и ЭСДО, и транспортных свойств, изученных методами импедансной спектроскопии и изотопного обмена кислорода. Установлено, что в структуре апатита для ионов Ре3+ и А13+ характерно искаженное тетраэдрическое окружение, а наличие структурных дефектов (катионных вакансий и/или избыточных атомов кислорода) приводит к образованию 81 207б" групп, оказывающих влияние на проводимость. Показано, что в ионном транспорте кислорода принимает участие кислород тетраэдрических групп и предложен кооперативный механизм миграции ионов кислорода в СЛА.

В реакции паровой конверсии метана исследованы каталитическая активность и стабильность к зауглероживанию композитов на основе №-СЛА металлокерамики, полученных с использованием металлорганических предшественников. Показана зависимость активности и стабильности композитов от состава СЛА и возможность снижения зауглероживания для композитов на основе СЛА, допированных стронцием, в результате введения оксида Lao.8Sro.2Mno.8Cro.2O3 и замены части никеля на оксид ЬаолЗго. дТЮз со смешанной проводимостью.

Практическая значимость. В работе показано, что использование энергонапряженной мельницы АГО-2 [59] позволяет существенно снизить (до 35 мин) время механической обработки, необходимое для низкотемпературного синтеза СЛА, по сравнению с известными в литературе данными (9−18 ч) [33]. Результаты проведенных исследований позволили выявить основные закономерности механохимического синтеза СЛА, допированных алюминием и железом, что может быть полезно для оптимизации условий синтеза СЛА, допированных другими элементами, а также изоструктурных германатов лантана.

Использование порошков СЛА, полученных с помощью механической активации, позволяет снизить температуру и продолжительность спекания для получения плотной керамики с высокой кислородной ионной проводимостью, необходимой для СТ ТОТЭ.

В работе показана перспективность исследованных катодных и анодных материалов на основе СЛА для среднетемпературных ТОТЭ с внутренней паровой конверсией метана. Был определен оптимальный состав анодного композита, обеспечивающий хорошую термомеханическую совместимость с материалом электролита, высокую каталитическую активность и стабильность к зауглероживанию в реакции паровой конверсии метана. Показана возможность использования LSFN и композита LSFN-CJIA в качестве материалов катода.

Личный вклад соискателя. Автор участвовал в постановке целей и задач исследования, самостоятельно проводил или участвовал в проведении основных экспериментов, обрабатывал, анализировал и обобщал полученные различными методами результаты, участвовал в их интерпретации. Автором самостоятельно выполнены оптимизация параметров механохимического синтеза допированных CJ1A, синтез образцов CJIA, анодных и катодных материалов и проведено изучение их состава и физико-химических характеристик методами ИКС, ЭСДО и проточным каталитическим методом. Часть работы по механохимическому синтезу выполнена совместно с д.х.н. М. В. Чайкиной в Институте химии твердого тела и механохимии СО РАН (ИХТТ). При непосредственном участии автора совместно с A.B. Ищенко и А. Н. Серковой (Институт катализа СО РАН (ИК)) получены данные ПЭМ и СЭМ. Исследования образцов методами РФА, ЯМР, РФЭС, изотопного обмена и ТПД проводились сотрудниками ИК к.х.н. Т. А. Кригер, д.х.н. О. Б. Лапиной, к. ф,-м.н. Д. Ф. Хабибулиным, к.ф.-м.н. В. В. Каичевым, к.х.н. Л. Ч. Батуевым и к.х.н. Г. М. Аликиной. Исследования методом ЯГР и измерения электрической проводимости образцов проводились сотрудниками ИХТТ д.х.н. Ю. Т. Павлюхиным, С. А. Петровым, д.х.н. Н. Ф. Уваровым и к.х.н. A.C. Улихиным. Приготовление полуэлемента и исследование его электрохимических характеристик проводились Chr. Argirusis (Технический университет Клаусталя, Германия) и Н. Gasparyan (Университет Патраса, Греция). Большинство статей подготовлено к печати лично автором.

Апробация работы. Основные положения и результаты работы докладывались и обсуждались на международных и всероссийских конференциях: 16th International Conference on Solid State Ionics (SSI-16), Shanghai, China, July 1−6, 2007; III Международная конференция «Катализ: теория и практика», Новосибирск, Россия, 4−8 июля 2007; International Congress EUROPACAT VIII, Turku, Finland, August 2631,2007; 2007 E-MRS Fall Meeting, Warsaw, Poland, September 17−21,2007; International Symposium on Innovative Materials for Processes in Energy Systems (IMPRES), Kyoto, Japan, 28−31 October, 2007; 2007 MRS Fall Meeting, Boston, MA, USA, November 2630, 2007; 2008 MRS Spring Meeting, San Francisco, CA, USA, March 24−28, 2008;

International Symposium on Creation and Control of Advanced Selective Catalysis, Kyoto, Japan, July 8−12,2008; 14th International Congress on Catalysis, Seoul, Korea, July 13−18, 2008; International symposium «Catalysis for Hydrogen Energy Production and Utilization», Gyeongju, Korea, July 20−22, 2008; Electroceramics XI, Manchester, UK, August 31- September 4,2008; 2008 E-MRS Fall Meeting, Warsaw, Poland, September 1519, 2008; Всероссийская конференция «Химия твердого тела и функциональные материалы — 2008», Екатеринбург, Россия, 21−24 октября, 2008; VI International Conference on Mechanochemistry and Mechanical Alloying INCOME 2008, Jamshedpur, India, December 1−4, 2008; 2008 MRS Fall Meeting, Boston, MA, USA, December 1−5, 2008; III International Conference «Fundamental Bases of Mechanochemical Technologies» (FBMT 2009), Novosibirsk, Russia, May 27−30, 2009; 17th International Conference on Solid State Ionics (SSI-17), Toronto, Canada, June 28-July 3,2009; 11th Annual Conference YUCOMAT 2009, Herceg Novi, Montenegro, August 31-September 4, 2009; 216th ECS Meeting, Vienna, Austria, October 4−9, 2009.

Диссертационная работа выполнена в Лаборатории катализаторов глубокого окисления Института катализа СО РАН в соответствии с общим планом научно-исследовательских работ Института, проект 22 «Разработка научных основ синтеза наноструктурированных/нанокомпозитных материалов с высокой подвижностью кислорода для новых областей применения», а также по программе фундаментальных исследований Президиума РАН «Основы фундаментальных исследований нанотехнологий и наноматериалов», проект 27.57 «Оксидные нанокомпозиты со смешанной ионной-электронной проводимостью: синтез и свойства» и программе фундаментальных исследований, выполняемых в СО РАН совместно с организациями УрО и ДВО РАН, государственных академий наук России, национальных академий наук стран СНГ, Монголии и Китая, интеграционный проект 57 «Фундаментальные основы дизайна среднетемпературных твердооксидных топливных элементов на пористых металлических подложках». Работа выполнена при поддержке 6-ой Рамочной программы Европейского союза, проект «MATSILC».

Публикации. Основные результаты диссертации опубликованы в 32 работах, в том числе в 12 статьях в рецензируемых изданиях и 20 тезисах докладов конференций.

Объем и структура диссертации. Диссертация состоит из введения, пяти глав, выводов и списка литературы. Работа изложена на 206 страницах, содержит 71 рисунок и 22 таблицы.

Список литературы

включает 227 наименований.

выводы.

1. Впервые силикаты лантана со структурой апатита, допированные алюминием и железом, общей формулы Ьаю. х+у/з (8Ю4)6.у (М04)у0з.зхуз, М=А1, Бе получены путем механохимического синтеза и определены оптимальные условия его проведения.

