Помощь в написании студенческих работ
Антистрессовый сервис

Темплатирование в системах, содержащих глины, как метод управления свойствами полимер-композиционных сорбентов и платиновых электрокатализаторов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Выбор гидрофильных полимерных гелей в качестве объекта модифицирования глинистыми частицами связан с задачей получения эффективных абсорбентов органических соединений из водных растворов. В данной работе приготовление полимер-композиционных сорбентов было основано на структурировании расположения органоглины (глины, в которой неорганические катионы заменены на органические), что позволило… Читать ещё >

Темплатирование в системах, содержащих глины, как метод управления свойствами полимер-композиционных сорбентов и платиновых электрокатализаторов (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Обзор литературы
    • 1. 1. Общая характеристика глинистых минералов
      • 1. 1. 1. Структура глинистых минералов
      • 1. 1. 2. Суспензии глинистых минералов
      • 1. 1. 3. Природа активных центров на поверхности смектитов
    • 1. 2. Глиносодержащие материалы. Свойства и применение.'
      • 1. 2. 1. Органомодифицированные глины
        • 1. 2. 1. 1. Глины, модифицированные катионным ПАВ
        • 1. 2. 1. 2. Глины, модифицированные катионным полимером
        • 1. 2. 1. 3. Органоглины как абсорбенты
      • 1. 2. 2. Композиты полимер-глина
      • 1. 2. 3. Интеркалированные, фиксированные и активированные глины
        • 1. 2. 3. 1. Pt-интеркалированные глины как катализаторы
      • 1. 2. 4. Глины, иммобилизованные на твёрдой поверхности. Сенсорные системы
    • 1. 3. Заключительные замечания
  • Глава 2. Методика эксперимента
    • 2. 1. Реактивы, растворы, газы, вспомогательное оборудование
    • 2. 2. Приготовление и исследование функциональных свойств сорбентов
      • 2. 2. 1. Синтез поликатионов П4ВПМе
      • 2. 2. 2. Приготовление органоглин Бент+ЦПХ и БенгШ4ВПМе
      • 2. 2. 3. Приготовление композитов ПААМУБент, ПААМ/(Бент+ЦПХ) и ПААМ/(Бент+П4ВПМе 10%)
      • 2. 2. 4. Приготовление композитов (ПААМ/Бент)т+П4ВП Me 10%
      • 2. 2. 5. Построение изотерм абсорбции
      • 2. 2. 6. Тестирование абсорбционных свойств органоглин и композитов
    • 2. 3. Приготовление платиновых электрокатализаторов
    • 2. 4. Методы исследования
      • 2. 4. 1. Рентгеновская дифрактометрия
        • 2. 4. 1. 1. Рентгенофазовый анализ
        • 2. 4. 1. 2. Рентгеновское рассеяние
      • 2. 4. 2. Электрохимические методы исследования платиновых электрокатализаторов
        • 2. 4. 2. 1. Электрохимическая ячейка, электроды, реагенты, газы
        • 2. 4. 2. 2. Характеристика поверхности электродов методом вольтамперометрии
        • 2. 4. 2. 3. Исследование активности катализаторов в отношении электроокисления метанола
        • 2. 4. 2. 4. Анализ старения осадков
      • 2. 4. 3. Микроскопические методы исследования
      • 2. 4. 4. Спектроскопия поглощения в УФ-видимой области
      • 2. 4. 5. Термогравиметрический масс-спеюральный анализ
      • 2. 4. 6. Хроматография
      • 2. 4. 7. Рамановская спектроскопия
      • 2. 4. 8. Реологическое исследование
      • 2. 4. 9. Электропроводность суспензий
  • Глава 3. Исследование структуры и состава используемых глин
    • 3. 1. Фазовый и элементный состав используемых глин
    • 3. 2. Заряд поверхности глинистых частиц
    • 3. 3. Морфология глинистых частиц
    • 3. 4. Реологическое исследование суспензий Монт и Бент
    • 3. 5. Ионообменные свойства Монт и Бент по отношению к ЦПХ и структура образуемых комплексов
    • 3. 6. Заключительные замечания
  • Глава 4. Темплатирование в объёме композитов. Полимер-композиционные сорбенты
    • 4. 1. Глины, модифицированные поликатионами
      • 4. 1. 1. Закономерности абсорбции поликатионов
      • 4. 1. 2. Абсорбционные свойства комплексов бентонит-поликатион
    • 4. 2. Композиты полимер/органоглина
      • 4. 2. 1. Идеология приготовления и структура темплатированных композитов
      • 4. 2. 2. Абсорбционные свойства модифшщрованных поликатионом темплатированных композитов
  • Глава 5. Темплатирование на межфазной границе. Платиновые электрокатализаторы
    • 5. 1. Зависимость структуры и свойств осадков R от вида и количества глины в растворе осаждения
      • 5. 1. 1. Кинетика осаждения
      • 5. 1. 2. Электрохимическая характеристика осадков
      • 5. 1. 3. Морфология осадков
      • 5. 1. 4. Рентгенографическое исследование осадков
    • 5. 2. Влияние потенциала осаждения на структуру и свойства осадков Pt
    • 5. 3. Осадки на графитовой бумаге
    • 5. 4. Заключительные замечания
  • Выводы

