Помощь в написании студенческих работ
Антистрессовый сервис

Структура и свойства углеродных нанотруб, синтезированных CVD-методом на катализаторах, полученных при термолизе тартрата кальция, допированного Fe, Co, Ni

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Проведена оптимизация основных параметров синтеза (время предподготовки катализатора, температура синтеза, состав катализатора) для получения УНТ диаметром до 20 нм из С2Н5ОН. Обнаружено, что для образования металлических кластеров, достаточных для каталитического роста УНТ, требуемое время термолиза тартрата кальция, допированного Ni, Со, Fe и их смесями, в атмосфере аргона составляет -10 мин… Читать ещё >

Структура и свойства углеродных нанотруб, синтезированных CVD-методом на катализаторах, полученных при термолизе тартрата кальция, допированного Fe, Co, Ni (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Аллотропные формы углерода
    • 1. 2. Методы синтеза углеродных нанотруб (УНТ)
    • 1. 3. Способы приготовления катализатора для CVD (chemical vapor deposition) метода
      • 1. 3. 1. Пропитка
      • 1. 3. 2. Золь-гель метод
      • 1. 3. 3. Метод «мокрого сжигания»
      • 1. 3. 4. Метод соосаждения
      • 1. 3. 5. Термическое разложение карбонильных комплексов
      • 1. 3. 6. Восстановление металлатов
      • 1. 3. 7. Взаимодействие металла с подложкой
    • 1. 4. Механизм роста углеродных структур в CVD процессе
    • 1. 5. Свойства углеродных структур
      • 1. 5. 1. Эмиссионные характеристики углеродных структур
      • 1. 5. 2. Электрохимические характеристики углеродных структур

Актуальность темы

Свойства углеродных нанотруб (УНТ) (электропроводность, оптическое поглощение, механическая прочность) определяются их структурой, а именно, диаметром и хиральностью графитового цилиндра, числом слоев, дефектностью. Отмеченные структурные характеристики УНТ зависят от метода синтеза материала.

Наиболее перспективным и экономически рентабельным методом получения УНТ в больших количествах является CVD-метод (chemical vapor deposition), основанный на термическом разложении углеродсодержащих соединений в присутствие катализатора. Морфология углеродных структур в получаемом материале меняется в зависимости от параметров CVD-процесса, но определяющее значение имеют структура и состав катализатора.

Наиболее используемыми катализаторами для данного процесса являются наночастицы металлов семейства железа (Fe, Со, Ni и их смеси). В смешанных каталитических системах возможно проявление синергетического эффекта по отношению к росту углеродных структур. Предполагая, что наночастица металла является каталитическим центром роста одной нанотрубы, для получения УНТ с максимально одинаковыми структурными характеристиками необходимо г приготовить катализатор с узким распределением по размеру металлических наночастиц. Большую перспективу имеет нанесенная каталитическая системакатализатор/носитель, так как при высоких температурах синтеза носитель препятствует движению металлических наночастиц и, таким образом, их неконтролируемой агломерации. Взаимодействие носителя с каталитической частицей так же оказывает влияние на структуру формирующихся УНТ. В последнее время внимание уделяется таким носителям как MgO и СаО, что обусловлено относительной легкостью их удаления из продукта CCVD синтеза без изменения химических и физических свойств углеродных наноструктур. Чаще всего нанесенные катализаторы получают такими методами как, пропитка, соосаждение, золь-гель метод, метод «мокрого сжигания» и термическое разложение. Метод термического разложения соли был выбран в качестве способа получения каталитической системы. Данный метод является наиболее простым в исполнении: не требующий никакого оборудования, кроме печи. При разложении вещества выделяются газообразные продукты, что приводит к диспергированию твердого продукта реакции. Предполагается, что избавиться от недостатка метода термического разложения, заключающегося в трудно контролируемом размере металлических частиц, можно за счет совместного образования частиц носителя и металлических частиц. Ожидается, что использование такой каталитической системы для CCVD-синтеза и последующая простая процедура удаления частиц носителя из продукта синтеза позволит получить материал, состоящий из однородных по диаметру индивидуальных УНТ.

Высокое аспектное отношение, механическая прочность и химическая инертность УНТ делает их перспективным материалом для создания автоэмиссионных катодов. Актуальной областью исследования свойств углеродных материалов является также их использование в качестве электродов для высокоэффективных электрохимических конденсаторов, использующих процессы перезарядки двойного электрического слоя на поляризуемых электродах с высокой удельной поверхностью.

Поиск новых катализаторов, систематическое исследование влияния основных параметров процесса на структуру и свойства получаемых углеродных структур является актуальной проблемой, решение которой, в перспективе, позволит разработать подходы для синтеза УНТ с контролируемыми структурными параметрами.

Целью диссертационной работы являлась разработка способа получения.

УНТ методом CVD с использованием каталитической системы, полученной в результате термического разложения тартрата кальция, допированного переходным металлом (Fe, Со, Ni и их смеси), исследование структуры углеродного материала и его автоэмиссионных и электрохимических свойств.

В работе решались следующие задачи:

1. синтез предшественника каталитической системы, а именно, тартрата кальция, допированного переходным металлом (Fe, Со, Ni и их смеси). Исследование химического состава, структурных особенностей и процессов термического разложения этих соединений;

2. синтез углеродного материала при варьировании реакционных параметров: состав предшественника каталитической системы, источник углерода, температура и др. Выявление влияния параметров CVDсинтеза на структурные характеристики УНТ, содержащихся в материале;

3. исследование функциональных свойств углеродных материалов в зависимости от морфологии углеродных структур, составляющих образец. Выявление материалов, наиболее перспективных для применения в качестве автоэмиссионных катодов и электродов суперконденсаторов.