2. С использованием методов РФА, ИКС, ЯМР и ЭСДО показано, что область гомогенного существования твердого раствора со структурой апатита Ьа10. х+у/з (8Ю4)б-У (М04)уОззх/з, М=А1, Ре в грехкомпонентных Ьа203−8Ю2-А1203 и Ьа203−8Ю2-Ре203 системах определяется параметрами 0<х<0.67 и 0<у<1.5, причем для каждого у существует своя область значений параметра х.

3. Исследования локальной структуры алюминия и железа методами ИКС, 27А.

44 44.

ЯМР, ЭСДО и ЯГР показали, что в СЛА для А1 и Ре характерно искаженное тетраэдрическое окружение. Для ионов Ре3+ в структуре СЛА дополнительно выявлено 5-координированное состояние, существование которого объяснено наличием межузельных ионов кислорода. Методами 2985 ЯМР и ИКС показано, что наличие в СЛА катионных вакансий и избыточных: атомов кислорода приводит к образованию диортогрупп 8ь07б~ и дополнительного количества межузельного кислородапри этом наибольшее влияние на искажение локальной структуры оказывают катионные вакансии.

4. Установлено, что введение алюминия и железа в структуру силиката лантана приводит к увеличению электрической проводимости. Проводимость образцов СЛА, допированных алюминием^ растет с увеличением, числа межузельных ионов кислорода и снижается при увеличении количества катионных вакансий. Исследование подвижности кислорода методом изотопного обмена показало, что, наряду с канальными и межузельными ионами кислорода, в ионном транспорте участвуют ионы кислорода тетраэдрических групп. На основе обобщения результатов исследования структурных и транспортных свойств предложен кооперативный механизм миграции ионов кислорода в СЛА.

5. Для анодных композитов на основе №-СЛА металлокерамики показано, что метод приготовления с использованием металлоорганических предшественников приводит к повышению дисперсности никеля, и, соответственно, к увеличению их каталитической активности и стабильности к зауглероживанию в реакции паровой.

193 конверсии метана. Для анодных композитов, на основе СЛЛ, допированных стронцием, установлено, что введение оксида Ьа^Го^МпавСгсиОз и замена части никеля Ьао.|8г0/ГЮз повышает их стабильность к зауглероживанию. 6. Исследованы взаимодействие Ьао.88г0.2рео.б№о.403.5 (Х^ПЯ) и СЛА, а также электрическая проводимость, транспорт кислорода и реакционная способность в активации молекулярного кислорода оксида Ь8РТ<1 и композита ЬЗЕМ-СЛА. Изучены электрохимические характеристики в контакте со СЛА состава.

La9.83Si5AI0.75Fe0.25CW Показано, что обладает удовлетворительными характеристиками и может быть рекомендован в качестве материала катода для СТ ТОТЭ на основе СЛА при использовании температур спекания катода ниже 1200 °C.

5.3.

Заключение

.

В результате исследования анодных материалов показано^ что использование МОП способствует меньшей степени зауглероживания анодного композита традиционного состава на основе №-СЛА металлокерамики по сравнению с образцом, приготовленным методом пропитки. Этот эффект может быть связан как с более равномерным распределением фазы оксида никеля в композите А-2, так и с более высокой дисперсностью металлического никеля в восстановленном образце. Однако, несмотря на относительное улучшение устойчивости к зауглероживанию композита при 70−80% конверсии более 30% метана превращается в продукты уплотнения, что приводит к быстрой дезактивации образца.

Введение

оксидов ЬБМС и ЬБТ в случае композитов на основе СЛА, допированных стронцием, способствует повышению их устойчивости к зауглероживанию. Наибольший эффект получен для композитов А-7 и А-8, содержащих^ 10 вес.% ЬБСМ, в которых 33−50% никеля, заменено на ЬБТ. В то же время, для всех анодных композитов на основе СЛА, допированных алюминием, выявлено более сильное зауглероживанию по сравнению с аналогичными композитами на основе СЛА, допированных стронцием. При этом замена в композите 50% никеля на ЬБТ приводит к его дезактивации после 2 часов работы в результате сильного зауглероживания.

Снижение зауглероживания композитов на основе СЛА, допированных стронцием, может быть связано как с уменьшением" количества и увеличением дисперсности металлического никеля, на котором происходит активация метана с образованием фрагментов СНХ, так и с увеличением скорости активации молекул воды на поверхности ЬБМС и ЬБТ дальнейшим спилловером образующихся ОН групп или атомов кислорода на частицы никеля или границу раздела N ¡-/оксид.

Кроме того, одновременное введение в композит никеля, и оксидной добавки с использованием МОП, может приводить к декорированию поверхности никеля частицами оксидов, в частности^ оксида стронция, приводя: к блокировке центров поверхности никеля, наиболее активных в образовании углерода.

Большая устойчивость к зауглероживанию композитов на основе СЛА, допированных стронцием, может быть связана как с присутствием в этих композитах оксида стронция, участвующего в активации молекул воды и декорации частиц никеля, так и с меньшей кислотностью поверхности электролита, допированного стронцием. С точки зрения кислотно-основных свойств более высокая кислотность поверхности А1-СЛА вследствие наличия в структуре ионов алюминия в тетраэдрической координации может способствовать полимеризации образующихся при активации метана фрагментов СНХ, а также снижению активации молекул воды, в результате чего происходит дезактивация образца за счет быстрого капсулирования частиц никеля продуктами уплотнения.

Использование анодного композита на основе СЛА, допированного стронцием, содержащего 15 вес.% N1, 15 вес.% Ь8Т и 10 вес.% ЬБСМ, для приготовления полуэлемента на основе СЛАГ допированных алюминием и железом, обеспечивает хорошую термомеханическую совместимость с материалом электролита.

Исследование катодного композита ЬБИЧ-СЛА, полученного с использованием ультразвукового диспергирования, показало отсутствие сильного химического взаимодействия между его компонентами и сегрегации 8Ю2 на поверхности при прокаливании в интервале температур 900−1100°С, однако данные РФ, А и ПЭМ с элементным анализом свидетельствуют о взаимной диффузии между фазами компонентов, а также об образовании небольшого количества примесной фазы 8г28Ю4 после прокаливания композита при 1200 °C. Исследование электрической проводимости ЬЗРК и композита показало, что она имеет преимущественно электронный характер. Более низкая проводимость композита, которая определяется проводимостью присутствующей в нем фазы перовскита, обусловлена изменением его состава и разбавлением электролитом. Данные изотопного обмена и ТПД кислорода для оксида ЬББТЧ и композита свидетельствуют о высокой скорости обмена кислорода на поверхности и высокой подвижности ионов кислорода & объеме. При этом для композита характерно существенное повышение диффузионной подвижности кислорода в сравнении с индивидуальным оксидом ЬБКК, что может быть обусловлено высокой кислородной проводимостью входящего в его состав СЛА, а также быстрой миграцией кислорода по межфазным границам перо вскит-апатит.

Исследования методом импедансной спектроскопии электрохимических характеристик катода на основе Г^П4!, нанесенного на поверхность электролита Ьа9.8з815А1о.75ре0.2502б±5г полученного с использованием механической активации, показало, что удельное сопротивление поляризации Ир главным образом обусловлено стадией межфазного переноса зарядаг вклад поверхностной или объемной диффузии в перовските также может быть существенен. Стадии адсорбции и поверхностного обмена не являются лимитирующими в транспорте кислорода со стороны катода. Полученное достаточно высокое сопротивление поляризации (14.5 Ом-см2 при 800 °C и РО2−20 кПа) может быть обусловлено образованием на границе катод/электролит 8г28Ю4 с низкой проводимостью в результате прокаливания полуэлемента при 1350 °C. Для снижения: Кр необходимо спекать катод ниже 1200 °C или вводить между катодом и электролитом функциональный слой, например, на основе оксидов церия. Использование в качестве функционального слоя композита ЬБЕМ-СЛА при температурах прокаливания до 1200 °C также может способствовать снижению поляризационного сопротивления системы.