Развитие материаловедения, обусловленное разнообразными высокотехнологичными приложениями, требует новых управляемых способов формирования структур композиционных материалов, включающих наноразмерные фрагменты. Универсальным подходом к контролируемому наноструктурированию является темплатпрование — формирование наноразмерных фрагментов определённого строения с использованием матриц. В настоящей работе этот подход реализован с использованием смектитовых глин — природных и синтетических низкоразмерных объектов, обладающих способностью связывать разнообразные ионы и молекулы, а также высокой химической и термической стабильностью. Зависимость сорбционных и ионообменных свойств глин от природы присутствующих в их составе обменных катионов и от кислотности (рН) среды даёт дополнительную возможность управления темплатирующими свойствами. Эти свойства глин, а также их совместимость с подавляющим большинством реагентов для получения функциональных материалов, обеспечивают универсальность предполагаемых матриц. Для демонстрации широты спектра приёмов темплатирования, основанных на использовании глин, в работе выбраны две существенно различные группы материалов: гидрофильные полимерные гели и высокодисперсные платиновые элеюрокатализаторы.

Выбор гидрофильных полимерных гелей в качестве объекта модифицирования глинистыми частицами связан с задачей получения эффективных абсорбентов органических соединений из водных растворов. В данной работе приготовление полимер-композиционных сорбентов было основано на структурировании расположения органоглины (глины, в которой неорганические катионы заменены на органические), что позволило обеспечить доступность её поверхности (Глава 4). Органомодифицирование глины проводилось для гидрофобизации её поверхности, что значительно увеличивало сорбционную способность глины в отношении неполярных органических веществ. Сочетание гидрофильности полимерной матрицы и гидрофобности внедрённой в неё органоглины определило эффективность абсорбции композитами органических веществ из водных растворов.

Электролитические осадки Pt были выбраны в качестве объекта модифицирования глинистыми частицами в связи с задачей получения высокоактивных стабильных катализаторов для устройств электрохимической энергетики. Разнообразные коллоидные частицы, добавленные в раствор осаждения, широко применяются для модификации свойств электролитических осадков, однако глины до сих пор практически не использовались в качестве таких коллоидных добавок. В данной работе впервые была показана возможность уменьшения степени срастания и размера частиц Pt в модельных электрокатализаторах путём электроосаждения из суспензий глин в, растворе платинирования (Глава 5). Как следствие, темплатирование катализаторов позволило увеличить их удельную поверхность и удельную электрокаталитическую активность.