Научная новизна работы. a. Впервые продемонстрирована возможность использования тартрата кальция, допированного переходным металлом (М = Fe, Со, Ni и их смеси), в качестве предшественника каталитической системы М / СаО для синтеза УНТ методом CVD. b. Методами рентгеновской фотоэлектронной спектроскопии (РФЭС) и рентгеновской спектроскопии поглощения (XANES — X-ray Absorption Near Edge Structure, EXAFS — Extended X-ray Absorption Fine Structure) установлено, что в результате термолиза предшественника образуется композит, состоящий из СаО и наночастиц переходного металла или оксида металла в зависимости от среды разложения. Для восстановления оксида до металлического состояния необходимо использование водорода или углеводородных соединений в процессе CVD-синтеза. c. Показано, что закрепление каталитической частицы на носителе СаО приводит к формированию индивидуальных нанотруб, не собранных в пучки. Обнаружена корреляция между размерами металлических частиц, сформированных при разложении предшественника каталитической системы в инертной атмосфере, и диаметром УНТ. d. Обнаружено, что система Ni-Co / СаО обладает наибольшей каталитической активностью в реакциях разложения С2Н5ОН и СН4 по отношению к осаждению углерода. e. Установлено, что концентрация переходного металла в каталитической системе М / СаО влияет на структуру углеродных частиц, образующихся в процессе CVD. При концентрации переходного металла 4 ат.% формируются трубчатые частицы (УНТ или нановолокна), уменьшение концентрации переходного металла до 1 ат.% приводит к синтезу пористого углеродного материала из С2Н5ОН и УНТ малого диаметра из СН4. f. Продемонстрировано, что порог появления автоэмиссионного тока понижается с уменьшением диаметра УНТ (материалы, полученные из С2Н5ОН или СН4) или при внедрении небольшого количества азота в стенки УНТ (материалы, полученные из CH3CN). g. Установлено, что пористый углеродный материал, синтезированный из С2Н5ОН с использованием каталитической системы Fe / СаО с концентрацией переходного металла меньше 1 ат.% обладает большой удельной поверхностью.

900 м2/г), что обеспечивает высокую электрохимическую емкость материала (до 340 Ф/г) в водном электролите.

Практическая значимость. Результаты систематического исследования каталитического роста УНТ являются основой для целенаправленного синтеза материалов, обладающих заданными эмиссионными и электрохимическими свойствами, и могут быть использованы для разработки технологии крупномасштабного производства этих материалов.

На защиту выносятся:

— способ получения УНТ методом CVD с использованием каталитической системы М / СаО, полученной в результате термического разложения тартрата кальция, допированного переходным металлом;

— экспериментальные данные по физико-химическому изучению состава и строения тартрата кальция, допированного переходным металлом Fe, Со, Ni и их смеси);

— экспериментальные данные о продуктах термического разложения тартрата кальция, допированного переходным металлом, в окислительной и восстановительной атмосферах;

— результаты исследования строения углеродных материалов, полученных методом CVD, с использованием каталитической системы М / СаО;

— экспериментальные данные исследований автоэмиссионных и электрохимических свойств полученных углеродных наноматериалов.

Личный вклад автора заключается в получении тартратов кальция, допированных переходными металлами (Fe, Со, Ni и их смеси), проведении синтеза CVD с целью получения углеродных материалов, исследовании автоэмиссионных характеристик образцов. Соискатель участвовал в обсуждении и анализе данных, полученных физико-химическими методами. Написание научных публикаций проводилось совместно с соавторами работ и научными руководителями.

Апробация работы. Основные результаты диссертационной работы были представлены на V семинаре СО РАН — УрОРАН «Термодинамика и материаловедение» (Новосибирск, 2005), III Всероссийской конференции молодых ученых «Фундаментальные проблемы новых технологий в 3-м тысячелетии» (Томск, 2006), III Всероссийской конференции (с международным участием) «Химия поверхности и нанотехнология» (Хилово, 2006), II Всероссийской конференции по наноматериалам «НАНО — 2007» (Новосибирск, 2007), 9-й международной конференции по науке и применению УНТ, (Монпелье, Франция, 2008), 4-м совместном Российско-китайском семинаре по современным полупроводниковым материалам и устройствам (Новосибирск, 2009), международной конференции Carbon 09 (Биарритц, Франция, 2009).

Публикации. По материалам диссертации опубликовано 3 статьи, 8 тезисов всероссийских и международных конференций, получен 1 патент.

Структура и объем диссертации

Диссертация состоит из введения, четырех глав, выводов и списка цитируемой литературы. Работа изложена на 141 странице и включает 4 таблицы, 50 рисунков и библиографию из 168 наименований.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ И ВЫВОДЫ.

1. Предложен способ синтеза УНТ методом CVD с использованием каталитической системы, полученной в результате термического разложения тартрата кальция, допированного Ni, Со, Fe и их смесями.

2. Впервые проведено исследование продуктов термолиза тартрата кальция, допированного переходными металлами, в инертной и окислительной атмосфере. Показано, что в результате разложения в инертной атмосфере формируются преимущественно металлические наночастицы со средним размером не более 6,5 нм, равномерно распределенные на носителе СаО. Термолиз допированного тартрата кальция на воздухе приводит к образованию системы оксиды металла / СаО с большим разбросом каталитических наночастиц по размеру.

3. Проведена оптимизация основных параметров синтеза (время предподготовки катализатора, температура синтеза, состав катализатора) для получения УНТ диаметром до 20 нм из С2Н5ОН. Обнаружено, что для образования металлических кластеров, достаточных для каталитического роста УНТ, требуемое время термолиза тартрата кальция, допированного Ni, Со, Fe и их смесями, в атмосфере аргона составляет -10 мин. Оптимальная температура CVD процесса для получения материала, обогащенного УНТ, составляет ~ 800 °C. Смешанная система Ni-Co / СаО позволяет получать УНТ наименьшего диаметра (~2 нм).

4. Показана необходимость использования газообразного водорода при CVD синтезе УНТ для активации катализатора, полученного в результате термоокислительного разложения тартрата кальция, допированного переходными металлами. Обнаружено формирование одноили двухслойных УНТ из метана при использовании Со / СаО и Fe-Co / СаО каталитических систем.

5. Проведены систематические исследования вольтамперных характеристик полевой эмиссии полученных образцов. Наименьшие значения порогового поля обнаружены для углеродных материалов, содержащих УНТ малого диаметра, синтезированных из С2Н5ОН при 800 °C с использованием Ni-Co / СаО системы и из СН4 при 1000 °C с использованием Fe-Co / СаО системы.

6. Впервые показана возможность синтеза пористого углеродного материала с использованием Fe/CaO каталитической системы, содержащей ат.% переходного металла. Средний размер пор составляет 20 нм, удельная У поверхность материала ~ 900 м /г.

7. Электрохимические измерения углеродных материалов в водных электролитах показали перспективность их использования в качестве электродного материала в суперконденсаторах. Удельная емкость мезопористого углерода в щелочной и кислой среде составила, соответственно, 180 и 340 Ф/г.

Показать весь текст

Список литературы

  1. .В. Основы общей химии. 3-е изд., испр. и доп. М.: Химия, 1973. — 656 с.
  2. Krolo H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. C60: buckminsterfollerene//Nature. 1985. — Vol. 318. — P. 162−163.
  3. Iijima S. Helical microtubules of graphitic carbon //Nature. 1991. -Vol. 354.-P. 56−58.
  4. Monthioux M., Kuznetsov V.L. Who should be given the credit for the discovery of carbon nanotubes? // Carbon. 2006. -Vol. 44. — Issue 9 — P. 1621−1623.
  5. В.Б. Пористый углерод. Новосибирск: ИК СО РАН, 1995.-235 с.
  6. Iijima S., Ichihashi Т. Single-shell carbon nanotubes of 1-nm diameter//Nature. 1993. — Vol. 363. — P. 603−605.
  7. B.H., Домантовский А. Г., Елецкий A.B., Образцова Е. В., Пернбаум А. Г., Приходько К. Е., Терехов С. В. Получение однослойных нанотрубок с помощью катализаторв на основе Ni/Cr // Физика твердого тела. 2002. — Т. 44. — Вып. 4. — С. 630−633.
  8. Э.Г. Нанотрубки и фуллерены: Учеб. пособие. / Э. Г. Раков. М.: Логос, 2006. — 376 с.
  9. Guo Т., Nikolaev P., Thess A., Colbert D.T., Smalley R.E. Catalytic growth of single-walled nanotubes by laser vaporization // Chemical Physics Letters. 1995. — Vol. 243. -Issues 1−2. — P. 49−54.
  10. Lin X., Rummeli M.H., Gemming Т., Pichler Т., Valentin D., Ruani G., Taliani C. Single-wall carbon nanotubes prepared with different kinds of Ni-Co catalysts: Raman and optical spectrum analysis // Carbon. 2007. — Vol. 45. -Issue 1. — P. 196−202.
  11. Kinloch I.A., Chen G.Z., Howes J., Boothroyd C., Singh C., Fray D.J., Windle A.H. Electrolytic, ТЕМ and Raman studies on the production of carbon nanotubes in molten NaCl // Carbon. 2003. — Vol. 41. — Issue 6. — P. 1127−1141.
  12. Pan C., Liu Y., Cao F., Wang J., Ren Y. Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flame // Micron. -2004. Vol. 35. — Issue 6. — P. 461−468.
  13. Vander Wal R.L. Flame synthesis of Ni-catalyzed nanofibers // Carbon. 2002. — Vol. 40. — Issue 12. — P. 2101−2107.
  14. Manciu F.S., Camacho J., Choudhuri A.R. Flame synthesis of multi-walled carbon nanotubes using CH4-H2 fuel blends // Fullerenes, Nanotubes and Carbon Nanostructures. 2008. — Vol. 16. — Issue 4. — P. 231−246.
  15. Vander Wal R.L., Berger G.M., Hall L.J. Single-walled carbon nanotube synthesis via a multi-stage flame configuration // Journal of Physical Chemistry B. 2002. — Vol. 106. — Issue 14. — P. 3564−3567.
  16. Flahaut E., Peigney A., Basca W.S., Basca R.R., Laurent C. CCVD synthesis of carbon nanotubes from (Mg, Co, Mo)0 catalysts: influence of the proportion of cobalt and molybdenum // Journal of Materials Chemistry. 2004. -Vol. 14. — Issue 4. — P. 646−653.
  17. Yu Z., Chen D., Totdal В., Holmen A. Effect of support and reactant on the yield and structure of carbon growth by chemical vapor deposition // Journal of Physical Chemistry B. 2005. Vol. 109. — Issue 13. — P. 6096−6102.
  18. Wu W.-T., Chen K.-H., Hsu C.-M. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating // Nanotechnology. 2006. Vol. 17. — Issue 18. — P. 45 424 547.
  19. Cheung C.L., Kurtz A., Park H., Lieber C.M. Diameter-controlled synthesis of carbon nanotubes // Journal of Physical Chemistry B. 2002. — Vol. 106.-Issue 10.-P. 2429−2433.
  20. Xu W., Kyotani Т., Pradhan B.K., Nakajima Т., Tomita A. Synthesis of aligned carbon nanotubes with double coaxial structure of nitrogen-doped and undoped multiwalls // Advanced Materials. 2003. — Vol. 15. — Issue 13. — P. 1087−1090.
  21. Deck C.P., Vecchio K. Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams // Carbon. 2006. — Vol. 44. — Issue 2. — P. 267−275.
  22. Ago H., Ohshima S., Uchida K., Komatsu Т., Yumura M. Carbon nanotube synthesis using colloidal solution of metal nanoparticles // Physica B: Condensed Matter. 2002. — Vol. 323. — Issues 1−4. — P. 306−307.
  23. Wang Z., Wu Q., Zhang F.-Y., Cui Y.-Y. Synthesis of multi-walled carbon nanotube bundles with uniform diameter // Materials Letters. 2007. Vol. 61.-Issues 8−9. P. 1955−1958.
  24. Montoro A.L., Corio P., Rosolen J.M. A comparative study of alcohols and ketones as carbon precursor for multi-walled carbon nanotube growth // Carbon. 2007. — Vol. 45. — Issue 6. P. 1234−1241.
  25. Inoue S., Nakajima Т., Kikuchi Y. Synthesis of single-wall carbon nanotubes from alcohol using Fe/Co, Mo/Co, Rh/Pd catalysts // Chemical Physics Letters. 2005. — Vol. 406. — Issues 1−3. — P. 184−187.
  26. Zheng L., Liao X., Zhu Y.T. Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition // Materials Letters. 2006. Vol. 60. — Issue 16. — P. 1968−1972.
  27. Nikolaev P., Bronikowski M.J., Bradley R.K., Rohmund F., Colbert D.T., Smith K.A., Smalley R.E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide // Chemical Physics Letters. 1999. -Vol. 313. — Issues 1−2. — P. 91−97.
  28. Yu Z., Chen D., Totdal В., Holmen A. Effect of catalyst preparation on the carbon nanotube growth rate // Catalysis today. 2005. — Vol. 100. — Issues 3−4.-P. 261−267.
  29. Xu X.-J., Huang S.-M. Carbon dioxide as a carbon source for synthesis of carbon nanotubes by chemical vapor deposition // Materials Letters. -2007. Vol. 61. -Issue 24. — P. 4235−4237.
  30. Jiang Z., Song R., Bi W., Lu J., Tang T. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion // Carbon. 2007. — Vol. 45. — Issue 2. — P. 449−458.
  31. Rana R.K., Koltypin Y., Gedanken A. Synthesis of carbon nanotubes from in situ generated cobalt nanoparticles and carbon monoxide // Chemical Physics Letters. 2001. — Vol. 344. — Issues 3−4. — P. 256−262.
  32. Huang J.Q., Zhang Q., Wei F., Qian W.Z., Wang D.Z., Hu L. Liquefied petroleum gas containing sulfur as the carbon source for carbon nanotube forests // Carbon. 2008. — Vol. 46. — Issue 2. — P. 291−296.
  33. Musso S., Porro S., Giorcelli M., Chiodoni A., Ricciardi C.,
  34. Tagliaferro A. Macroscopic growth of carbon nanotube mats and their mechanical properties // Carbon. 2007. — Vol. 45. — Issue 5. — P. 1133−1136.
  35. Liu B.C., Lee T.J., Jung S.I., Park C.Y., Choa Y.H., Lee C.J. Synthesis of well-aligned carbon nanotubes with open tips // Carbon. 2005. -Vol. 43. — Issue 7. — P. 1341−1346.
  36. Mi W., Lin Y.S., Li Y. Vertically aligned carbon nanotube membranes on macroporous alumina supports // Journal of Membrane Science. -2007. Vol. 304. — Issues 1−2. p. 1−7.
  37. Smith D.K., Lee D.C., Korgel B.A. High yield multiwall carbon nanotube synthesis in supercritical fluids // Chemistry of Materials. 2006. — Vol. 18.-Issue 14.-P. 3356−3364.
  38. Ichi-oka H., Higashi N., Yamada Y., Miyake Т., Suzuki T. Carbon nanotube and nanofiber syntheses by the decomposition of methane on group 8−10metal-loaded MgO catalysts // Diamond and Related Materials. 2007. — Vol. 16. -Issues 4−7. — P. 1121−1125.
  39. Takagi D., Homma Y., Hibino H., Suzuki S., Kobayashi Y. Single-walled carbon nanotube growth from highly activated metal nanoparticles // Nanoletters. 2006. — Vol. 6. — Issue 12. — P. 2642−2645.
  40. Borowiak-Palen E., Rummeli M.H. Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes // Superlattices and Microstructures. -2009. Vol. 46. — Issues 1−2. — P. 374−378.
  41. Ч. Практический курс гетерогенного катализа. Пер. с англ. М.: Мир, 1984. — 520 с.
  42. Kitiyanan В., Alvarez W.E., Harwell J.H., Resasco D.E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts // Chemical Physics Letters. 2000. — Vol. 317. -Issues 3−5. — P. 497−503.
  43. Oh B.S., Min Y.-S., Bae E.J., Kang D., Jung I.S., Hwang C.S., Kim Y.K., Park W. Fabrication of suspended single-walled carbon nanotubes via a direct lithographic route // Journal of Materials Chemistry. 2006. — Vol. 16. -Issue 2.-P. 174−178
  44. Takenak S., Iguchi Т., Tanabe E., Matsune H., Kishid M. Formation of carbon nanotubes through ethylene decomposition over supported Pt catalysts and silica-coated Pt catalysts // Carbon. 2009. — Vol. 47. — Issue 5. — P. 1251— 1257.
  45. Harutyunyan A.R., Pradhan B.K., Kim U.J., Chen G., Eklund P.C. CVD Synthesis of Single Wall Carbon Nanotubes under «Soft» Conditions // Nano Letters. 2002. — Vol. 2. — Issue 5. — P. 525−530
  46. Yu G., Gong J., Zhu D., He S., Zhu Z. Synthesis of carbon nanotubes over rare earth zeolites at low temperature // Carbon. 2005. — Vol. 43. — Issue 14.- P. 3015−3017.
  47. Chai S.-P., Zein S.H.S., Mohamed A.R. The effect of reduction temperature on Co-Mo/Al203 catalysts for carbon nanotubes formation // Applied Catalysis A: General. 2007. — Vol. 326. — Issue 2. — P. 173−179.
  48. Ни H., Zhao В., Itkis M.E., Haddon R.C. Nitric Acid Purification of Single-Walled Carbon Nanotubes // Journal of Physical Chemistry B. 2003. -Vol. 107. — Issue 50. — P. 13 838−13 842.
  49. Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C. Chemical oxidation of multiwalled carbon nanotubes // Carbon. 2008. — Vol. 46. — Issue 6. — P. 833−840.
  50. Shajahan Md., Mo Y.H., Fazle Kibria A.K.M., Kim M.J., Nahm K.S. High growth of SWNTs and MWNTs from C2H2 decomposition over Co-Mo/MgO catalysts // Carbon. 2004. Vol. 42. — Issue 11. — P. 2245−2253.
  51. Balogh Z., Halasi G., Korbely В., Hernadi K. CVD-synthesis of multiwall carbon nanotubes over potassium-doped supported catalysts // Applied Catalysis A: General. 2008. — Vol. 344. — Issue 1−2. — P. 191−197.
  52. Liao X.Z., Serquis A., Jia Q.X., Peterson D.E., Zhu Y.T., Xu H.F. Effect of catalyst composition on carbon nanotube growth // Applied Physics Letters. 2003. — Vol. 82. — Issue 16. — P. 2694−2696.
  53. Wang X.Q., Li L., Chu N.J., Liu Y.P., Jin H.X., Ge H.L. Lamellar Fe/A1203 catalyst for high-yield production of multi-walled carbon nanotubes bundles // Materials Research Bulletin. 2009. — Vol. 44. — Issue 2. — P. 422−425.
  54. Э.Г. Получение тонких углеродных нанотрубок каталитическим пиролизом на носителе // Успехи химии. 2007. — Т. 76. -Вып. 1. — С. 3−26.
  55. Li Y., Zhang Х.В., Tao X.Y., Xu J.M., Chen F., Shen L.H., Yang X.F., Liu F., Van Tendeloo G., H.J. Geise. Single phase MgMo04 as catalyst for the synthesis of bundled multi-wall carbon nanotubes by CVD // Carbon. 2005. -Vol. 43.-Issue 6.-P. 1325−1328.
  56. Eftekhari A., Jafarkhani P., Moztarzadeh F. High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition // Carbon. 2006. — Vol. 44. — Issue 7. — P. 1343−1345.
  57. Xiang X., Zhang L., Hima H. L, Li F., Evans D.G. Co-based catalysts from Co/Fe/Al layered double hydroxides for preparation of carbon nanotubes // Applied Clay Science. 2008. — Vol. 42. — Issues 3−4. — P. 405−409.
  58. Shao M., Wang D., Yu G., Ни В., Yu W., Qian Y. The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation // Carbon. 2004. — Vol. 42. — Issue 1. — P. 183−185.
  59. Xu C., Zhu J. One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis // Nanotechnology. 2004. — Vol. 15. — Issue 11. — P. 1671−1681.
  60. Coquay P., De Grave E., Peigney A., Vandenberghe R.E., Laurent C. Carbon nanotubes by a CVD vethod. Part I: synthesis and characterization of the (Mg, Fe)0 catalysts // Journal of Physical Chemistry B. 2002. — Vol. 106. — Issue 51 -P. 13 186−13 198.
  61. Coquay P., Peigney A., De Grave E., Vandenberghe R.E., Laurent C. Carbon Nanotubes by a CVD Method. Part II: Formation of nanotubes from (Mg, Fe)0 catalysts // Journal of Physical Chemistry B. 2002. — Vol. 106. — Issue 51 -P. 13 199−13 210.
  62. B.B., Буянов P.A. Образование углеродных нитей при каталитическом разложении углеводородов на металлах подгруппы железа и их сплавах// Успехи химии. 2000. — Т. 69. — Вып. 7. — С. 675−692.
  63. Р.А. Закоксование катализаторов. Новосибирск: Наука, 1983.- 208 с.
  64. Deck С.Р., Vecchio К. Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams // Carbon. 2006. — Vol. 44.- Issue 2. — p. 267−275.
  65. Qin L.C., Iijima S. Fibrilliform growth of carbon nanotube // Materials Letters. 1997. — Vol. 30. — P. 311−314.
  66. Ю.В., Кузнецов B.JI., Усольцева A.H. Механизм образования углеродных отложений на поверхности металлических катализаторов. I. Термодинамический анализ стадии зародышеобразования // Кинетика и катализ. 2003. — Т. 44. — Вып. 5. — С. 791−800.
  67. П.В., Тарасов Б. П. Каталитический синтез и свойства углеродных волокон и нанотрубок // International Scientific Journal for Alternative Energy and Ecology. 2004. — T. 10. — Вып. 18. — С. 24−40.
  68. Harutyunyana A.R., Tokune Т., Mora E. Liquid as a required catalyst phase for carbon single-walled nanotube growth // Applied Physics Letters. 2005.-Vol. 87.-Issue 5. — P. 51 919−1-51 919−3.
  69. O.M., Куковицкий Е. Ф., Львов С. Г., Саинов Н. И., Шустов В. А. Электронная дифракция вершинных каталитических частиц в углеродных нанотрубках // Физика твердого тела. 2002. — Т. 44. — Вып. 3. -С. 455−456.
  70. Saito R., Fujita М., Dresselhaus G., Dresselhaus M.S. Electronic structure of chiral graphene tubules // Applied Physics Letters. 1992. — Vol. 60. -Issue 18.-P. 2204−2206.
  71. A.B. Транспортные свойства углеродных нанотрубок // Успехи физических наук. 2009. — Т. 179. — Вып. 3. — С. 225−242.
  72. А.В. Механические свойства углеродных наноструктур и материалов на их основе // Успехи физических наук. 2007. — Т. 177. — Вып. 3. — С. 233−274.
  73. А.В. Углеродные нанотрубки и их эмиссионные свойства // Успехи физических наук. 2002. — Т. 172. — Вып. 4. — С. 401−438.
  74. А.В. Сорбционные свойства углеродных структу // Успехи физических наук. 2004. — Т. 174.-Вып. 11. — С. 1191−1231.
  75. Baker F.S., Osnorn A.R., Williams J. Field Emission from Carbon Fibres: A New Electron Source // Nature. 1972. — Vol. 239. — P. 96−97.
  76. Komarov F.F., Mironov A.M. Carbon Nanotubes: Present and Future // Physics and chemistry of solid state. 2004. — Vol. 5. — Issue 3. — P. 411−429.
  77. Sinitsyn N.I., Gulyaev Yu.V., Torgashov G.V., Chernozatonskii
  78. Xu N.S., Huq S. E. Novel cold cathode materials and applications // Materials Science and Engineering. 2005. — Vol. 48. — Issue 2. — P. 47−189.
  79. Obraztsov A.N., Zakhidov ALA. Low-field electron emission from nano-carbons // Diamond and Related Materials. 2004. — Vol. 13. — Issues 4−8. -P. 1044−1049.
  80. Bonard M., Dean K. A., Coll B. F., Klinke C. Field emission of individual carbon nanotubes in the scanning electron microscope // Physical Review Letters. 2002. — Vol. 89. — Issue 19. — P. 197 602.
  81. De Jonge N., Allioux M., Doytcheva M., Kaiser M., Тео K.B.K., Lacerda R.G., Milne W.I. Characterization of the field emission properties of individual thin carbon nanotubes // Applied Physics Letters. 2004. — Vol. 85. -Issue 9.-P. 1607−1609.
  82. Fransen M.J., van Rooy Th.L., Kruit P. Field emission energy distributions from individual multiwalled carbon nanotubes // Applied Surface Science. 1999. — Vol. 146. — Issue 1. — P. 312−327.
  83. Chen Y., Shaw D.T., Guo L. Field emission of different oriented carbon nanotubes // Applied Physics Letters. 2000. — Vol. 76. — Issue 17. — P. 2469−2471.
  84. Cao A.Y., Zhang X.F., Xiao X., Ding M.Q., Zhuang D.M., Xu C.L., Wei B.Q., Liang J., Wu D.H. Field emission behavior of aligned carbon nanofiber arrays // Materials Letters. 2001. — Vol. 51, — Issue 5. — P. 371−374.
  85. Yoon S. W., Y. Kim Sh., Park J., Park Ch. J., Lee Ch. J. Electronic Structure and Field Emission of Multiwalled Carbon Nanotubes Depending on Growth Temperature // The Journal of Physical Chemistry B. 2005. — Vol. 109. — Issue 43. — P. 20 403−20 406.
  86. Jang H. S., Lee H.-R., Kim D.-H. Field emission properties of carbon nanotubes with different morphologies // Thin Solid Films. 2006. — Vol. 500. -Issue l.-P. 124−128.
  87. Bonard J.-M., Salvetat J.-P., Stockli Th., Forro L., Chatelain A. Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism // Applied Physics A. 1999. — Vol. 69. — Issue 3. — P. 245 254.
  88. Bonard J.-M., Maier F., Stockli Th., Chatelain A., de Heer W. A., Salvetat J.-P., Forro L. Field emission properties of multiwalled carbon nanotubes //Ultramicroscopy. 1998. — Vol. 73. — Issues 1−4. — P. 7−15.
  89. Bonard J.-M., Salvetat J.-P., Stockli Th., de Heer W. A., Forro L., Chatelain A. Field emission from single-wall carbon nanotube films // Applied Physics Letters. 1998. — Vol. 73. — Issue 7. — P. 918−920.
  90. Lovall D., Buss M., Graugnard E., Andres R. P., Reifenberger R. Electron emission and structural characterization of a rope of single-walled carbon nanotubes // Physical Review B. 2000. — Vol. 61. — Issue 8. — P. 5683−5681.
  91. Collins Ph. G., Zettl A. Unique characteristics of cold cathode carbon-nanotube-matrix field emitters // Physical Review B. 1997. — Vol. 55. -Issue 15.-P. 9391−9399.
  92. Saito Y., Tsujimoto Y., Koshio A., Kokai F. Field emission patterns from multiwall carbon nanotubes with a cone-shaped tip // Applied Physics Letters- 2007. Vol. 90. — Issue 21. — P. 213 108.
  93. Xu D., Guo G., Gui L., Tang Y., Shi Z., Jin Zh., Gu Zh., Liu W., Li X., Zhang G. Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates // Applied Physics Letters. 1999. — Vol. 75.-Issue 4.-P. 481−483.
  94. Zhang J., Wang X., Yang W., Yu W., Feng Т., Li Q., Liu X., Yang Ch. Interaction between carbon nanotubes and substrate and its implication on field emission mechanism // Carbon. 2006. — Vol. 44. — Issue 3. — P. 418−422.
  95. Sheng L.M., Liu M., Liu P., Wei Y., Liu L., Fan S.S. Field emission from self-assembly structure of carbon-nanotube films // Applied Surface Science.- 2005. Vol. 250. — Issue 1. — P. 9−13.
  96. Bonard J.-M., Weiss N., Kind H., Stockli Th., Forro L., Kern K., Chatelain A. Tuning the field emission properties of patterned carbon nanotube films//Advanced Materials.-2001.-Vol. 13. Issue 3. — P. 184−188.
  97. Doytcheva M., Kaiser M., Verheijen M. A., Reyes-Reyes M., Terrones M., de Jonge N. Electron emission from individual nitrogen-doped multi-walled carbon nanotubes // Chemical Physics Letters. — 2004. Vol. 396. — Issues 1−3.-P. 126−130.
  98. Zhao J.G., Zhang Q., Zhang H., Yang G., Zhou O., Qin L.-Ch., Tang J. Field emission of electrons from a Cs-doped single carbon nanotube of known chiral indices // Applied Physics Letters. 2006. — Vol. 89. — Issue 26. — P. 263 113.
  99. Frackowiak E. Carbon materials for supercapacitor application // Physical Chemistry Chemical Physics. 2007. — Vol. 9. — Issue 15. — P. 17 741 785.
  100. А.И. Электрохимические суперконденсаторы: текущее состояние и проблемы развития // Электрохимическая энергетика. 2006. -Т. 6.-Вып. 3.-С. 146−149.
  101. Deng M., Yang В., Shang S., Hu Y. Studies on CNTs-Mn02 nanocomposite for supercapacitors // Journal of Materials Science. 2005. — Vol. 40. — Issue 4. — P. 1017−1018.
  102. Du В., Jiang Q., Zhao X.F., Huang В., Zhao Y. Preparation of PPy/CNT composite applications for supercapacitor electrode material // Materials science forum. 2009. — Vol. 610−613. — P. 502−505.
  103. Fang W.-C., Chen K.-H., Chen L.-C. Superior capacitive property of Ru02 nanoparticles on carbon nanotubes incorporated with nitrogen // Nanotechnology. 2007. — Vol. 18. — Issue 48. — P. 485 716.1−485 716.4.
  104. Torres M.E., Lopez Т., Stockel J., Solans X., Garcia-Valles M., Rodriguez-Castellon E., Gonzalez-Silgo C. Structural Characterization of Doped Calcium Tartrate Tetrahydrate // Journal of Solid State Chemistry. 2002. — Vol. 163.-Issue2.-P. 491−497.
  105. Moisala A., Nasibulin A.G. Kauppinen E.I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review // Journal of Physics: Condensed Matter. 2003. — Vol. 15. — P. S3011-S3035.
  106. Л.М., Трунов В. К. Рентгенофазовый анализ. М.: Издательство московского университета, 1976. — 231 с.
  107. Ravel В., Newville М., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT // Journal of Synchrotron Radiation. 2005. — Vol. 12. — Issue 4. — P. 537−541.
  108. Newville M. IFEFFIT: interactive XAFS analysis and FEFF fitting // Journal of Synchrotron Radiation. 2001. — Vol. 8. — Issue 1. — P. 322−324.
  109. Sahaya Shajan X., Mahadevan C. FT-IR spectroscopic and thermal studies on pure and impurity added calcium tartrate tetrahydrate crystals // Crystal Research and Technology. 2005. — Vol. 40. — Issue 6. — P. 598 — 602.
  110. Usoltseva A., Kuznetsov V., Rudina N., Moroz E., Haluska M., Roth S. Influence of catalysts' activation on their activity and selectivity in carbon nanotubes synthesis // Physica Status Solidi. 2007. — Vol. 244. — Issue 11. — P. 3920−3924.
  111. Shlyakhova E., Flahaut E., Okotrub A., Bulusheva L., Yudanov N. CVD synthesis of carbon nanotubes by means of tartrate based catalyst // World Conference on Carbon (Carbon'09). Biarritz, France. — June 13−20 2009.
  112. Ducreux O., Rebours В., Lynch J., Roy-Auberger M., Bazin D. Microstructure of Supported Cobalt Fischer-Tropsch Catalysts // Oil & Gas Science and Technology. 2009. — Vol. 64. — Issue 1. — P. 49−62.
  113. А.Г. Структура и свойства азот- и металлсодержащих углеродных нанотруб, полученных химическим осаждением из газовой фазы: Дис. канд. физ.-мат. наук: 02.00.04 / ИНХ СО РАН. Новосибирск, 2006. — 117 с.
  114. Maruyama S., Kojima R., Miyauchi Y., Chiashi Sh., Kohno M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol // Chemical Physics Letters. 2002. — Vol. 360. — Issues 3−4. — P. 229−234.
  115. Shlyakhova E.V., Yudanov N.F., Shubin Yu. V., Yudanova L.I., Bulusheva L.G., Okotrub A.V. Catalytic synthesis of carbon nanotubes using Ni-and Co-doped calcium tartrates // Carbon. 47. — 2009. — pp. 1701−1707.
  116. Shlyakhova E.V., Yudanov N.F., Bulusheva L.G., Okotrub A.V. Synthesis of carbon nanotubes by CVD method using Ni- and Co-doped calcium tartrates Ninth International Conference on the Science and Application of Nanotubes. 2008. — Montpellier, France
  117. Puech P., Anwar A.W., Flahaut E., Dunstan D.J., Bassil A., Bacsa W. Raman G and D band in strongly photoexcited carbon nanotubes // Physical Review B. 2009. — Vol. 79. Issue 8.- P. 85 418.1 — 85 418.4.
  118. Hulman M., Pfeiffer R. Kuzmany H. Raman spectroscopy of small-diameter nanotubes // New Journal of Physics. 2004. — Vol. 6. — P. 1−17.
  119. McKee G.S.B., Vecchio K.S. Thermogravimetric Analysis of Synthesis Variation Effects on CVD Generated Multiwalled Carbon Nanotubes // Journal of Physical Chemistry B. 2006. — Vol. 110. — Issue 3. — P 1179−1186.
  120. Inoue S., Nakajima Т., Kikuchi Y. Synthesis of single-wall carbon nanotubes from alcohol using Fe/Co, Mo/Co, Rh/Pd catalysts // Chemical Physics Letters.-2005.-Vol. 406.-Issues 1−3.-P. 184−187.
  121. Dupuis А.-С. The catalyst in the CCVD of carbon nanotubes—a review // Progress in Materials Science. 2005. — Vol. 50. — Issue 8. — P. 929−961.
  122. Li Z., Dervishi E., Xu Y., Ma X., Saini V., Biris A.S., Little R., Biris A.R., Lupu D. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes // The journal of chemical physics. 2000. — Vol. 129. — Issue 7. — P. 74 712.
  123. Flahaut E., Peigney A., Bacsa W.S., Bacsa R.R., Laurent C. CCVD synthesis of carbon nanotubes from (Mg, Co, Mo)0 catalysis: influence of the proportions of cobalt and molybdenum // Journal of Materials Chemistry. 2004. -Vol. 14. — P. 646−653.
  124. Son S.Y., Lee Y., Won S., Lee D.H. High-Quality Multiwalled Carbon Nanotubes from Catalytic Decomposition of Carboneous Materials in Gas-Solid Fluidized Beds // Industrial Engineering Chemistry Research. 2008. — Vol. 47.-Issue 7. — P. 2166−2175.
  125. Sackett W.M. The thermal stability of methane from 600 to 1000 °C // Organic Geochemistry. 1995. — Vol. 23. — Issue 5. P. 403−406.
  126. Flahaut E., Bacsa R., Peigney A., Laurent C. Gram-scale CCVD synthesis of double-walled carbon nanotubes // Chemical communication. 2003. -P. 1442−1443.
  127. Murakami Y., Miyauchi Y., Chiashi S., Maruyama S. Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol // Chemical Physics Letters. 2003. — Vol. 374. — Issues 1−2. — P. 53−58.
  128. Song J., Wang L., Feng S., Zhao J., Zhu Z. Growth of carbon nanotubes by the catalytic decomposition of methane over Fe-Mo/Al203 catalyst: effect of temperature on tube structure // New carbon materials. 2009. — Vol. 24. -Issue4.-P. 307−313.
  129. Kitiyanan В., Alvarez W.E., Harwell J.H., Resasco D.E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts // Chemical Physics Letters. 2000. — Vol. 317. -Issues 3−5. P. 497−503.
  130. Okotrub A.V., Bulusheva L.G., Belavin V.V., Kudashov A.G., Gusel’nikov A.V. Electronic structure and field-emission properties of nitrogen-doped carbon nanotubes // Fullerenes, Nanotubes, and Carbon Nanostructures. — 2006.-Vol. 14.-P. 151−164.
  131. Nasibulin A.G., Brown D.P., Queipo P., Gonzalez D., Jiang H., Kauppinen E.I. An essential role of C02 and H20 during single-walled CNT synthesis from carbon monoxide // Chemical Physics Letters. 2006. — Vol. 417. -Issues 1−3.-P. 179−184.
  132. Amama P.B., Pint C.L., McJilton L., Kim S.M., Stach E.A., Murray P.T., Hauge R.H., Maruyama B. Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets // Nano Letters. 2009.- Vol. 9. — P. 44−49.
  133. Bulusheva L. G., Okotrub A.V., Kudashov A.G., Pazhetnov E.M., Boronin A.I., Vyalikh D.V. Encapsulation of molecular nitrogen in multiwall CNx nanotubes // Physica Status Solidi. 2007. — Vol. 244. — Issue 11. P. 4078−4081.
  134. А.В. Исследование автоэлектронной эмиссии массивов из ориентированных углеродных нанотруб: Дис. канд. физ.-мат. наук: 02.00.04 / ИНХ СО РАН. Новосибирск, 2008. — 147 с.
  135. Автор выражает искреннюю благодарность:
Заполнить форму текущей работой