Показать весь текст

Список литературы

  1. Singhal S.C. Advances in solid oxide fuel cell technology // Solid State Ionics. 2000. -V. 135.-P. 305−313.
  2. Song C. Fuel processing for low-temperature and high-temperature fuel cells. Challenges, and opportunities for sustainable development in the 21st century // Catal. Today. 2002. -V. 77.-P. 17−49.
  3. Sundmacher K., Rihko-Struckmann L.K., Galvita V. Solid electrolyte membrane reactors: Status and trends // Catal. Today. -2005. -V. 104. P. 185−199.
  4. Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects // Electrochim. Acta. 2000. — V. 45. — P. 2423−2435.
  5. B.C., Осетрова H.B., Скуднин A.M. Топливные элементы. Современное состояние и основные научно-технические проблемы // Электрохимия. 2003. — Т. 39. -С. 1027−1045.
  6. Е. А., Буров В. Д. Эффективная малая энергетика: топливные элементы // Турбины и дизели. 2006. — № 4. — С. 40−43.
  7. Holtappels P., Mehling Н., Roehlich S., Liebermann S.S., Stimming U. SOFC system operating strategies for mobile applications // Fuell Cells. — 2005. — V. 5. — P. 499−508.
  8. Gover R.K.B., Slater P.R. Conducting solids // Annu. Rep. Prog. Chem. A: Inorg. Chem. -99.-2003.-P. 477−504.
  9. Sansom J.E.H., Slater P.R. Conducting solids // Annu. Rep. Prog. Chem. A: Inorg. Chem. Sect. 2005. — V. 101. — P. 489−512.
  10. Nakayama S., Kageyama Т., Aono H., Sadaoka Y. Ionic Conductivity of Lanthanoid Silicates, Ln10(SiO4)O3 (Ln = La, Pr, Nd, Sm, Gd, Dy) // J. Mater. Chem. 1995. — V. 5. — P. 1801−1805.
  11. Nakayama S., Sakamoto M. Electrical Properties of New Type High Oxide Ionic Conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy) // J. Eur. Ceram. Soc. 1998. — V. 18. -P. 1413−1418.
  12. Kendrick E., Islam M.S., Slater P.R. Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties // J. Mater. Chem. 2007. — V. 17.— P. 3104−3111.
  13. Shaula A.L., Kharton V.Y., Marques F.M.B. Oxygen ionic and electronic transport in apatite-type Lai0. x (Si, Al)6O26±5 // J. Solid State Chem. 2005. — V. 178. — P. 2050−2061.
  14. Shaula A.L., Kharton V.V., Waerenborgh J.C., Rojas D.P., Marques F.M.B. Oxygen ionic and electronic transport in apatite ceramics // J. Eur. Ceram. Soc. 2005. — V. 25. — P. 2583−2586.
  15. Shaula A.L., Kharton V.V., Waerenborgh J.C. et al. Transport properties and Mossbauer spectra of Fe-substituted La10. x (Si, Al)6O26 apatites // Mater. Res. Bull. -2004. V. 39. — P. 763−773.
  16. McFarlane J., Barth S., Swaffer M., Sansom J.E.H., Slater P.R. Synthesis and Conductivities of the Apatite-type Systems, La9.33+xSi6.yMy0261z (M = Co, Fe, Mn) and La8Mn2Si6026 // Ionics. 2002. — V. 8. — P. 149−154.
  17. Najib A., Sansom J.E.H., Tolchard J.R., Slater P.R., Islam M.S. Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors // Dalton Trans. — 2004. -P. 3106−3109.
  18. Sansom J.E.H., Tolchard J.R., Slater P.R., Islam M.S. Synthesis and structural characterisation of the apatite-type phases Lai0. xSi6O26+z doped with Ga // Solid State Ionics. -2004. —V. 167.-P. 17−22
  19. Sansom J.E.H., Kendrick E., Tolchard J.R., Islam M.S., Slater P.R. A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates // J. Solid StateElectrochem. -2006.-V. 10.-P. 562−568.
  20. Celerier S., Laberty C., Ansart F., Lenormand P., Stevens P. New chemical route based on sol-gel process for the synthesis of oxyapatite La^Si^Oie // Ceram. Int. — 2006. — V. 32. -P. 271−276.
  21. Celerier S., Laberty-Robert C., Ansart F., Calmet C., Stevens P. Synthesis by sol-gel route of oxyapatite powders for dense ceramics: Applications as electrolytes for solid oxide fuel cells // J. Eur. Ceram. Soc. 2005. — V. 25. — P. 2665−2668.
  22. Jothinathan E., Vanmeensel K., Vleugels J., Kharlamova T. et al. Apatite type lanthanum silicate and composite anode half cells // Solid State Ionics. — 2010. — doi: 10.1016/j.ssi.2010.02.009.
  23. Masubuchi Y., Higuchi M., Takeda Т., Kikkawa S. Preparation of apatite-type La9 33(Si04)602 oxide ion conductor by alcoxide-hydrolysis // J. Alloys Compd. — 2006. V. 408−412.-P. 641−644.
  24. Tao S., Irvine J.T.S. Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process // Mater. Res. Bull. 2001. — V. 36. — 1245−1258.
  25. Tao S.W., Irvine J.T.S. Synthesis and Ionic Conduction of Apatite-Type Materials // Ionics. 2000. — V. 6. — P. 389−396.
  26. Tian C., Liu J., Cai J., Zeng Y. Direct synthesis of La933Si602f, ultrafine powder via solgel self-combustion method // J. Alloys Compd. 2008. — V. 458. — P. 378−382.
  27. Tian C., Liu J., Guo C. et al. Auto-combustion synthesis of apatite-type La9.33Ge6026 ultrafine powder and its characterization // J. Alloys Compd. 2008, V. 460. — P. 646−650.
  28. Chesnaud A., Dezanneau G., Estournes C. et al. Influence of synthesis route and composition on electrical properties of La9j3+xSi6026+3xy2 oxy-apatite compounds // Solid State Ionics.-2008.-V. 179.-P. 1929−1939.
  29. Li В., Liu W., Pan W. Synthesis and electrical properties of apatite-type La10Si6O27 // J. Power Sources. 2010. -V. 195. — P. 2196−2201.
  30. Fuentes A.F., Martinez-Gonzalez L.G., Moreno K.J., Rodriguez-Reyna E., Amador U. Room-temperature synthesis and electrical properties of La, Nd and Gd apatite-type silicates // Mater. Res. Soc. Symp. Proc. 2007. — V. 972. — 0972-AA09−05. — 6 p.
  31. Fuentes A.F., Rodriguez-Reyna E., Martinez-Gonzalez L.G. et al. Room-temperature synthesis of apatite-type lanthanum silicates by mechanically milling constituent oxides // Solid State Ionics.-2006.-V. 177.-P. 1869−1873.
  32. Martinez-Gonzalez L.G., Rodriguez-Reyna E., Moreno K.J., Escalante-Garcia J.I., Fuentes A.F. Ionic conductivity of apatite-type rare-earth silicates prepared by mechanical milling // J. Alloys Compd. 2009. — V. 476. — P. 710−714.
  33. Rodriguez-Reyna E., Fuentes A.F., Maczka M. et al. Structural, microstructural and vibrational characterization of apatite-type lanthanum silicates prepared by mechanical milling // J. Solid State Chem. 2006. — V. 179. — P. 522−531.
  34. Rodriguez-Reyna E., Fuentes A.F., Maczka M. et al. Facile synthesis, characterization and electrical properties of apatite-type lanthanum germinates // Solid State Sci. 2006. — Y. 8.-P. 168−177.
  35. Zyrynov V. Processing of Oxide Ceramic Powders for Nanomaterials Using High-Energy Planetary Mills // Interceram. 2003. — V. 52. — P. 22−27.
  36. Е.Г. Механохимйческие методы активации химических процессов. -Новосибирск: Наука, Сиб. Отд-ие, 1986. — 303 с.
  37. Д.А., Королев К. Г., Михайленко М. А. и др. Механохимический синтез вестита FeixO в аппаратах повышенной мощности // Неорган. Матер. 2004. — Т. 40.1. С. 1−4.
  38. В.В. Механохимический синтез сложных оксидов // Успехи химии. 2008. -Т. 77.-С. 107−137.
  39. Gross M.D., Vohs J.M., Gorte RJ. Recent progress in SOFC anodes for direct utilization of hydrocarbons // J. Mater. Chem.-2007. V. 17.-P. 3071−3077.
  40. Jiang S.P., Chan S.H. A review of anode materials development in solid oxide fuel cells // J. Mater. Sci. 2004. — V. 39. — P. 4405−4439.
  41. Tsipis E.V., Kharton V.V. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. II. Electrochemical behavior vs. materials science aspects // J. Solid State Electrochem.-2008.-V. 12.-P. 1367−1391.
  42. Razpotnik, Т., Macek J. Synthesis of nickel oxide/zirconia powders vie a modified Pechini method//J.Eur. Ceram. Soc.-2007.- V. 27.-P. 1405−1410.
  43. Chiba R., Yoshimura F., Sakurai Y. An investigation of LaNi, xFex03 as a cathode material for solid oxide fuel cells // Solid State Ionics. 1999. — V. 124. — P. 281−288.
  44. Chiba R., Yoshimura F., Sakurai Y. Properties of LaiySryNiixFex03 as a cathode material for a low-temperature operating SOFC//Solid State Ionics.-2002.-V. 152−153.-P. 575−582.
  45. Kendrick E., Slater P. Conducting solids // Annu. Rep. Prog. Chem. A: Inorg. Chem. -2009. V. 105. — P. 436−459.
  46. Kendrick E., Slater P. Conducting solids. Annu. Rep. Prog. Chem. A: Inorg. Chem. -2008.-V. 104.-P. 414−433.
  47. Kharton V.V., Viskup A.P., Naumovich E.N., Tikhonovich V.N. Oxygen permeability of LaFei"xNix03s solid solutions // Mater. Res. Bull. 1999. — V. 34. — P. 1311−1317.
  48. Lee K.T., Manthiram A. Comparison of Ьп0. б8го.4СоОз^ (Ln = La, Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells // J. Electrochem. Soc.-2006.-V. 153.-P. 794−798.
  49. Lee K.T., Manthiram A. LaSr3Fe3. yCoyOio^ (0
  50. Maguire E., Gharbage В., Marques F.M.B., Labrincha J.A. Cathode materials for intermediate temperature SOFCs // Solid State Ionics. 2000. — V. 127. — P. 329−335.
  51. Swierczek K., Gozu M. Structural and electrical properties of selected LaixSrxCo0.2Fe0.8O3 and Lao.6Sro.4Coo.2Feo.6Nio.2O3 perovskite type oxides // J. Power Sources. 2007. — V. 173. — P. 695−699.
  52. Swierczek K., Marzec J., Palubiak D., Zajac W., Molenda J. LFN and LSCFN perovskites -structure and transport properties // Solid State Ionics. 2006. — V. 177. — P. 1811 -1817.
  53. Tu H.Y., Takeda Y., Imanishi N., Yamamoro O. LnixSrxCo03 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells // Solid State Ionics. 1997. — V. 100. — P. 283−288.
  54. Tu H.Y., Takeda Y., Imanishi N., Yamamoto O. Ln0.4 Sr0.6Coo.8Feo.203^ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells // Solid State Ionics. 1999. — V. 117. — P. 277−281.
  55. Wang W.G., Mogensen M. High-performance lanthanum-ferrite-based cathode for SOFC // Solid State Ionics. 2005, V. 176. — P. 457−462.
  56. Pena-Martinez J., Marrero-Lopez D., Ruiz-Morales J.C. et al. SOFC test using Ba0.5Sro.5Coo.8Feo.2035 as cathode on Lao.9Sro.1Gao.8Mgo.2O2.85 electrolyte // Solid State Ionics. -2006.— V. 177.-P. 2143−2147.
  57. A.H. Формирование целевых свойств перспективных материалов. Теория и приложение / Учебное пособие. Екатеринбург, 2008. — 118 с.
  58. Dusastre V., Kilner J.A. Optimisation of composite cathodes for intermediate temperature SOFC applications // Solid State Ionics. 1999. — V. 126. — P. 163−174.
  59. Пат. 975 068 Российская Федерация, МКИ В02С17/08. Планетарная мельница /
  60. Е.Г., Поткин Ф. З., Самарин О. И. опубл. 23.11.1982. — Бюл. № 43. — 1979.
  61. Elliott J.C., Wilson R.M., Dowker S.E.P. Apatite structures // Adv. X-ray Anal. 2002. -V. 45.-P. 172−181.
  62. M.B. Механохимия природных и синтетических апатитов. —Новосибирск: Изд-во СО РАН, «Гео», 2002. 223 с.
  63. Benmoussa Н., Mikou М., Lacout J.L. Synthesis and physicochemical study of new rare-earth-containing vanadocalcic oxyapatites // Mater. Res. Bull. — 1999. — V. 34. 1429−1434.
  64. Fresa R., Constantini A., Buri A., Branda F. Apatite formation on (2-x)CaO-x/3 M203−2Si02 glasses (M=La, Y- 0
  65. Hoen Chr., Rheinberger V., Holand W., Apel E. Crystallization of oxyapatite in glass-ceramics // J. Eur. Ceram. Soc. 2007. -V. 27. — P. 1579−1584.
  66. Lakshminarasimhan N., Varadaraju U.V. Synthesis and Eu3+ luminescence in new oxysilicates, ALa3Bi (Si04)30 and ALa2Bi2 (Si04)30 A=Ca, Sr and Ba. with apatite-related structure // J. Solid State Chem. 2005. — V. 178. — P. 3284−3292.
  67. Masubuchi Y., Higuchi M., Kodaira K. Reinvestigation of phase relations around the oxyapatite phase in the Nd203-Si02 system // J. Cryst. Growth. 2003. — V. 247. — P. 207−212.
  68. Masubuchi Y., Higuchi M., Takeda Т., Kikkawa S. Oxide ion conduction mechanism in RE9.33(Si04)602 and Sr2RE8(Si04)602 (RE=La, Nd) from neutron powder diffraction // Solid State Ionics. 2006. — V. 177. — P. 263−268.
  69. Mathew M., Brown W.E., Austin M., Negas T. Lead alkali apatites without hexad anion: The crystal structure of Pb8K2(P04)6 // J- Solid State Chem. 1980. — V. 35. — P. 69−76.
  70. Meis C. Computational study of plutonium-neodymium fluorobritholite Ca9Ndo.5Puo.5(Si04)(P04)5F2 thermodynamic properties and threshold displacement energies // J. Nuc. Mater. 2001. — V. 289. — № 1−2. — P. 167−176.
  71. Naddari Т., Savariault J.-M., El Feki H., Salles P., Ben Salah A. Conductivity and Structural Investigations in Lacunary Pb6Ca2Li2(P04)6 Apatite // J. Solid State Chem. 2002. -V. 166.-P. 237−244.
  72. Ouenzerfi R. El, Goutaudier C., Panczer G. et al. Investigation of the Ca0-La203-Si02-P205 quaternary diagram. Synthesis, existence domain, and characterization of apatitic phosphosilicates // Solid State Ionics. 2003. — V. 156. — P. 209−222.