Цель работы состояла в разработке принципов управляемого варьирования функциональных свойств материалов с использованием глин. Для достижения этой цели решались следующие задачи:

• прогнозирование принципиальных схем темплатирования в суспензиях, содержащих глинистые частицы, и их экспериментальная апробация для модельных систем (полимерного геля и электроосажденной платины) — • характеристика строения полученных полимер-композиционных сорбентов и электрокатализаторов Pt/глина и формулировка? принципов контролируемого варьирования структуры получаемых материалов;

• выявление основных тенденций изменения сорбционных и каталитических свойств материалов в результате их наноструктурирования глинами и I формулировка подходов к оптимизации функциональных свойств.

На защиту выносятся:

• принципы темплатирования в системах, содержащих глины, основанные на комбинировании ионообменных и стерических факторов;

• физико-химические подходы к оптимизации получения темплатированных полимер-композиционных сорбентов и платиновых элекгрокатализаторов, а также результаты их экспериментальной апробации.

Выводы.

1. Разработаны принципы темплатирования полимерных гелей и электролитических осадков Pt суспендированными глинами:

— трёхстадийный катионный обмен (Na—>ПАВПАВ—>NaNa—>поликатион) — адсорбция и электрофоретическии отвод глинистых частиц в процессе платинирования.

2. На основании детальной характеристики строения и сравнительного исследования полученных материалов с нетемплатированными аналогами обнаружены следующие закономерности изменения структуры в результате темплатирования:

— увеличение межплоскостного расстояния в органокомплексах Бент+П4ВПМе 10% в композитах (ПААМ/Бент)т+П4ВПМе 10% по сравнению с аналогичными комплексами, приготовленными классическим путём (смешением двух компонент);

— уменьшение степени срастания и размера частиц Pt в осадках Pt/глина по сравнению с осадками Pt.

3. Выявлены основные тенденции изменения функциональных свойств материалов в результате их наносгруктурирования глинами:

— увеличение сорбционной способности композитов (ПААМ/Бент)т+П4ВПМе 10% по сравнению с нетемплатированными композитами такого же состава;

— увеличение удельной поверхности и удельной электрокаталитической активности катализаторов Pt/глина.

Автор выражает благодарность Блэссингу С., к.х.н. Васильеву С. Ю., к.х.н. Волкову В. В., Дембо К. А., Филатову А. Ю., Левину Э. Е., к.б.н. Поляковой О. В., к.х.н. Цирлину А. А., к.ф.-м.н. Штыковой Е. В. за помощь в проведении ряда измерений, а также интерпретации данных инструментальных методов.

Автор признателен д.ф.-м.н. Галлямову М. О., д.х.н. Сергееву В. Г. и д.ф.-м.н. Ерухимовичу И. Я. за научные консультации и ценные советы.

Автор благодарит сотрудников кафедры физики полимеров и кристаллов Физического факультета и кафедры электрохимии Химического факультета Московского Государственного Университета за создание благоприятной атмосферы, способствующей научной деятельности.

Показать весь текст

Список литературы

  1. Ф. Д., Гидрофилъностъ глин и глинистых минералов. Киев.: Издательство Академии наук Украинской ССР, 1961.
  2. R. Е., Clay mineralogy, Мс Graw-Hill Series in Geology: New York-London-Toronto, 1953.
  3. E. Г., Структура и свойства глинистых минералов. Киев.: Наукова Думка, 1966.
  4. М. И., Вьюнова Г. М., Исагулянц Г. В., Слоистые силикаты как катализаторы, Успехи химии, 1988. Вып. 2: стр. 204.
  5. Ю. И., Овчаренко Ф. Д., Адсорбция на глинистых минаралах. Киев: Наукова Думка, 1975.
  6. S. В., Lattice structure of clay minerals and some properties of clays, J. Geol., 1942. 50: p. 276.
  7. Marshall С. E., Layer lattices and base-exchange clays, Z. Krist., 1935. 91: p. 433.
  8. Ю. И., Строение и химия поверхности слоистых силикатов. Киев: Наукова Думка, 1988.
  9. Н. Н., Overview clay mineral applications, Applied Clay Science, 1991. 5: p. 379.
  10. Luckham P. F., Rossi S., The colloidal and rheological properties of bentonite suspensions, Advances in Colloid and Interface Science, 1999. 82: p. 43.
  11. Э. А., Природные минеральные сорбенты, их активирование и модифицирование. Ташкент: Фан, 1970, с. 92.
  12. Франк-Каменецкий В.А., Котов Н. В., Гойло З. А., Трансформационные превращения слоистых силикатов при повышенныхр-Т параметрах. JL: Недра, 1983, с. 151.
  13. D. М., Reynolds R. С., X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, 1989.
  14. Brandenburg U., Lagaly G., Rheological properties of sodium montmorillonite dispersions, Applied Clay Science, 1988. 3(3): p. 263.
  15. Duman O., Tunc S., Electrokinetic and rheological properties ofNa-bentonitein some electrolyte solutions, Microporous and Mesoporous Materials, 2009.117: p. 331.
  16. Cummins H. Z., Liquid, glass, gel: The phases of colloidal Laponite, Journal of Non-Crystalline Solids, 2007. 353 (41−43): p. 3891.
  17. Keren R., Shainberg I. and Klein E., Settling and flocculation value of Na-montmorilloniteparticles in aqueous media, Soil Sci. Soc. Am. J., 1988. 52: p. 76.
  18. Miano F., Rabaioli M. R., Rheological scaling of montmorillonite suspensions: the effect of electrolytes and polyelectrolytes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994. 84 (2−3): p. 229.
  19. E. Д., Перцов А. В., Амелина E. А. Коллоидная химия. M.: Высшая школа, 2007, с. 479.
  20. Laribi S., Fleureau J.-M., Grossiord J.-L. Kbir-Ariguib N., Comparative yield stress determination for pure and interstratified smectite clays, Rheol. Acta, 2005. 44: p. 262.
  21. Torres L. G., Iturbe R., Snowden M. J., Chowdhry B. Z., Leharne S. A., Preparation of o/w emulsions stabilized by solid particles and their characterization by oscillatory rheology, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007. 302: p. 439.
  22. Kelessidis V. C., Tsamantaki C., Dalamarinis P., Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions, Applied Clay Science, 2007. 38(1−2): p. 86.
  23. Napper D. H., Polymeric Stabilization of Colloidal Dipersions, Academic Press, 1983.
  24. Barrett К. E. J., Dispersion Polymerization in Organic Media. J. Wiley, 1975, p. 322.
  25. Breen C., The characterisation and use of polycation-exchanged bentonites, Applied Clay Science, 1999. 15 (1,33): p. 187.
  26. Mortland, M. M., Clay-organic complexes and interactions, Adv. Agron., 1970. 22: p.75.
  27. Э. А., Агзамходжаев А. А., Активные центры монтмориллонита и хемосорбция, Ташкент: Фан, 1983.
  28. Hair М. L., Hertl W., Acidity of surface hydroxyl groups, J. Phys. Chem., 1970. 74 (1): p. 91.
  29. Kowalska M., Guler H, Cocke D. L., Interaction of clay minerals with organic pollutants, The Science of the Total Environment, 1994. 141: p. 223.
  30. Ortego J. D., Kowalska M., Cocke D L., Interactions of montmorillonite with organic compounds-adsorptive and catalytic properties, Chemosphere, 1991. 22(8): p. 769.
  31. Lawrence M. A. M., Kukkadapu R. K., Boyd S. A., Adsorption of phenol and chlorinated phenols from aqueous solution by tetramethylammonium- and tetramethylphosphonium-exchangedmontmorillonite, Applied Clay Science, 1998. 13: p. 20.
  32. Ко С. H., Fan С., Chiang P. N., Wang M. K., Lin К. C., p-Nitrophenol, phenol and aniline sorption by organo-clays, Journal of Hazardous Materials, 2007.149: p. 275.
  33. Lee H. M., Crum К. C., Boyd S. A., Enhanced retention of organic contaminants by soils exchanged with organic cations, Environ. Sci. Technol., 1989. 23: p. 1365.
  34. Praus P. and Turicova M., A physico-chemical study of the cationic surfactants adsorption on montmorillonite, J. Braz. Chem. Soc., 2007. 18(2): p. 378.
  35. De Paiva L. В., Morales A. R., Diaz F. R. V., Organoclays- properties, preparation and applications, Applied Clay Science, 2008. 42: p. 8.
  36. Zhou Q., Frost R. L., He H., Xi Y., Changes in the surfaces of adsorbed p-nitrophenol on methyltrioctadecylammonium bromide organoclay—An XRD and TG study, Journal of Colloid and Interface Science, 2007. 307: p. 50.
  37. Makhaeva E. E., Starodoubtsev S. G., Reentrant conformational transition of polyelectrolyte network in water alcohol mixtures in the presence of oppositely charged surfactant, Polymer Bull., 1993. 30: p. 327.
  38. Patzko A., Dekany I., Ion exchange and molecular adsorption of a cationic surfactant on clay minerals, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993. 71: p. 299.
  39. Zhang Z. Z., Sparks D. L., Scrivner N. C., Sorption and desorption of quaternary amine cations on clays, Environ. Sci. Technol., 1993. 27: p. 1625.
  40. Lemke S. L., Grant P. G., Phillips T. D., Adsorption of zearalenone by organophilic montmorillonite clay, J. Agric. Food Chem., 1998. 46: p. 3789.
  41. Bergaya F., Theng В. K. G., Lagaly G., Handbook of clay Science. Elsevier, 2006.
  42. Yilmaz N., Yapar S., Adsorption properties of tetradecyl- and hexadecyl trimethylammonium bentonites, Applied Clay Science, 2004. 27(3−4):p. 223.
  43. Lagaly G., Weiss A., Determination of layer charge in mica-type layer silicates, Proceedings of the International Clay Conference, Tokyo, 1989. p. 61.
  44. Breen C., Rawson J. O., Mann В. E., Adsorption of polycations on clays: an in situ study using 133Cs solution phase NMR, J. Mater. Chem. 1996. 6: p. 252.
  45. Billingham J., Breen C., Rawson J. O., Yarwood, J. Mann, В. E., The adsorption of polycations on clays. A comparative in-situ study using 133Cs and 23Na solution phase NMR, J. Colloid Interface Sci. 1997. 193: p. 183.
  46. Y., Dixon J. В., White G. N., Loeppert R. H., Juo A. S. R., Bonding between polyacrylamide and smectite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 281(1−3): p. 82.
  47. Dickinson E., Eriksson L., Particle flocculation by adsorbing polymers, Adv. Colloid Interface Sci., 1991.34: p. 1.
  48. Durand-Piana G., Lafuma F., Audebert R., Flocculation and adsorption properties of cationicpolyelectrolytes towardNa-montmorillonite dilute suspensions, J. Colloid Interface Sci., 1987. 119: p. 474.
  49. Denoyel R., Durand, G., Lafuma F., Audebert R., Adsorption of cationic polyelectroytes onto montmorillonite and silica: microcalorimetric study of their conformation, J. Colloid Interface Sci., 1990.139: p. 281.
  50. Breen С., Watson R., Polycation-Exchanged Clays as Sorbents for Organic Pollutants: Influence of Layer Charge on Pollutant Sorption Capacity, Journal of colloid and interface science, 1998. 208: p. 422.
  51. Hata H, Kobayashi Y., Mallouk Т. E., Encapsulation of anionic dye molecules by a swelling fluoromica through intercalation of cationic poly electrolytes, Chem. Mater., 2007. 19: p. 79.
  52. Fournaris K. G., Karakassides M. A., Petridis D., Yiannakopoulou K., Clay-polyvinylpyridine nanocomposites, Chem. Mater., 1999.11: p. 2372.
  53. Churchman G. J., Formation of complexes between bentonite and different cationic polyelectrolytes and their use as sorbents for non-ionic and anionic pollutants, Applied Clay Science, 2002. 21: p. 177.
  54. Ueda Т., Harada S., Adsorption of cationic poly-sulfone on bentonite, J. Appl. Polym. Sci., 1968.12: p. 2395.
  55. Churchman G. J., Modification of bentonite with different polycations for the uptake of aromatic hydrocarbons from water, In: Volzone, C. (Ed.), Proceedings, International Workshop of Activated Clays, La Plata, Argentina, 1998, p. 9.
  56. Churchman G. J., Kolarik L. O., Self P.G., Anderson J.S., deLacy N.J., Modification of clays using cationic polyelectrolytes for the uptake of nonionic and anionic pollutants. The 11th International Clay Conference, Ottawa, Canada, 1997, p. A16.
  57. S. A., Mortland M. M., Chiou С. Т., Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite, Soil Sci. Soc. Am. J., 1988. 55: p. 652.
  58. Jaynes W. F., Boyd S. A., Clay mineral type and organic compound sorption by hexadecylmethylammonium-exchanged clays, Soil Sci. Soc. Am. J., 1991. 55: p. 43.
  59. Smith J. A., Jaffe' P. R., Comparison of tetrachloromethane sorption to an alkylammonium-clayandan alkyldiammonium-clay, Environ. Sci. Technol., 1991. 25: p. 2054.
  60. Montgomery D. M., Sollars C. J., Sheriff T. S., Perry R., Organophilic clays for the successful stabilisation/solidification of problematic industrial wastes, Environmental Technology, 1988. 9(12): p. 1403.
  61. Boyd S. A., Shaobai S., Lee J. F., Mortland M. M., Pentachlorophenol sorption by organo-clays, Clays Clay Miner., 1988. 36: p. 125.
  62. Lee J.-F., Mortland M. M., Chiou С. Т., Kile D. E., Boyd S. A., Adsorption of benzene, toluene, and xylene by two tetrameihylammonium-smectites having different charge densities, Clays Clay Miner., 1990. 38: p. 113.
  63. Kukkadapu R. K., Boyd S. A., Tetramethylphosphonium- and tetramethylammonium-smectites as adsorbents of aromatic and chlorinated hydrocarbons- effect of1water on adsorption efficiency, Clays Clay Miner., 1995. 43: p. 318.
  64. Zhu L., Ren X., Yu S., Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water, Environ. Sci. Technol., 1998. 32: p. 3374.
  65. Zhu L., Chen B, Sorption behavior of p-nitrophenol on the interface between Anion-Cation Organobentonite and Water, Environ. Sci. Technol., 2000. 34: p. 2997.
  66. Baskaralingam P., Pulikesi M., Ramamurthi V., Sivanesan S., Equilibrium studies for the adsorption of Acid dye onto modified hectorite, Journal of Hazardous Materials, 2006. 136(3): p. 989.
  67. Shin W. S., Competitive sorption of anionic and cationic dyes onto cetylpyridinium-modified montmorillonite, Journal of Environmental Science and Health, Part A, 2008. 43: p. 1459.
  68. Li Q., Yue Q.-Y., Sub Y., Gaoa B.-Y., Fu L., Cationicpolyelectrolyte/bentonite prepared by ultrasonic technique and its use as adsorbent for Reactive Blue K-GL dye, Journal of Hazardous Materials, 2007. 147: p. 370.
  69. Yue Q.-Y., Li Q., Gao B.-Y., Yuan A.-J., Wang Y., Formation and characteristics of cationic-polymer/bentonite complexes as adsorbents for dyes, Applied Clay Science, 2007. 35: p. 268.
  70. Alexandre M., Dubois P., Polymer-layered silicate nanocomposites- preparation properties and use of a new class of materials, Materials Sci. and Eng., 2000. 28: p. 1.
  71. Ray S. S., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 2003. 28: p. 1539.
  72. Komarova G. A., Starodubtsev S. G., Lozinsky V.I., Kalinina E.V., Landfester K., Khokhlov A.R., Intelligent gels and cryogels with entrapped emulsions, Langmuir, 2008. 24(9):p. 4467.
  73. Aranda P., Ruiz-Hitzky E., Poly (ethylene oxide)-silicate intercalation materials, Chem. Mater., 1992.4: p. 1395.
  74. Greenland D. J., Adsorption of polyvinyl alcohols) by montmorillonite, J. Colloid. Sci. 1963. 18: p. 647.
  75. Churochkina N. A., Starodoubtsev S. G., Khokhlov A. R., Swelling and collapse of the gel composites based on natural and slightly charged poly (acrylamide) gels containing Nawmontmorillonite, Polym. Gels and Networks, 1998. 6: p. 205.
  76. Gao D, Heimann R. В., Williams M. C, Wardhaugh L. Т., Muhammad M., Rheological properties of poly (acrylamide)-bentonite composite hydrogels, J. Mater. Sci., 1999. 34: p. 1543.
  77. Xia X., Yih J., D’Souza N. A, Hu Z., Swelling and mechanical behavior of poly (N-isopropylacrylamide)/Na-montmorillonite layered silicates composite gels, Polymer, 2003. 44: p. 3389.
  78. Gonzales-Nunez R., Padilla H., Kee D., Favis В., Barrier properties of polyamide-high density polyethylene blends, Polym. Bull., 2001. 46: p. 323.
  79. А. В., Gilman J. W., Harris R. H., Jackson C. L., Wilkie C. A., Zhu J., Flammability of Polystyrene-Clay Nanocomposites, Polymeric Materials Science and Engineering, 2000. 83: p. 53.
  80. Sarkar S., Madhuchhanda M., Dana K., Kausik L., Polypropylene-clay composite prepared from Indian bentonite, Bulletin of Materials Science, 2008. 31(1): p. 23.
  81. Cevdet Kaynak, G. Ipek Nakas, Nihat Ali Isitman, Mechanical properties, flammability and char morphology of epoxy resin/montmorillonite nanocomposites, Applied Clay Science, 2009. 46(3): p. 319.
  82. С. H., Новокшонова Л. А., Коробко А. П., Бревнов П. Н., Полимер-силикатные напокомпозиты: физико-химические аспекты синтеза полимеризацией in situ, Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева), 2008, т. LII, № 5.
  83. А. В., Gilman J. W., Characterization of Polymer-Layered Silicate (Clay) Nanocomposites by Transmission Electron Microscopy and X-ray Diffraction: A Comparative Study, J. App. Polym. Sci., 2002. 87: p. 1329.
  84. А. К., Каладжян.А. А., Леднев О. Б., Микитаев М. А., Нанокомпозитные полимерные материалы на основе Органоглин, Электронный журнал «Исследовано в России», http://zhurnal.ape.relarn.ru/articles/2004/083 .pdf.
  85. Lee W.-F., Yang L.-G., Superabsorbent Polymeric Materials. XII. Effect of Montmorillonite on Water Absorbency for Poly (Sodium Acrylate) and Montmorillonite Nanocomposite Superabsorbents, Journal of Applied Polymer Science, 2004. 92: p. 3422.
  86. Wu J., Lin J., Li G., Wei C., Influence of the COOH and COONa groups and crosslink density of poly (acrylic acid)/montmorillonite superabsorbent composite on water absorbency, Polymer international, 2001. 50(9): p. 1050.
  87. Pinnavaia T. J., Intercalated clay catalysts, Science, 1983. 220: 4595.
  88. Kaneda K., Cation-Exchanged Montmorillonites as Solid Acid Catalysts for Organic Synthesis, Synlett, 2007. 7: p. 999.
  89. Gil A., Gandia L. M., