Помощь в написании студенческих работ
Антистрессовый сервис

Особенности функционирования неорганической пирофосфатазы из E. coli

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Наиболее изученным ферментом этого класса является неорганическая пирофосфатаза пекарских дрожжей, для которой установлена первичная структура, сделан рентгеноструктурный анализ соразрешением в 3 А многое известно о путях регуляции активности катионами двухвалентных металлов строении активного центра и функциональной роли некоторых аминокислотных остатков. Кроме активного центра каждая… Читать ещё >

Особенности функционирования неорганической пирофосфатазы из E. coli (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений

1. Обзор литературы. Взаимодействие ионов металлов с некоторыми ферментами фосфорного обмена.

1.1. Киназы.

X.I.I. Креатинкиназа.

1.1.2. Аргининкиназа.

1.1.3. Аденилаткиназа.

1.1.4. Гексокиназа.

1.1.5. Карбаматкиназа.

1.1.6. З-Фосфоглицераткиназа.

1.1.7. Пируваткиназа

1.2. Неорганическая пирофосфатаза пекарских дрожжей.

2, Обсуждение результатов. Особенности функционировалш неорганической пирофосфатазы изе- coli

2.1, Изучение субстратной специфичности неорганической пирофосфатазы из Е. coli.

2.2, Определение числа активных центров неорганической пирофосфатазы изе. coli

2.3, Изучение кинетики гидролиза пирофосфата магния неорганической пирофосфатазой изе. coli

2.4, Изучение кинетики гидролиза пирофосфата хрома неорганической пирофосфатазой изе- coli

2.5, Изучение взаимодействия неорганической пирофосфатазы из е. coli с ионами двухвалентных металлов.

2.5.1. Взаимодействие неорганической пирофосфатазы из. е! coli с ионами магния.

2.5.2, Взаимодействие неорганической пирофосфатазы из

E, coli с катионаш цинка.

2.5.3. Взаимодействие неорганической пирофосфатазы из

Е# coli с ионами калыщя.

2.6. Ингибирование неорганической пирофосфатазы из е. coli ионами фтора.

2.7. Фосфоршшрование неорганической пирофосфатазы из е. coli ортофосфатом.

2.8. Взаимодействие неорганической пирофосфатазы из

Е# coli с имидодифосфатом и пирофосфатом хрома

2.9. Влияние имидодифосфата и пирофосфата на устойчивость неорганической пирофосфатазы из е. coli к протеолизу субтилизином.

2.10. Возможный механизм действия неорганической пирофосфатазы из Е^ coli.

3. Экспериментальная часть.

Объект настоящего исследования — неорганическая пирофосфа-таза иа Е. coli — впервые была выделена в чистом виде Д. Джос-сом с сотрудниками [i]. Фермент относится к классу глобулярных белков и обладает молекулярной массой 120 000 [2].

В 5 М гуанидинхлориде пирофосфатаза диссоциирует на 6. субъединиц, определение частичных Nи С-концевых последовательностей которых показало их химическую идентичность [з]. Получение мономерной формы неорганической пирофосфатазы в неденатурирую-щих условиях продемонстрировало, что субъединица обладает каталитической активностью [4], а образование четвертичной структуры обеспечивает большую стабильность нативного фермента по сравнению с мономером [5].

Первичная структура фермента полностью пока не определена, однако в 1984 г. стала известна непрерывная аминокислотная последовательность с I по 86: остатки и структура еще двух пептидов (23-х и 9-ти членного), которые расположены в N-концевой части молекулы и в середине ее [б].

0 строении активного центра и функциональной роли отдельных аминокислотных остатков имеется очень мало сведений. Показано, что субъединица фермента содержит два остатка цистеина, которые доступны сульфгидрильным реагентам — н-этилмалеимиду и п-оксимер-курбензоату — только после денатурации белка. Состояние сульфгид-рильных групп важно, по-видимому, для образования активного гек-самера иа субъединиц, полученных при обработке фермента 5 М гуа-нидинхлоридом [2,7]. Окисление сульфгидрильных групп или появление дисульфидной связи в субъединицах делает невозможной ренату-рацию и приводит к образованию неактивной структуры. Следует от-, метить, что нативный фермент не содержит остатков цистина. В активный центр пирофосфатазы входит, вероятно, остаток лизина. Такое заключение было сделано на основании того, что реакция фермента с 2,4,6-тринитробензолсульфокислотой (ТНБС) сопровождается полной потерей ферментативной активности. Субстрат — неорганический пирофосфат — защищает его от ингибирующего воздействия ТНБС [8].

Субстратами фермента являются неорганические пиро-, триполи-и тетраполифосфаты [э], однако гидролиз Р±-3 и Р±-4 протекает на два порядка медленнее, чем РР±-. Пирофосфатаза из е. coli не расщепляет нуклеозидции нуклеозидтрифосфаты, глюкозо-6-фосфат, п-нитрофенилфосфат, циклические трии тетраметафосфаты [f].

Фермент проявляет активность лишь в присутствии катионов двухвалентных металлов [i]. Активаторами служат ионы Мп2+, О, Ол. zn и Со, причем максимальная активность присуща катионам магния. рН-Оптимум действия фермента равен 9,1 в присутствии Mg2+ и Мп2+ и 7,5 для zn2+ и Со2+.

Кинетика гидролиза пирофосфата в присутствии ионов магния впервые была изучена Лдоссом [8], который предложил кинетическую схему реакции, согласно которой истинным субстратом является пирофосфат магния (MgPP^, а свободный пирофосфат и MggPPiвыступают конкурентными ингибиторами гидролиза субстрата. По мнению автора, о, катионы Mg^ необходимы только для образования активного субстрата — MgPPi.

Полученные Джоссом экспериментальные данные были проанализированы Рапопортом с сотрудниками [10]. Авторы пришли к выводу, что ионы металла не только участвуют в образовании истинного субстрата, но и непосредственно взаимодействуют с ферментом, и продуктивный комплекс содержит два иона металла, один из которых связан с ферментом, а другой с пирофосфатом.

Неорганические пирофосфатазы широко распространены в природеи играют важную роль в метаболизме, которая заключается прежде всего в регуляции процессов биосинтеза, протекающих с образованием неорганического пирофосфата.

Наиболее изученным ферментом этого класса является неорганическая пирофосфатаза пекарских дрожжей, для которой установлена первичная структура [II], сделан рентгеноструктурный анализ соразрешением в 3 А [12] многое известно о путях регуляции активности катионами двухвалентных металлов [13,14] строении активного центра и функциональной роли некоторых аминокислотных остатков [15−20]. Кроме активного центра каждая субъединица неорганической пирофосфатазы дрожжей имеет регуляторный центр, способный присоединять полианионы, фосфорилироваться под действием ортофосфата и АТР, причем взаимодействие фермента с молекулой АТР по регуля-торному центру активирует фермент [21−24].

Пирофосфатазы, выделенные из других источников, изучены хуже. Общей чертой этих ферментов является то, что они проявляют ферментативную активность только в присутствии катионов двухвалентных металлов [25−28]. Поэтому понимание механизма действия этого класса ферментов требует детального знания роли катионов металлов в превращении субстратов. Настоящая работа посвящена выявлению особенностей функционирования неорганической пирофосфатазы из е. coli и, прежде всего, установлению путей регуляции активности этого фермента катионами двухвалентных металлов. Отдельная часть работы направлена на установление факта существования в этом ферменте регуляторного центра и его частичную харак-теризацию.

В обзоре литературы приведены данные о взаимодействии ионов металлов с рядом фосфотрансфераз. (киназ) и представителем класса гидролаз — неорганической пирофосфатазы из дрожжей. Все эти ферменты катализируют однотипную химическую реакцию и функционируюттолько в присутствии катионов двухвалентных металлов, обнаруживая общие черты механизма действия.

вывода.

1. Изучена зависимость начальной скорости гидролиза неорганического пирофосфата и СгРР±пирофосфатазои из Е. coli в присутствии ионов Mg2+ от концентрации MgPP± и СгРР±и свободной формы ионов Mg2+. Проведен анализ результатовпредложены кинетические схемы реакции и определены значения констант, а) Установлено, что в образовании активного комплекса участвуют молекула PPi и три иона металла, б) Найдено, что один катион металла привносится с субстратом, а два других связываются с ферментом.

2. Изучена кинетика гидролиза РР.^ и СгРР±пирофосфатазои из е. coli в присутствии ионов Zn2+. а) Показано существование в субъединице фермента центра связывания катионов цинка, заполнение которого приводит к ингибированию гидролиза пирофосфата. б) Сделано предположение, что центры связывания ионов zn2+, вызывающего ингибиро-вание, и ZnPP^^ находятся в непосредственной близости друг от друга.

3. Изучено взаимодействие неорганической пирофосфатазы с ионами Mg2+, Са2+ и Zn2+ в условиях равновесия методами дифференциальной УФ-спектроскопии, равновесного диализа и протеолиза субтилизином. а) Доказано связывание ионов металла с ферментом в отсутствие субстрата. б) Установлено, что присоединение ионов металла вызывает конформационные изменения в ферменте, причем ионы Mg2+ и Са2+ приводят к аналогичным перестройкам в молекуле фермента, в) Определены константы диссоциации соответствующих комплексов, г) Найдено, что катионы Mg2+ и Zn2+ присоединяются к пирофосфатазе в трех центрах на субъединицу, а катионы Са2+ - в двух, д) Сделано предположение, что молекула фермента, состоящая из шести одинаковых субъ-ёдиниц, имеет шесть активных центров.

•4. Изучена кинетика ингибирования гидролиза MgPP± и СгРР±ионами.

Са2+. а) Установлено, что ионы Са2+ конкурируют с ионами Mg2+ по крайней мере в двух из трех возможных мест связывания, б) Найдено, что основной причиной ингибирования является заполнение одного из ¦центров на ферменте, а замещение катиона Mg2+ в составе субстрата вносит дополнительный вклад.

5. Исследовано взаимодействие неорганической пирофосфатазы из Е. coli с ионами фтора. Установлено, что ингибирование ферментативной активности обусловлено обратимым присоединением фторид-иона к фермент-субстратному комплексу.

6. Показано, что, в субъединице неорганической пирофосфатазы кроме активного центра существует центр, способный фосфорилироваться ортофосфатом. Связывание по регуляторному центру аналогов субстрата — MgPMP и CrPP^-при рН 6,5 вызывает увеличение скорости ферментативного гидролиза субстрата.

7. На основании общих закономерностей, обнаруженных при функционировании неорганических пирофосфатаз из дрожжей и e. coli, гомологии их первичной структуры и вероятном подобии в строении активных центров высказано предположение, что механизм гидролиза пирофосфата одинаков для обоих ферментов. Предложена модель переходного состояния субстрата в активном центре неорганической пирофосфатазы.

Показать весь текст

Список литературы

  1. Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 1. Purification and catalytic properties. — J. Biol. Chem., 1966, v. 241, N 9, p. 1938−1947.
  2. Wong S.C.K., Hall D.C., Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. III. Molecular weight and physical properties of the enzyme and its subunits. J. Biol. Chem., 1970, v. 245, N 17, p. 4335−4345.
  3. Burton P.M., Hall D.C., Josse Jo Constitutive inorganic pyrophosphatase of Escherichia coli. IV. Chemical studies of protein structure. J. Biol. Chem., 1970, v. 245, N 17, p. 4346−4352.
  4. A.E. Нужна ли четвертичная структура неорганической пирофосфатазе иа е. coli для цроявления каталитической активности. Дипломная работа, МГУ, Москва, 1983.
  5. Т.В. Свойства субъединицы неорганической пирофосфатазы из ev coli. Дипломная работа, МГУ, Москва, 1984.
  6. Р. Первичная структура неорганической пирофосфатазы из е. coli (письмо). 1984, напеч. на машинке. Рукопись хранится в отделе химии белка межфакультетской ПНИЛ им. А. Н. Белозерского МГУ.
  7. Wong S.C.K., Burton P.M., Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. V. Reconstitution of native enzyme particles from subunit polypeptide chains. J. Biol. Chem. 1970, v. 245, N 17, p. 4353−4357.
  8. Burton P.M., Josse J. Constitutiv inorganic pyrophosphatase of Escherichia coli. VI. Inactivation by chemical modification of lysine residues. J. Biol. Chem., 1970, v. 245, N 17, p. 43 584 364.
  9. Josse J. Constitutiv inorganic pyrophosphatase of Escherichia coli. II. Nature and binding of active substrate and the role of magnesium. J. Biol. Chem., 1966, v. 241, N 9, p. 1948−1957.
  10. Rapoport Т.A., Hohne W.E., Reich. J.G., Heitmann P., Rapoport
  11. S.M. A kinetic model for the action of the inorganic pyrophosphatase from. baker's yeast. Eur. J. Biochem., 1972, v. 26, p. 237−246.
  12. Cohen S., Sterner R., Keim P., Heinrikson R, Covalent structural analysis of yeast inorganic pyrophosphatase. -J. Biol. Chem., 1978, v. 253, N 5, p. 889−893.
  13. Э.Г., Терзян С. С., Воронова А. А., Куранова И.П.,
  14. Е.А., Вайнштейн Б. К., Хене В. Е., Хансен Г. Рентгено-структурное исследование неорганической пирофосфатазы из пекарских дрожжей. Докл. АН СССР, 1981, т. 258, № 6, с. I48I-I485.
  15. Cooperman B.S. The mechanism of action of yeast inorganicpyrophosphatase. In: Methods in enzymology/Ed. Pestka S.-N.Y., L.: Acad. Press, 1982, v. 77, p. 526−548.
  16. Биоорган, химия, 1975, т. I, В 2, с. 275−276.
  17. Avaeva S. M, Bakuleva N.P., Baratova L.A., Nazarova T.I.,
  18. Fink N.Yu. The essential activated carboxyl group of inor- 123 ganic pyrophosphatase. Biochim. Biophys. Acta, 1977, v. 482, N 1, p, 173−184.
  19. Heitman P., Mollerke M.J., Uhlig H.G. The state of tyrosinein inorganic pyrophosphatase of baker’s yeast- Acta biol. et med. german., 1972, B. 29, N 3, Z. 551−560.
  20. Negi Т., Samejiir. a Т., Irie M. Studies on the tryptophanresidues of yeast inorganic pyrophosphatase in relation to the enzyme activity. J. Biochem., 1972, v. 11, N 1, p. 29−38.
  21. В.А., Медведева И. В., Аваева C.M. Участие лизиновыхостатков неорганической пирофосфатазы из дрожжей в проявлении каталитической активности. Докл. АН СССР, 1973, т. 221, В 3, с. 494−496.
  22. Н.П., Костенко Е. Б., Байков А. А., Аваева С. М. Обнаружение и характеристика дополнительного центра присоединения субстрата и его аналогов у неорганической пирофосфатазы. -Биохимия, 1981, т. 46, $ 5, с. 832−840.
  23. А.В. АТР как активатор неорганической пирофосфатазы изпекарских дрожжей. В сб.: Материалы конференции молодых ученых химического факультета МГУ, 1983, В Ш, с. 448−451. Деп. в ВИНИТИ 28 янв. 1983, В 7085−83
  24. Bakuleva И.P., Nazarova T. I, Baykov А.А., Avaeva S.M. Thephosphorylation of yeast inorganic pj^rophosphatase and formation of stoichiometric amounts of enzyme-bound pyrophosphatase. FEBS Lett., 1981, v. 124, N 2, p. 245−247.
  25. Bakuleva IT.P., Baykov A.A., Kasho V.N., Nazarova T.I., Avaeva
  26. Кашо B. H, Дуженко B.C., Аваева C.M. Каталитические свойстватрех изоферментов, обладающих пирофосфатазной активностью, из пивных дрожжей. Биохимия, 1978, т. 43, $ I, с. 50−57.
  27. Horn A., Bornig Н., Thiele G. Allosteric properties of2+ the Mg -dependent inorganic pyrophosphatase in mouse liver cytoplasm. Eur. J. Biochem., 1967, v. 2, N 2, p. 243−249.
  28. Т., Тэлака M., Hayashi M. Effect of free magnesiumand salts on the inorganic pyrophosphatase purified from a slightly halophilic vibrio alginolyticus. Biochim. Bio-phys. Acta, 1973, v. 327, N 2, p. 490−500.
  29. А. Биохимия. M., Мир, 1976, с, 353−354.
  30. Hansen D.E., Kno?/les J.R. The stereochemical course of thereaction catalyzed by creatine kinase. J. Biol. Ghem., 1981, v. 256, N 12, p. 5967−5969.
  31. Lowe G. Ghiral 18o) phosphate esters. Accounts
  32. Ghem. Res., 1983, v. 16, N 7, p. 244−251.
  33. Orr G.A., Simon J., Jones S.R., Chin G.J., Knowles J.R.1 я
  34. Adenosine 5'-0-(^- o. ^f-thio)triphosphate chiral at the- 125 -phosphorus: stereochemical consequences of reactions catalyzed by pyruvate kinase, glycerol kinase and hexokinase.. Proc. Natl. Acad. Sci USA, 1978, v. 75, N 5, p. 2230−2233.
  35. О’Сулливан. Киназы. В кн.- «Неорганическая биохимия», М.,
  36. Мир, 1978, т. I, с. 661−687.
  37. Э.А. Изучение роли металла в реакциях неорганическойпирофосфатазы дрожжей. Дис. канд. хим. наук — Москва, 1974.
  38. Cohn М., Hunghes T.R. Nuclear magnetic resonance spectra ofadenosine di- and triphosphate. II. Effect of completing with divalent metal ions. J. Biol. Ghem., 1962, v. 237, N 1 p. 176−181.31
  39. E.K., Cohn M. ^ P Nuclear magnetic resonance spectraof the thiophosphate analogues of adenine nucleotides- effects of pH and I"lg2+ binding. Biochemistry, 1978, v. 17, N 4, p. 652−657.
  40. Huang S.L., Tsai M.-D. Does the magnesium (II) ion interactwith the Л -phosphate of adenosine triphosphate? In investigation by oxygen -17 nuclear magnetic resonance. Biochemistry, 1982, v. 21, N 5, p. 951−959.
  41. Merritt E.A., Sundaralingam M., CornAus R.D., Cleland W. W,
  42. X-ray crystal and molecular structure and absolute configuration of (dihydrogen tripolyphosphato) tetraamrainecobalt (III) monohydrate, CoCNH^^P^O.jq^O. A model for a metal nucleoside polyphosphate complex. Biochemistry, 1978, v. 17, N 16, p. 3274−3278.
  43. Dunaway-Mariano D., Cleland W.W. Preparation and propertiesof chromium (III) adenosine 5'-triphosphate, chromium (III) adenosine 5'-diphosphate, and related chromium (III) complexes. Biochemistry, 1980, v. 19, N 7, p. 1496−1505.- 126
  44. Cornelius R.D., Cleland Y/.W, Substrate activity of (adenosine triphosphate) tetraamminecobalt (III) with yeast hexoki-nase and separation of diastereomers using the enzyme. -Biochemistry, 1978, v. 17, If 16, p. 3279−3286.
  45. Janson G.A., Gleland W.W. The specificity of chromium nucleotides as inhibitors of selected kinases. J. Biol. Chem., 1974, v. 249, N 8, p. 2572−2574.
  46. Armbruster D.A., Rudolph P.B. Rat liver pyruvate carboxylaseinhibition by chromium nucleotide complexes. J. Biol. Chem., 1976, v. 251, IT 2, p. 320−323.
  47. Raushel P.M., Cleland W.W. Bovine liver fructokinase: purification and kinetic properties. Biochemistry, 1977, v. 16, IT 10, p. 2169−2180.
  48. Eckstein P., Goody R.S. Synthesis and properties of diastereoisomers of adenosine 5e-(0−1-thiotriphosphate) and adenosine 5'-(0−2-thiotriphosphate). Biochemistry, 1976, v. 15, N 8, p. 1685−1691.
  49. Eckstein P. Phosphorothioate analogues of nucleotides.
  50. Accounts Chem. Res., 1979, v. 12, N 6, p. 204−210.
  51. Colin M. Some properties of the phosphorothioate analogsof adenosine triphosphate as substrates of enzymic reactions. Accounts Chem. Res., 1982, v. 15, N 10, p. 326−332.
  52. Kalbitzer H.R., Marquetant R., Connolly B.A., Goody R.S.
  53. Webb LI.R., Ash D.E., Leyh T.S., Trentham D.K., Reed G.H.
  54. Electron paramagnetic resonance studies of Mn (II) complexes with myosin subfragment 1 and oxygen 17-labeled ligands.- J. Biol. Chem., 1982, v. 257, N 6, p. 3068−3072.
  55. Wittinghofer A., Goody R.S., Roesch P., Kalbitzer H.R. The2+structure of the EP’Tu^GDP^Me complex. Eur. J. Biochem., 1982, v. 124, N 1, p. 109−115.
  56. Dawson K.M., Eppenberger Y.M., Kaplan 11.0. The comparativeenzymology of creatine kinases. J. Biol" Chem., 1967, v. 242, N 2, p. 210−217.- 128
  57. Burgers P.M.J., Eckstein P. Structure of the metal nucleotide complex in the creatine kinase reaction. A study with diastereomeric phosphorothiate analogs of adenosine di-and triphosphate. J. Biol. Chem., 1980, v. 255, N 17, p. 8229−8233.
  58. J.P., 0'Sullivan W.J., Ogston A.G. Kinetic studiesof the activation of creatine phosphoryl transferase by magnesium. Biochim. Biophys. Acta, 1961, v. 52, N 1, p. 82−96.
  59. Markham G.D., Reed G.H., Maggio E.T., Kenyon G.L. Magneticresonance studies of three forms of creatine kinase. -J. Biol. Chem., 1977, v. 252, N 4, p. 1197−1201.
  60. Pecoraro Y.L., Rawlings J., Cleland W.W. Investigation ofsubstrate specificity of creatine kinase using chromium (III) and cobalt (III) complexes of adenosine 5'-diphosphate. Biochemistry, 1984, v. 23, N 1, p. 153−158.
  61. Reed G.H., Barlow C.H., Bums R.A. Investigations of anionbinding sites in transition state analogue complexes of creatine kinase by infrared spectroscopy. J, Biol. Chem. 1978, v. 253, N 12, p. 4153−4158.
  62. Reed G.H., Leyh T.S. Identification of the six ligands tomanganese (II) in transition-state analog complexes of creatine kinase: oxygen-17 superhyperfine coupling from selectively labeled ligands. — Biochemistry, 1980, v. 19, H 24, p. 5472−5480.
  63. Virden R., Watts D.C., Buldwin E. Adenosine-5'-triphosphatearginine phosphotransferase from lobster muscle: purification and properties. Biochem. J., 1965″ v. 94, N 3j p. 536−544.
  64. Buttlaire D.H., Cohn M. Interaction of manganous ions, substrates, and anions with arginine kinase. Magnetic relaxation rate studies of water protons and kinetic anion effects.- J. Biol. Ghem., 1974, v. 249, N 18, p. 5733−5740.
  65. Lum W.S., Wong P. V/.P., Yang M.-S., Buttlaire D.H. Spectrophotometry and fluorescence studies of the interaction of adenine nucleotides with arginine kinase of Homarus americanus.- J. Biol. Chem., 1978, v. 253, N 17, p. 6226−6232.
  66. Buttlaire D. H, Cohn M. Characterization of the active sitestructures of arginine kinase-substrate complexes withsubstrates and of a transition state analog. J. Biol. Chem.1974, v. 249, N 18, p. 5741−5748.31
  67. Nageswara Rao B.D., Cohn M. J P Nuclear magnetic resonanceof bound substrates of arginine kinase reaction. Chemical shifts in binary, ternary, quaternary and transition state analog complexes. J. Biol. Chem., 1977, v. 252, N 10, p. 3344−3350.
  68. Cohn M., Shih N., Nick J. Reactivity and metal-dependentstereospecificity of the phosphorothioate analogs of ATP in the arginine kinase reaction. Structure of the metal-nucleoside triphosphate substrate. J.Biol. Chem., 1982, v. 257, N 13, P. 7646−7649.
  69. Pai E.F., Sachsenheimer W., Schirmer R.H., Schulz G.E.
  70. Substrate positions and induced-fit in crystalline adenylate kinase. J. Mol. Biol., 1977, v. 114, N 1, p.37−45.
  71. O’Sullivan W.J., Noda L.H. Magnetic resonance and kineticstudies related to the manganese activation of the adenylate kinase reaction. J. Biol. Chem., 1968, v. 243, N 7, p. 1424−1433.
  72. Price N.C., Reed G.H., Cohn M. Magnetic resonance studiesof substrate and inhibitor binding to porcine muscle adenylate kinase. Biochemistry, 1973, v. 12, N 17, p. 33 223 327.
  73. Tomasselli A.G., Noda L.H. Baker’s yeast adenylate kinase"
  74. Evidence of conformational change from intrinsic fluorescenceand difference spectra. Determination of the structure of enzyme-bound metal nucleotide by use of phosphorothioate analogs of ATP. Eur. J. Biochem., 1983, v. 132, N 1, p. 109−115.
  75. Nageswara Rao B.D., Cohn M. Differentiation of nucleotidebinding sites and role ofjmetal ion in the adenylate kinase reaction by 31P NMR. J. Biol. Chem., 1978, v. 253, N 4, p. 1149−1158.
  76. Rhoads D.G., Lov/enstein J.M. Initial velocity and equilibriumkinetics of myokinase. J. Biol. Chem., 1968, v. 243, N 14, p. 3963−3972.
  77. Darby M.K., Trayer J.P. Metal-nucleotide structure of theactive sites of the mammalian hexokinases. Eur. J. Biochem., 1983, v. 129, И 2, p. 555−560.
  78. Noat G., Ricard J., Borel M., Got C. Kinetic study of yeasthexokinase-catalyzed phosphorylation of glucose. Eur. J. Biochem., 1968, v. 5, N 1, p. 55−59.
  79. Anderson С.Ы., Stenkamp R.E., Steitz T.A. Sequencing a proteinby X-ray crystallography. II. Refinement of yeast hexokinaseо
  80. В co-ordinates and sequence at 2.1 A resolution.- 131 — J. Ыо1. Biol., 1978, v. 123, N 1, p. 15−33.
  81. Shoham M., Steits Т.Л. Crystallographic studies and modelbinding of ATP at the active site of hexokinase. J.Mol. Biol., 1980, v. 140, N 1, p. 1−14.
  82. Steitz T.A., Anderson W.F., Fletterick R.J., Anderson C.M.
  83. High resolution crystal structures of yeast hexokinase complexes with substrates, activators and inhibitors. Evidence for an allosteric control site. J. Biol. Chem., 1977, v. 252, N 13, p. 4494−4500.
  84. Bennett W.S., Steitz T.A. Glucose-induced conformationalchange in yeast hexokinase. (Protein crystallography/induced fit/interdomain protein flexibility/hydrophobic effect).- Proc. Hatl. Acad. Sci USA, 1978, v. 75, H 10, p. 48 484 852
  85. Peters B.A., Neet K.E. Yeast hexokinase P II. Conformationalchanges induced by substrates and substrate analogues.- J. Biol. Chem., 1978, v. 253, N 19, p. 6826−6831.
  86. Jaffe E.K., Cohn M. Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleotide substrates and of the nucleotide binding site of yeast hexokinase. J. Biol. Chem., 1979, v. 254, N 21, p. 10 839−10 845.
  87. Danenberg K.D., Cleland W.W. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Biochemistry, 1975, v. 14, N 1, p. 28−39.
  88. Petersen R.L., Gupta R.IC. Magnetic resonance studies of thespatial arrangement of glucose-6-phosphate and chromium (III) -adenosine diphosphate at the catalytic site of hexokinase.- Biophys. J., 1979, v. 27, N 1, p. 1−14.
  89. Pillai R.P., Raushel P.M., Villafranca J.J. Stereochemistryof binding of thiophosphate analogs of ATP and ADP to carbamate kinase, glutamine synthetase and carbamoyl-phosphate synthetase. Arch. Biochem. Biophys., 1980, v. 199, N 1, p. 7−15.
  90. Pillai R.P., Marshall M., Villafranca J.J. Substrate and metal ion binding to carbamate kinase: NMR and EPR studies. Arch. Biochem. Biophys., 1980, v. 199, N 1, p. 21−27.
  91. Pillai R.P., Marshall M., Villafranca J.J. Modification ofan essential arginine of carbamate kinase. Arch. Biochem. Biophys., 1980, v. 199, N 1, p. 16−20.
  92. Larsson-Raznikiewicz M., Malmstrom B.G. The metal-ion activation of 3-phosphoglycerate kinase in correlation with metal-binding studies. Arch. Biochem. Biophys, 1961, v. 92, N 1, p. 94−99.
  93. Bryant T.IT., Watson H.C., Wendell P.L. Structure of yeastphosphoglycerate kinase. Nature, 1974, v. 247, N 5435, p. 14−17.
  94. Cavell S., Scopes R.K. Isolation and characterization ofthe «photosynthetic» phosphoglycerate kinase, from Beta vulgaris. Eur. J. Biochem., 1976, v. 63, N 2, p.483−490.
  95. Larsson-Raznikiewicz M. Kinetic studies on the reaction2+catalyzed by phosphoglycerate kinase. The effect of Mg and adenosine 5'-triphosphate. Biochim. Biophys, Acta, 1964, v. 85, U 1, p. 60−68.
  96. Larsson-Raznikiewicz M, The phosphoglycerate kinase reaction and its metal ion specificity. Eur. J. Biochem., 1970, v. 17, N 1, p. 183−192.
  97. Tanswell P., Westhead E.W., Y/illiams R.J.P. Huclear-magnetic-resonance study of the active-site structure of yeast- 133 phosphoglycerate kinase. Eur. J. Biochem., 1976, v. 63, N 1, p. 249−262.
  98. Chapman B.E., O’Sullivan W.J., Scopes R.K., Reed G.H. Bindingof MnADP" to phosphoglycerate kinase. PEBS Lett., 1974, v. 41, IT 2, p. 189−191.
  99. Chapman B.E., O’Sullivan W.J., Scopes R.K., Reed G.H. Magnetic resonance studies on ma, riganese-nucleotide complexes of phosphoglycerate kinase. Biochemistry, 1977, v. 16, N 15, p. 1005−1010.
  100. Blake C.C.P., Evans P.R. Structure of horse muscle phosphoglycerate kinase. Some results on the chain conformation, substrate binding and evolution of the molecule from a 3 A fourier map. J. Mol.Biol., 1974, v. 84, N 4, p. 585 601.
  101. Larsson-Raznikiewicz M. Kinetic studies on the reaction catalyzed by phosphoglycerate kinase. II. The kinetic relationships between 3-phosphoglycerate, MgATP and activating metal ion. Biochim. Biophys. Acta, 1967, v. 132, И 1, p. 33−40.
  102. Stinson R.A. Chromophoric labeling of yeast 3-phosphoglycerate kinase with an organomercurial. Biochemistry, 1974, v. 13, N 22, p. 4523−4529.
  103. Wrobel J.A., Stinson R.A. Metal ion binding to yeast phosphoglycerate kinase. Interaction between metal ion binding and anion binding. Eur. J. Biochem., 1980, v. 104, N 1, p. 249−254.
  104. Wrobel J.A., Stinson R.A. The effects of anions, substrates metal ions and sulfhydryl reagents on the proteolytic susceptibility of yeast phosphoglycerate kinase. Biochim. Biophys. Acta, 1981, v. 66, N 2, p. 236−245.
  105. Cottam G.L., Hollenberg P.P., Coon M.J. Subunit structure of rabbit muscle pyruvate kinase. J. Biol. Chem., 1969, v. 244, N 6, p. 1481−1486.
  106. Baek Y.H., Nowak T. Kinetic evidence for a dual cation role for muscle pyruvate kinase. Arch. Biochem. Biophys., 1982, v. 217, N 2, p. 491−497.
  107. Nowak Т., Suelter C. Pyruvate kinase: activation by and catalytic role of the monovalent and divalent cations. -Mol. Cell Biochem., 1981, v. 35, N2, p. 65−75.
  108. Nowak T. Conformational changes required for pyruvate kinase activity as modulated by monovalent cations. J. Biol. Chem., 1976, v. 251, N 1, p. 73−78.
  109. Suelter C.H., Singleton R. Jr., Kayne P.J., Arrington S., Glass J., Mildvan A.S. The interaction of substrate and univalent and bivalent cations with pyruvic kinase. Biochemistry, 1966, v. 5, N 1, p. 131−139.
  110. Nowak Т., Mildvan A.S. Nuclear magnetic resonance studies of the function of potassium in thejmechanism of pyruvate kinase. Biochemistry, 1972, v. 11, N 15, p. 2819−2828.
  111. Hutton W.C., Stephens E.M., Grisham C.M. Lithium-7 nuclear magnetic resonance as a probe of structure and function of the monovalent cation site on pyruvate kinase. Arch. Biochem. Biophys., 1977, v. 184, N 1, p. 166−171.
  112. Raushel P.M., Villafranca J.J. A multinuclear magnetic resonance study of the monovalent-divalent cation sites of pyruvate kinase. Biochemistry, 1980, v. 19, H 24, p. 54 815 485.
  113. Cleland W.W. Enzyme kinetics. Annual Rev. Biochem., 1967, v. 36, N 1, p. 77−112.- 135
  114. Mildvan A.S., Cohn M. Kinetic and magnetic resonance studies of the pyruvate kinase reaction. I. Divalent metal complexes of pyruvate kinase, J. Biol. Chem, 1965, v. 240,1. N 1, p. 238−246.
  115. Mildvan A.S., Cohn M, Kinetic and magnetic resonance studies of the pyruvate kinase reaction. II. Complexes of enzyme, metal and substrates. J. Biol. Chem, 1966, v, 241, N 5, p. 1178−1193.
  116. Suelter C.H., Melander W. Use of protein difference spectrophotometry to determine enzyme-cofactor dissociation constants. J. Biol. Chem., 1963, v. 238, Ж 12, p. 1−2,
  117. Kwan C.-Y., Erhard K., Davis R.C. Spectral properties of cobalt (II) — and nickel (Il)-activated rabbit muscle pyruvate kinase. J.Biol. Chem., 1975, v. 250, II 15, p. 5951−5959.
  118. Cohn M. Magnetic resonance studies of metal activation of enzymic reactions of nucleotides and otheijphosphate substrates. Biochemistry, 1963, v. 2, N 4, p. 623−629.
  119. Gupta R.K., Oesterling R.M., Mildvan A.S. Dual divalent cation requirement for activation of pyruvate kinase: essential roles of both enzyme and nucleotide-bound metal ions. — Biochemistry, 1976, v. 15, Ы 13, p. 2881−2887.
  120. Robinson И J.L., Rose I.A. Proton transfer reactions of muscle pyruvate kinase. J. Biol. Chem., 1972, v. 247, N 4, p. 1096−1105.
  121. Dunaway-Mariano D., Benovic J.L., Cleland W.W., Gupta R.K., Mildvan A.S. Stereospecificity of the metal-adenosine 5'-triphosphate complex in reactions of muscle pyruvate kinase. Biochemistry, 1979, v. 18, IT 20, p. 4347−4354.
  122. Howak Т., Lee M.J. Reciprocal cooperative effects of multiple ligand binding to pyruvate kinase. Biochemistry, 1977, v. 16, IT 7, p. 1343−1350.
  123. Sloan D.L., Mildvan A. Si Nuclear magnetic relaxation studies of the conformation of adenosine 5'-triphosphate on pyruvate kinase from rabbit muscle. J. Biol. Chem., 1976, v. 251, IT 8, p. 2412−2420.
  124. Gupta R.K., Benovic J.L. Magnetic resonance and kinetic studies of the spatial arrangement of phosphoenolpyruvate and c/romiumCIII)-adenosine diphosphate at the catalytic site of pyruvate kinase. J. Biol. Chem., 1978, v. 253, IT 24, p. 8878−8887.
  125. Hansen G., Eifler R., Heitmann P. The subunit structure of inorganic pyrophosphatase from baker’s yeast. Acta biol. et med. germ., 1972, v. 28, IT 6, p. 977−987.
  126. С.С., Воронова А. А., Смирнова Е. А., Куранова И.П., — 137
  127. Ю.В., Арутюнян Э. Г., Вайнштейн Б. К., Хене В., Хадсен Г. Пространственная структура неорганической пирофосфатаозы дрожжей при разрешении 3 А. Биоорган, химия, 1984, т. 10,1. II, с. 1469−1482.
  128. Butler L.G. Yeast and other inorganic pyrophosphatases.- In: The Enzymes/Ed. Boyer P. N.Y.: Acad. Press, 1971, v. 4, p. 529−541.
  129. Knight W.B., Pitts S.W., Dunaway-Mariano D. Investigationof the catalytic mechanism of yeast inorganic pyrophosphatase.- Biochemistry, 1981, v. 20, N 14, p. 4079−4086.
  130. Knight Y/.B., Ting S.-J., Chuang S., Dunaway-Mariano D., Наготу Т., Sungaralingam M. Yeast inorganic pyrophosphatase substrate recognition. Arch. Biochem. Biophys., 1983, v. 227, N 1, p. 302−309.
  131. Schlesinger M.J., Coon M.G. Hydrolysis of nucleoside di-and tryphosphates by crystalline preparations of yeast inorganic pyrophosphatase. Biochim. Biophys. Acta, 1960, v. 41, N 1, p. 30−36.- 138
  132. Gonzales М. А", Webb M.R., Welsh K.M., Cooperman B.S. Evidence that catalysis by yeast inorganic pyrophosphatase proceeds by direct phosphoryl transfer to water and not via a phosphoryl enzyme intermediate. Biochemistry, 1984, v. 23, 1ч 5, p. 797−801.
  133. Hamm D.J., Cooperman B.S. Huclear magnetic resonance studies of inorganic phosphate binding to yeast inorganic pyrophosphatase. Biochemistry, 1978, v. 17, N 19, p. 4033−4040.
  134. Cooperman B.S., Panackal A., Springs В., Hamm D.J. Divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase. Biochemistry, 1981, v.20, IT 21, p. 6051−6060.
  135. Heitmann P., Uhlig H.J. Role of carboxyl, imidazole and amino groups in inorganic pyrophosphatase of baker’s yeast. Acta biol. med. germ., 1974, v. 32, p. 565−599.
  136. Springs В., Welsh К.Ы., Cooperman B.S. Thermodynamics, kinetics, and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: inorganic phosphateequilibration. Biochemistry, 1981, v. 20, N 22, p.6384−6391.
  137. Braga E.A., Avaeva S.M. Activation of yeast inorganic pyrophosphatase by magnesium. Biochem. Biophys. Res. Commun., 1972, v. 49, N 2, p. 529−535.
  138. Ridlington J.W., Butler L.G. Yeast inorganic pyrpphosphata-se. I. Binding of pyrophosphate, metal ion, and metal ion-pyrophosphate complexes. J. Biol. Chem., 1972, v. 247,1. N 22, p. 7303−7307.
  139. Ю.А., Аваева C.M. Инактивация неорганической пирофосфатазы из дрожжей додецилсульфатом натрия и бромистымцетилтриметиламмонием. Биохимия, 1975, т. 40, № 4, с. 683−693.
  140. Rapoport Т.A., HOhne W.E., Heitmann P., Rapoport Б. Binding of ligands to the inorganic pyrophosphatase of baker’s yeast. Eur. J. Biochem., 1973, v. 33, N 2, p. 341−347.
  141. Ю.А., Аваева C.M. Тепловая инактивация неорганической пирофосфатазы из дрожжей. Биохимия, 1973, т. 38,6, с. 1248−1254.
  142. Welsh К.М., Jacobyansky A., Springs В., Cooperman B.S. Catalytic specificity of yeast inorganic pyrophosphatase for magnesium ion as cofactor. An analysis of divalent metal ion and solvent isotope. Biochemistry, 1983, v. 22, N 9, p. 2243−2248.
  143. Bienwald В., HOhne W.E. Kinetic studies of the interaction of uranyl ions with inorganic pyrophosphatase from baker’s yeast. Acta biol. med. germ., 1978, v. 37, N 7, p. 11 291 133.
  144. Knight W.B., Dunaway-Mariano D., Ransom S.C., Yillafranca J.J. Investigations of the metal ion-binding sites of yeast inorganic pyrophosphatase. J.Biol. Chem., 1984, v. 259,1. 5, p. 2886−2895.
  145. Welsh K.M., Armitage I.M., Cooperman B.S. Yeast inorganic113 2+ 31pyrophosphatase. Functional andCd and ^ P nuclear mag2+netic resonance studies of the Cd -enzyme. Biochemistry, 1983, v. 22, N 5, p. Ю46-Ю54.
  146. Banjerjee A., Cooperman B.S. Electron paramagnetic resonance studies of Mn (II)-MnCll) interaction. Inorg. Chem. Acta, 1983, v. 79, N 1, p. 146−148.
  147. Welsh K.M., Cooperman B.S. Yeast inorganic pyrophosphatase. A model for active-site structure based on cadmium-113 and phosphorus-31 HMR studies. Biochemistry, 1984, v. 23,1. H 21, p. 4947−4955.
  148. Butler L.G., Sperow J.W., Multiple roles of metal ions in the reaction catalysed by yeast inorganic pyrophosphatase. Bioorg. Chem., 1977, v. 7, N 1, p. 141−150.
  149. Ting S.-J., Dunaway-Mariano D. Investigation of the role of the substrate metal ion in the yeast inorganic pyrophosphatase reaction. PEBS Lett., 1984, v. 165, N 2, p. 251−253.
  150. A.A., Кашо B.H., Аваева C.M. Очистка и некоторые свойства неорганической пирофосфатазы из, печени Haiocyn-thia auranthium. Биоорган, химия, 1975, Т. I, 1& 4, с. 532 537.
  151. Tominaga П., Mori Т. Purification and characterization of inorganic pyrophosphatase from Thiobacillus thiooxidaus. J. Biochem., 1977, v. 81, N 2, p. 477−483.
  152. Hachimori A., Takeda A., Kaibuchi M., Ohkawara IT., Samejima T. Purification and characterization of inorganic pyrophosphatase from Bacillus stearothermophilus. J. Biochem., 1975, v. 77, N 5, p. 1177−1183.
  153. Klemme J.-H., Gest H. Regulation of the cytoplasmic inorganic pyrophosphatase of Rhodospirillum rubrum. Eur. J. Biochem., 1971, v. 22, IT 4, p. 529−537.
  154. Pynes G., Younathan E. Purification and some properties of inorganic pyrophosphatase from human erythrocytes. J. Biol, Chem., 1967, v. 242, N 9, p. 2119−2123*
  155. Kasho У.И., Avaeva S.M. Inorganic pyrophosphatase. II. Purification and studies of some properties of the enzyme isolated from thermophilic bacterium Thermus flavus 70K. Int. J. Biochem., 1984, v. 16, IT 3, p. 315−321.
  156. Maslovsky P., ICowalczyk S., Kazubska E. Submitоchondrial localization and function of alkaline inorganic pyrophosphatase in maize seedlings. Acta Biochim. Polon., 1978, v. 25, N 1, p. 175−183.
  157. M.C., Назарова Т. Н., Аваева С. М. Метилпирофосфат -простейший органический субстрат неорганической пирофосфатазы из дрожжей. Биохимия, 1982, т. 47, № 2, с. 323−328.
  158. А.В., Аваева С. М., Банков А. А., Склянкина В. А. 0--пирофосфоэтаноламин новый субстрат неорганической пирофосфатазы из дрожжей. Синтез и субстратные свойства. — Биоорган. химия, 1977, т. 3, № 7, с. 950−957.
  159. Hohne W.E., Heitman P. Tripolyphosphate as a substrate of the inorganic pyrophosphatase from baker’s yeast- the roleof divalent metal ions. Acta biol. et med. german., 1974, B. 33, HI, z. 1−14.
  160. C.M., Мевх А. Т. О механизме действия неорганической пирофосфатазы дрожжей. Биохимия, 1969, т.34, $ 5, с.1088−1089,
  161. А. ААваева С. М. Влияние двухвалентных катионов на гидролиз АТР дрожжевой неорганической пирофосфатазой. Биохимия, 1974, т. 39, J& 2, с. 342−347.
  162. М.С., Назарова Т. И., Аваева С. М. Взаимосвязь субстратной специфичности неорганической пирофосфатазы из дрожжей и природы металла-активатора. Биоорган, химия, 1984, т. 10,16 XI, с. 1483−1489.
  163. Мое О., Butler L.G. Yeast inorganic pyrophosphatase. III. Kinetics of Ca2+ inhibition. J. Biol. Chem., 1972, v.247, U 22, p. 7315−7319.
  164. Kroll R.G., Booth J.R. The relationship between intracellular pH, the pH gradient and potassium transport in Escherichia coli., Biochem. J., 1983, v. 216, IT 4, p. 709−716.
  165. Timasheff S.N. Ultraviolet difference spectroscopy. In: The enzymes/Ed. Boyer P.D. — N.Y., L.: Acad. Press, 1970, v. 2, p. 408−445.
  166. Д. Физическая биохимия. М.: Мир, 1980, с. 383 415.
  167. А.А. Изучение взаимодействия неорганической пирофосфатазы из дрожжей с субстратами и катионами металлов. -Дис.. канд. хим. наук Москва, 1974.
  168. Bailey К., Webb Е.С. Purification and properties of yeastpyrophosphatase. Biochem.J., 1944, v. 38, N2, p. 394−398.
  169. M.C. Взаимосвязь субстратной специфичности неорганической пирофосфатазы из дрожжей и природы иона металла-активатора. Дис.. канд. хим. наук — Москва, 1984.
  170. Baykov A.A., Artjukov A.A., Avaeva S.M. Fluoride inhibition of inorganic pyrophosphatase. I. Kinetic studies in a1. lg system using a new continuous enzyme assay.
  171. Biochim. Biophys. Acta, 1976, v. 429, К 5, p. 982−992.
  172. А.А., Смирнова И. Н., Волк C.E. Мембранная неорганическая пирофосфатаза. «Синкаталитическая» инактивация фторид-ионом. Биохимия, 1984, т. 49, ^ 5, с. 807−813.
  173. М., Уэбб Э. Ферменты. М.: Мир, 1982, т. 2, с. 493 495.
  174. И.Н., Байков А. А. Двухстадийныи механизм ингибирования неорганической пирофосфатазы фторид-ионом. Биохимия, 1983, т. 48, J& 10, с. 1643−1653.
  175. Penefsky H.S. Reversible binding of P^ by beef heart mitochondrial adenosine triphosphatase. J. Biol. Chem., 1977, v. 252, H 9, p. 2891−2899.
  176. И.В., Клесов А. А. Практический курс химической и ферментативной кинетики. М.: МГУ, 1976, с. 106−107.
  177. Merrit Б.A., Sundaralingam М., Dunaway-Mariano D. Crystal structure and chelate ring pucker of bidentate (pyrophosphate)tetraaquochromium (III) trihydrato, a model of metal-ADP coordination. J. Amer. Chem. Soc., 1981, v. 103, N 12, p. 3565−3567.
  178. Hanec C.S., Isherwood P.A. Separation of the phosphoric esters on the filter paper chromatogram. Nature, 1949, v. 164, p. 1107−1112.
  179. P.B. Диамидофосфорная кислота, HPOgC^H^' ~ B KH,: Руководство по препаративной неорганической химии / ред. Бра-уэр Г. М.: Изд-во иностр. лит., 1956, с. 288−289.
  180. А.В., Жмурова И. И. Реакция пятихлористого фосфора с амидами фосфорной кислоты. Ж. общ. химии, 1958, т. 28, № 9, с. 2478−2484.
  181. Neilson M.L., Ferguson R.R., Coackley W.S. Sodium imido-diphosphate. Synthesis, identification and hydrolytic degradation. J.Amer. Chem. Soc., 1961, v. 83, N 1, p. 99−102.
  182. Schiilke U.Z. Beitrag zur bromoxydation von hypophosphat, p^P-PO^.^", zu diphosphat, und monosubstitu-tierten diphosphat en []c>3P-0-P02x]3~, mit X=F und OCH^.- Anorgan. und allg. Chem., 1968, B. 361, N 5−6, Z. 225−334.
  183. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, v. 72, N 1, p. 248−254.
  184. Baykov A.A., Avaeva S.M. A simple and sensitive apparatus for continuous monitoring of orthophosphate in the presence of acid-labile compounds. Anal. Biochem., 1981, v. 116,1. N 1, p. 1−4.
  185. Weil-Malherbe M., Green R.M. The catalytic effect of molyb-date on the hydrolysis of organic phosphate bonds. Biochem. J., 1951, v. 49, N 2, p. 286−292.
  186. Hess H.H., Derr J.E. Assay of inorganic and organic phosphorus in the 0.1−5 nanomole range. Anal. Biochem., 1975, v. 63, N 2, p. 607−613.
  187. Pries J., Getrost M. Organic reagents for trace analysis.- E. Merck, Darmstadt, 1977, p. 412−413.
  188. Janson C.A., Degani C., Boyer P.D. The formation of enzyme-bound and medium pyrophosphate and the molecular basis of the oxygen exchange reaction of yeast inorganic pyrophosphatase. J. Biol. Chem., 1979, v. 254, N 10, p. 3743−3749.
  189. Ю.А., Байков A.A., Андрукович П. Ф., Аваева G.M. Сравнительное изучение кинетики Мб2±активируемого гидролиза пирофосфата и триполифосфата неорганической пирофосфата-зой. Биохимия, 1977, т. 42, 7, с. 1244−1254.
  190. Irani R.R., Callis С.P. Metal completing by phosphorus compounds. I. The thermodynamics of association of linear polyphosphates with calcium. J. Phys. Chem., 1960, v. 64, H 9″ p. 1398−1407.
Заполнить форму текущей работой