  73. Sugiyama S., Minami Т., Moriga T. et al. Surface and bulk properties, catalytic activities and selectivities in methane oxidation on near-stoichiometric calcium hydroxyapatites // J. Mater. Chem. 1996. — V. 6. — № 3. — P. 45964.
  74. Yan В., Huang H., Sui Y. Matrix-inducing synthesis of SrxYIo-x (Si04)y (P04)6-y02: Eu3+ micron crystalline coral like phosphors by sol-gel composition of hybrid precursors". J. SolGel Sci. Tech. 2005. — V. 36. — P. 95−102.
  75. Meis C., Gale J.D., Boyer L., Carpena J., Gosset D. Theoretical study of Pu and Cs incorporation in a mono-silicate neodymium fluoroapatite Ca9Nd (Si04)(P04)5F2 // J. Phys. Chem. 2000. — V. 104. — P. 5380−5387.
  76. Nakayama S., Aono H., Sadaoka Y. Ionic Conductivity of Ln10(SiO4)O3 (Ln = La, Pr, Nd, Sm, Gd, Dy) // Chem. Lett. 1995. — V. 6. — P. 431−432.
  77. Nakayama S. Ionic conductivities of apatite-type Lax (Ge04)60I.5x, 2 (X = 8−9.33) polycrystals // J. Mater. Sci. Lett. 2001. — V. 20. — P. 1627−1629.
  78. Sudarsanan K., Mackie P. E., Young R. A. Comparison of synthetic and mineral fluorapatite, Ca5(P04)3 °F, in crystallographic detail // Mater. Res. Bull. 1972. — V. 7.11.-P. 1331−1337.
  79. Felsche J. Rare earth silicates with the apatite structure // J. Solid State Chem. — 1972. -V. 5. — № 2. — P. 266−275.
  80. Schroeder L.W., Mathew M. Cation ordering in Ca2La8(Si04)602 // J. Solid State Chem. 1978, V. 26. — № 4. — P. 383−387.
  81. Abram E.J., Kirk C.A., Sinclair D.C., West A.R. Synthesis and characterisation of lanthanum germanate-based apatite phases // Solid State Ionics. 2005. -V. 176. — P. 1941−1947.
  82. Диаграммы состояния силикатных систем / Торопов Н. А., Барзаковская В. П., Лапин В. В., Курцева Н. Н. Л.: Наука, 1969. — Вып. 1. — С. 77−81.
  83. Диаграммы состояния силикатных систем / Торопов Н. А., Барзаковский В. П., Лапин В. В., Курцева Н. Н. и др. Л.: Наука, 1972. — Вып. 3.- С. 223−233.
  84. Mazza D., Ronchetti S. Study on the Al203-Si02-La203 ternary system at 1300 °C // Mater. Res. Bull. 1999, V. 34. -№ 9. — P. 1375−1382.
  85. Tolchard J.R., Sansom J.E.H., Islam M.S., Slater P.R. Synthesis and Electrical Characterisation of the Apatite-type Oxide Ion Conductors Nd9.33+xSi6-yGay026+z H Ionics. — 2004.-V. 10.-P. 353−357.
  86. Berastegui P., Hull S., Garci Garci F. J., Grins J. A structural investigation of La2(Ge04)0 and alkaline-earth-doped La9.33(Ge04)602 // J. Solid State Chem. 2002. — V. 168.-P. 294−305.
  87. Kobayashi K., Nishimura C. Electrical transport and electric power generation properties of lanthanum-silicate oxyapatite ceramics prepared by a sol-gel method // ECS Trans. — 25. — 2009.-P. 1785−1790.
  88. Lambert S., Vincent A., Bruneton E. et al. Structural investigation of La9.33Si6026 and La9AESi60264d-doped apatites-type lanthanum silicatc (AE = Ba, Sr and Ca) by neutron powder diffraction // J. Solid State Chem. 2006. — V. 179. — P. 2591−2597.
  89. Leon-Reina L., Martin-Sedeno M.C., Losilla E.R. et al. Crystalchemistry and oxide ion conductivity in the lanthanum oxygermanate apatite series // Chem. Mater. — 2003. — V. 15.— P. 2099−2108.
  90. Leon-Reina L., Losilla E.R., Martinez-Lara M., Bruque S., Aranda M.A.G. Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes // J. Mater. Chem. 2004. — V. 14. -P. 1142−1149.
  91. Leon-Reina L., Porras-Vazquez J.M., Losilla E.R. et al. Low temperature crystal structures of apatite oxygen-conductors containing interstitial oxygen // Dalton Trans. — 2007.-P. 2058−2064.
  92. Sansom J.E.H., Richings D., Slater P.R. A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La^SieO^ and La8Sr2Si6026 // Solid State Ionics. -2001.-V. 139.-P. 205−210.
  93. Yoshioka H. Oxide ionic conductivity of apatite-type lanthanum silicates // J. Alloys Compd. 2006. -V. 408−412. — P. 649−652.
  94. Higuchi M., Masubuchi Y., Nakayama S., Kikkawa S., Kodaira K. Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates // Solid State Ionics. — 2004. — V. 174.-P. 73−80.
  95. Higuchi M., Katase H., Kodaira K., Nakayama S. Float zone growth and characterization of Pr933(Si04)602 and Sm9 33(Si04)602 single crystals with an apatite structure // J. Ciyst. Growth. 2000. — V. 218. — P. 282−286.
  96. Higuchi M., Katase H., Nakayama S. Nonstoichiometry in apatite-type neodymium silicate single crystals //J. Ciyst. Growth. 2000. — V. 216. — P. 317−321.
  97. Nakayama S., Sakamoto M., Highchi M., Kodaira K. Ionic conductivities of apatite type Ndx (Si04)60,.5X+12 (X = 9.20 and 9.33) single crystals // J. Mater. Scie. Lett. 2000. — V. 19.-P. 91−93.
  98. Nakayama S., Sakamoto M., Higuchi M. et al. Oxide Ionic Conductivity of Apatite Type Nd9.33(Si04)602 Single Ciystal // J. Eur. Ceram. Soc. 1999. -V. 19. — P. 507−510.
  99. Kendrick E., Slater P.R. Synthesis of Ga-doped Ge-based apatites: Effect of dopant and cell symmetry on oxide ion conductivity // Mater. Res. Bull. -2008. -V. 43. P. 3627−3632.
  100. Kendrick E., Slater P.R. Synthesis of hexagonal lanthanum germanate apatites through site selective isovalent doping with yttrium // Mater. Res. Bull. 2008. — V. 43. — P. 2509−2513.
  101. Kendrick E., Slater P.R. Investigation of the influence of oxygen content on the conductivities of Ba doped lanthanum germanate apatites // Solid State Ionics. 2008. — V. 179.-P. 981−984.
  102. Kendrick E., Sansom J. E. H., Tolchard J. R., Islam M. S, Slater P.R. Neutron diffraction and atomistic simulation studies of Mg doped apatite-type oxide ion conductors // Faraday Discuss.-2007.-V. 134.-P. 181−194.
  103. Leon-Reina L., Losilla E.R., Martinez-Lara M. et al. Interstitial oxygen in oxygen-stoichiometric apatites // J. Mater. Chem. 2005. — V. 15. — P. 2489−2498.
  104. Benmoussa H., Mikou M., Bensaoud A. et al. Electrical properties of lanthanum containing vanadocalcic oxyapatite // Mater. Res. Bull. — 2000. V. 35. — P. 369−375.
  105. Bouhaouss A., Laghzizil A., Bensaoud A. et al. Mechanism of ionic conduction in oxy and hydroxyapatite structures // Int. J. Inorg. Mater. 2001. — V. 3. — P. 743−747.
  106. Sansom J.E.H., Najib A., Slater P.R. Oxide ion conductivity in mixed Si/Ge-based apatite-type systems // Solid State Ionics. 2004. — V. 175. — P. 353−355.
  107. Pivak Y.V., Kharton V.V., Yaremchenko A.A. et al. Phase relationships and transport in Ti-, Ce- and Zr-substituted lanthanum silicate systems // J. Eur. Ceram. Soc. — 2007. — V. 27. P. 2445−2454.
  108. Sansom J.E.H., Sermon P.A., Slater P.R. Synthesis and conductivities of the Ti doped apatite-type phases (La/Ba), 0. x (Si/Ge)6./riyO26+z // Solid State Ionics. 2005. — V. 176. — P. 1765−1768.
  109. Kendrick E., Knight K.S., Slater P.R. Ambi-site substitution of Mn in lanthanum germanate apatites // Mater. Res. Bull. 2009. — V. 44. — P. 1806−1809.
  110. Tolchard J.R., Sansom J.E.H., Islam M.S., Slater P.R. Structural studies of apatite-type ion conductors doped with cobalt // Dalton Trans. 2005. —P. 1273−1280.
  111. Tolchard J.R., Slater P.R., Islam M.S. Insight into Doping Effects in Apatite Silicate Ionic Conductors // Adv. Funct. Mater. 2007. — V. 17. — P. 2564−2571.
  112. Leon-Reina L., Porras-Vazquez J.M., Losilla E.R., Aranda M.A.G. Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites // J. Solid State Chem. — 2007. — V. 180.-P. 1250−1258.
  113. Sansom J.E.H., Hildebrandt L., Slater P.R. An investigation of the synthesis and conductivities of La-Ge-0 based systems // Ionics. 2002. — V. 8. —P. 155−160.
  114. Marques F.M.B., Kharton V.V. Development of oxygen ion conductors: One relevant tendency // Ionics. 2005. — V. 11. — P. 321−326.
  115. Marques F.M.B., Kharton V.V., Naumovich E.N. et al. Oxygen ion conductors for fuel cells and membranes: selected developments // Solid State Ionics. — 2006. — V. 177. — P. 1697−1703.
  116. Kendrick E., Kendrick J., Knight K.S., Islam M.S., Slater P.R. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties //Nat. Mater. 2007. — V. 6. — P. 871−875.
  117. Tolchard J.R., Islam M. S., Slater P.R. Defect chemistry and oxygen ion migration in the apatite-type materials La^Si^Cbe and LagSr^SieC^ // J- Mater. Chem. — 2003. —V. 13. -P. 1956−1961.
  118. Slater P.R., Sansom J.E.H. The synthesis and characterisation of new apatite-type oxide ion conductors // Solid State Phenom. 2003. -V. 90−91. -P. 195−200.
  119. Tolchard J.R., Slater P.R. A high temperature powder neutron diffraction structural study of the apatite-type oxide ion conductor, La9.67Si6026.5 // J. Phys. Chem. Solids. — 2008. -V. 69.-P.2433−2439.
  120. Leon-Reina L., Porras-Vazquez J.M., Losilla E.R., Aranda M.A.G. Interstitial oxide positions in oxygen-excess oxy-apatites // Solid State Ionics. — 2006. — V. 177. — № 15−16. — P. 1307−1315.
  121. Islam M.S., Tolchard J.R., Slater P.R. An apatite for fast oxide ion conduction // Chem. Commun. — 2003. — V. 13.-1486−1487.
  122. Jones A., Slater P.R., Islam M.S. Local defect structures and ion transport mechanisms in the oxygen-excess apatite La^SiO^C^j- // Chem. Mater. 2008. — Y. 20. — P. 5055−5060.
  123. Kendrick E., Islam M.S., Slater P.R. Atomic-scale mechanistic features of oxide ion conduction in apatitetype germinates // Chem. Commun. 2008. — V. 6. — P. 715−717.
  124. Jo S.H., Muralidharan P., Kim D.K. Raman and 29Si NMR spectroscopic characterization of lanthanum silicate electrolytes: Emphasis on sintering temperature to enhance the oxide-ion conductivity // Electrochim. Acta. — 2009. — V. 54. 7495−7501.
  125. Orera A., Kendrick E., Apperley D.C., Orera V.M., Slater P.R. Effect of oxygen content on the 29Si NMR, Raman spectra and oxide ion conductivity of the apatite series, La8+xSr2.x (Si04)602+x/2 // Dalton Trans. -2008. -V. 39. P. 5296−5301.
  126. Sansom J.E.H., Tolchard J.R., Islam M.S., Apperley D., Slater P.R. Solid state 29Si NMR studies of apatite-type oxide ion conductors //J. Mater. Chem. —2006. —V. 16. — P. 1410−1413.
  127. Bechade E., Masson O., Iwata T. et al. Diffusion path and conduction mechanism of oxide ions in apatite-type lanthanum silicates//Chem. Mater.-2009.-V. 21.-P. 2508−2517.
  128. A.H., Миргородский А. П., Игнатьев И. С. Колебательные спектры сложных окислов. Силикаты и их аналоги. — Л.: Наука, 1975. — 296 с.
  129. И.И. Инфракасные спектры силикатов. — М: Изд-во Моск. ун-та, 1967. -190 с.
  130. Boughzala К., Salem Е.В., Chrifa А.В., Gaudin Е., Bouzouita К. Synthesis and characterization of strontium-lanthanum apatites // Mater. Res. Bull. 2007. — V. 42. — P. 1221−1229.
  131. Lucazeau G., Sergent N., Pagnier T. et al. Raman spectra of apatites: Laio-xSi6-y (Al, Fe) y026±5// J. Raman Spectrosc. -2007. V. 38. -P. 21−33.
  132. Tzvetkov G., Minkova N. Mechanochemically induced formation of La2Si05 // J. Mater. Sci. 2000. — V. 35. — P. 2435−2441.
  133. Я.И., Ставицкая Е. П. Водородная связь и структура гидросиликатов. — Л.: Наука, 1972.-С. 14−18.
  134. Takeda Н., Ohgaki М., Kizuki Т. et al. Formation Mechanism and Synthesis of ApatiteType Structure Ba2+xLa8.x (Si04)602^ // J. Am. Ceram. Soc. -2000. V. 83. — P. 2884−2886.
  135. Riedel R., Chen I-W. Ceramics science and technology: Structures. Weinheim: Wiley-VCH, 2008. — V. 1. — P. 3−38.
  136. Jothinathan E., Vanmeensel K., Vleugels J., Van der Biest O. Powder synthesis, processing and characterization of lanthanum silicates for SOFC application // J. Alloys Compd. 2010. -V. 495. — P. 552−555.
  137. Tzvetkov G., Minkova N. Mechanochemical stimulation of the synthesis of lanthanum oxyapatite// Mater. Lett. 1999. — V. 39. — P. 354−358.
  138. В.В. Механохимия и механическая активация твердых тел // Успехи химии. 2006. — Т. 75. — С. 203−216.
  139. Bechade Е., Julien I., Iwata Т. et al. Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte // J. Eur. Ceram. Soc. 2008. — V. 28. — P. 2717−2724.
  140. Gao W., Liao H., Coddet C. Effect of feedstock powder characteristics on microstructure and mechanical properties of lanthanum silicate coatings deposited by atmospheric plasma spraying // Appl. Surf. Sci. 2008. — V. 254. — P. 5548−5551.
  141. Gao W., Liao H., Coddet C. Plasma spray synthesis of LaI0(SiO4)6O3 as a new electrolyte for intermediate temperature solid oxide fuel cells // J. Power Sources. 2008. -V. 179.-P. 739−744.
  142. C.M., Сое N.J., Cunningham R.H., Ormerod R.M. Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane // Catal. Today. 1998. — V. 46. — P. 137−145.
  143. Gross M.D., Vohs J.M., Gorte R.J. A study of thermal stability and methane tolerance of Cu-based SOFC anodes with electrodeposited Co // Electrochim. Acta. 2007. — V. 52. -P. 1951−1957.
  144. Kim H., Lu C., Worrell W.L., Vohs J.M., Gorte R.J. Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells // J. Electrochem. Soc. — 2002. — V. 149. P. 247−250.
  145. Hui S., Petric A. Evaluation of yttrium-doped SrTi03 as an anode for solid oxide fuel cells // J. Eur. Ceram. Soc. 2002. — V. 22. — P. 1673−1681.
  146. Beaudet Savignat S., Chiron M., Barthet C. Tape casting of new electrolyte and anode materials for SOFCs operated at intermediate temperature // J. Eur. Ceram. Soc. — 2007. V. 27.-P. 673−678.
  147. Brisse A., Sauvet A.-L., Barthet C., Beaudet-Savignat S., Fouletier J. Electrochemical characterizations of Ni/doped lanthanum silicates cermets deposited by spin coating // Fuel Cells. -2006. V. 6. -P. 59−63.
  148. Marrero-Lopez D., M.C. Martin-Sedeno, Pena-Martinez J. et al. Evaluation of apatite silicates as solid oxide fuel cell electrolytes // J. Power Sources. — 2010. — V. 195. P. 24 962 506.
  149. Mineshige A., Nakao Т., Kobune M., Yazawa Т., Yoshioka H. Electrical properties of La, oSi6027-based oxides // Solid State Ionics. 2008. — V. 179. — P. 1009−1012.
  150. Nakao Т., Mineshige A., Kobune M., Yazawa Т., Yoshioka H. Chemical stability of Lai0Si6O27 and its application to electrolytes for solid oxide fuel cells // Solid State Ionics.2008. -V. 179.-P. 1567−1569.
  151. Tsipis E.V., Kharton V.V., Frade J.R. Electrochemical behavior of mixed-conducting oxide cathodes in contact with apatite-type Lai0Si5AlO26.5 electrolyte // Electrochim. Acta. — 2007. -V. 52. P. 4428−4435.
  152. Yaremchenko A.A., Kharton V.V., Bannikov D.O. et al. Performance of perovskite-related oxide cathodes in contact with lanthanum silicate electrolyte // Solid State Ionics. —2009. V. 180. — P. 878−885.
  153. Yoshioka H., Nojiri Y., Tanase S. Ionic conductivity and fuel cell properties of apatitetype lanthanum silicates doped with Mg and containing excess oxide ions // Solid State Ionics. 2008. -V. 179. — P. 2165−2169.
  154. Yoshioka H., Tanase S. Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solid oxide fuel cells // Solid State Ionics. 2005. -V. 176. — P. 2395−2398.
  155. П.Ю. Проблемы и перспективы развития механохимии // Успехи химии. -1994.-Т. 63.-С. 1031−1043.
  156. Kharlamova Т., Pavlova S., Sadykov V., Chaikina M., Krieger Т., Ishchenko A., Pavlyukhin Y., Petrov S., Argirusis Chr. Mechanochemical synthesis of Fe-doped apatitetype lanthanum silicates // Eur. J. Inorg. Chem. -2010, V. 4. P. 589−601.
  157. Ristic M., Music S., Godec M. Properties ofy-FeOOH, a-FeOOH and a-Fe203 particles precipitated by hydrolysis of Fe3+" ions in perchlorate containing aqueous solutions // J. Alloys Compd. 2006. — V. 417. — P. 292−299.
  158. Verdonck L., Hoste S., Roelandt F.F., Vav Der Kelen G.P. Normal coordinate analysis of a-FeOOH a molecular approach // J. Mol. Struct. — 1982. — 79. — P. 273−279.
  159. Ou P., Xu G., Ren Z.,. Hou X, Han G. Hydrothermal synthesis and characterization of uniform a-FeOOH nanowires in high yield //Mater. Lett. -2008. V. 62. — P. 914−917.
  160. А.И., Тикунова И. В., Малеванный В. А. Справочное руководство по химии. М.: Высшая школа, 2003. — С. 331−338.
  161. Leite E.R., Carreno N.L.V., Longo Е. et al. Development of Metal-Si02 nanoeomposites in a single-step process by the polymerizable complex method // Chem. Mater. 2002. — V. 14. — P. 3722−3729.
  162. H.E., Карнаухов А. П., Алабужев Ю. А. Определение удельной поверхности дисперсных и пористых материалов. Новосибирск: ИК СО АН СССР, 1978. — 74 с.
  163. С.В., Черепанова С. В., Соловьева Л. П. Пакет программ Поликристалл для IBM/PC // Журн. Структ. Хим. 1996. — Т. 37. -№ 2. — С. 332−334.
  164. А.И. Инфракрасные спектры минералов. —М.: Недра, 1976. — 200 с.
  165. Handbook of X-ray photoelectron spectroscopy / Ed. C.D. Wagner, W.M. Riggs, L.E.
  166. Davis, J.F. Moulder, et al Minnesota: Perkin-Elmer, Eden Prairie, 1978.
  167. Г. К. Гетерогенный катализ. — М.: Наука, 1986. — 304 с.
  168. Kharlamova Т., Pavlova S., Sadykov V., Krieger Т., Batuev L., Muzykantov V., Uvarov N., Argirusis Chr., Fe- and Al-doped Apatite Type Lanthanum Silicates: Structure and Property Characterization // Solid State Ionics. 2009. — V. 180. — P. 796−799.
  169. Kharlamova Т., Pavlova S., Sadykov V., Krieger Т., Alikina G., Argirusis Chr., Catalytic properties and coking stability of new anode materials for direct intermediate temperature solid oxide fuel cells // Catal. Today. 2009. -V. 146. — P. 141−147.
  170. O.B. Гетерогенный катализ. М.: ИЦК Академкнига, 2004. С. 244−245.
  171. Фундаментальные основы механической активации, механосинтеза и механохимических технологий / Под ред. Е. Г. Авакумова — Новосибирск: Изд-во СО РАН.-2009.-343 с.
  172. Е.Г., Пайчадзе К. С. Влияние природы исходных компонентов на механохимический синтез LaA103 // Химия в интересах устойчивого развития. — Т. 15. -2007.-С. 9−14.
  173. П.Н., Нестеренко Е. П., Иванов A.B. Модифицирование поверхности кремнезема оксидом алюминия // Вестн. Моск. Ун-та. Сер. 2. Химия. 2001. — Т. 42. -№ 2.-С. 106−108.
  174. Engelhardt G., Michel D. High-resolution solid-state NMR of silicates and zeolites. -John Wiley & Sons Ltd., Great Britain by Page Bros., Norvwich, 1987. P. 97.
  175. Freude D., Karger J. NMR techniques // Handbook of Porous Solids / Ed. P. Schiith, K.S.W. Sing, J. Weitkamp. Wiley-VCH, Weinheim, 2002. -V. 1. — P. 465−504.
  176. Dupree R., Lewis M.H., Smith M. E. A high-resolution NMR study of the La-Si-Al-O-N System // J. Am. Chem. Soc. 1989.-V. 111. — P. 5125−5132.
  177. Isobe Т., Watanabe Т., d’Espinose de la Caillerie J.B., Legrand A.P., Massiot D. Solidstate 'H and 27A1 NMR studies of amorphous aluminum hydroxides // J. Colloid Interface Sci. 2003. — V. 261. — P. 320−324.
  178. Д.П., Золотовский Б. П., Криворучко О. П. Буянов P.A. Синтез алюмосиликатов с применением механической активации // Журн. Прикладной. Хим. -1988.-61.-С. 914−916.
  179. Chefi S., Madani A., BoussettaH., Roux С., Hammou A. Electrical properties of Al-doped oxyapatites at intermediate temperature // J. Power Sources. — 2008. — V. 177. — P. 464−469.
  180. Bordiga S., Buzzoni R., Geobaldo F. et al. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods // J. Catal. 1996. — V. 158. — P. 486−501.
  181. C.E., Ануфриенко В. Ф., Хэнсен Е.Дж.М., Кузнецова Е. В., Ларина Т. В., Жидомиров Г. М. Искажение тетраэдрической координации ионов Fe (III) стабилизированных в решетке ZSM-5 цеолита // Журн. Структ. Химии. — 2007. Т. 48. -№ 5.-С. 914−920.
  182. Lever А.В.Р. Inorganic Electronic Spectroscopy. Amsterdam: Elsevier, 1968. — 420 p.
  183. Ratnasamy P., Kumar R. Ferrisilicate analogs of zeolites // Catal. Today. — 1991. V.9.-P. 329−416.
  184. Meagher A., Nair V., Szostak R. A Mossbauer study of ZSM-5-type ferrisilicates // Zeolites. 1988. — V. 8. — P. 3−11.
  185. Delmastro A., Mazza D., Ronchetti S. et al. Synthesis and characterization of non-stoichiometric LaFe03 perovskite // Mater. Sci. Eng. 2001. — V. B79. — P: 140−145.
  186. M.B., Уваров Н. Ф., Улихин A.C., Хлусов И. А. Механохимический синтез наноразмерных функциональных материалов со структурой апатита // Вопросы материаловедения. — 2008. — Т. 54. — № 2. -С. 219−232.
  187. Bonev I. On the terminology of the phenomena of mutual crystal orientation // Acta Cryst. 1972. — V. 28. — P. 508−512.
  188. Glasser L.S.D., Glasser P.F., Taylor H.F.W. Topotactic reactions in inorganic oxy-compounds // Q. Rev. Chem. Soc. 1962. — V. 16. — P. 343−360.
  189. Shaula A.L., Kharton V.V., Marques F.M.B. Ionic and electronic conductivities, stability and thermal expansion of La10-x (Si, Al)6O26±5 solid electrolytes // J. Solid State Chem. -2005. V. 178.-P. 2050−2051.
  190. Abram E.J., Sinclair D.C., West A.R. A novel enhancement of ionic conductivity in the cation-deficient apatite La9.33(Si04)602 // J. Mater. Chem. 2001. — V. 11. — P. 1978−1979.
  191. B.C. Твердые растворы в мире минералов // СОЖ — 1996. — № 11. — С. 54−60.
  192. Leon-Reina L., Porras-Vazquez J.M., Losilla E.R., Moreno-Real L., Aranda M.A.G. Structure and oxide anion conductivity in Ln2(T04)0 (Ln = La, Nd- T = Ge, Si) // J. Solid State Chem. 2008. — V. 181. — P. 2501−2506.
  193. Lazarev A.N., Tenisheva T.F., Bondar I.A., Toropov N.A. The infrared spectra of rare earth element oxide orthosilicates // Russian Chem. Bull. —1963. — V. 12. 1115−1119.
  194. Tristao J.C., Ardisson J.D., Macedo W.A.A., Lagoa R.M., Moura F.C.C. LaPexMnyMoz03 Catalysts for the Oxidation of Volatile Aromatic Organic Contaminants // Braz. J. Chem. Soc.-2007. V. 18.-P. 1524−1530.
  195. Yaremchenko A.A., Shaula A.L., Kharton V.V. et al. Ionic and electronic conductivity ofLa9.83.xPrxSi4^FeIJ026±5 apatites // Solid State Ionics. 2004. -V. 171. — P. 51−59.
  196. Hrovat M., Kuscer D., Hole J., Bernik S., Kolar D. Preliminary data on subsolidus phase equilibria in the La203-(A1203/Fe203)-Y203 and La203-(A1203/Fe203)-Zr02 systems // J. Mater. Sci. Lett. 1996. — V. 15. — P. 339−342.
  197. Alstrup I., Clausen B.S., Olsen С., Smits R.H.H., Rostrup-Nielsen J.R. Promotion of Steam Reforming Catalysts // Stud. Surf. Sci. Catal. 1998. — V. 119. — P. 5−14.
  198. Sadykov V., Mezentseva N., Usoltsev V. et al. Solid oxide fuel cell composite cathodes based on perovskite and fluorite structures // J. Power Sources. — 2010. — doi: 10.1016/j .jpowsour.2010.07.096
  199. Galea N.M., Knapp D., Ziegler T. Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction // J. Catal. 2007. — V. 247. — P. 20−33.
  200. Baker R.T.K., Kim M.S., Chambers A., Park C. Rodriguez N.M. The Relationship Between Metal Particle Morphology and the Structural Characteristics of Carbon Deposits // Stud. Surf. Sci. Catal. 1997.-V. 111.-P. 99−109.
  201. Trimm D.L. Catalysts for the control of coking during steam reforming // Catal. Today. 1999. -V. 49.-P. 3−10.
  202. Sadykov V.A., Mezentseva N.V., Bunina R.V. et al. Effect of complex oxide promoters and Pd on activity and stability of Ni/YSZ (ScSZ) cermets as anode materials for IT SOFC // Catal. Today. 2008. — V. 131. — P. 226−237.
  203. Sfeir J., Buffat P.A., Mockli P. et al. Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes // J. Catal. 2001. -V. 202. — P. 229−244.
  204. Химическая энциклопедия: в 5 т. / М.: Изд-во Советская энциклопедия, 1988. —т. 4. С. 340−345.
  205. Ни Y.H., Ruckenstein Е. Catalytic conversion of methane to synthesis gas by partial oxidation and C02 reforming // Adv. Catal. 2004. — V. 48. — P. 297−345.
  206. O.B. Углекислотная конверсия метана // Росс. Хим. Журн. — 2000. — С. 19−33.
  207. Bengaard H.S., Norskov J.K., Sehested J. et al. Steam reforming and graphite formation on Ni catalysts // J. Catal. 2002. — V. 209. — P. 365−384.
  208. Galea N.M., Knapp D., Ziegler T. Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction // J. Catal. 2007. — V. 247. — P. 20−33.
  209. Bouhaouss A., Laghzizil A., Bensaoud A. ct al. Mechanism of ionic conduction in oxy and hydroxyapatite structures // Int. J. Inorg. Mater. 2001. — V. 3. — P. 743−747.
  210. Duran P., Capel F., Tartaj J., Gutierrez D., Moure C. Heating-rate effect on the ВаТЮз formation by thermal decomposition of metal citrate polymeric precursors // Solid State Ionics.-2001.-V. 141−142.-P. 529−539.
  211. А.Ю. Дефекты и свойства перспективных оксидных материалов / Учебное пособие. — Екатеринбург, 2008. — 64 с.
  212. Zhang R., Alamdari Н., Kaliaguine S. Fe-based perovskites substituted by copper and palladium for NO+ CO reaction // J. Catal. 2006. V. 242. — P. 241−253.
  213. Kaliaguine S., Van Neste A., Szabo V. et al. Perovskite-type oxides synthesized by reactive grinding: Part I. Preparation and characterization // Appl. Catal. 2001. — V. 209. — P. 345−358.
  214. No S.Y., Eom D., Hwang C.S., Kim H.J. Properties of lanthanum oxide thin films deposited by cyclic chemical vapor deposition using tris (isopropyI-cyclopentadienyl)lanthanum precursor// J. Appl. Phys. — 2006. V. 100. — 24 111. — 9 p.
  215. Bebelis S., Kotsionopoulos N., Mai A., Tietz F. Electrochemical characterization of perovskite-based SOFC cathodes // J. Appl. Electrochem. 2007. — V. 37. — P. 15−20.
Заполнить форму текущей работой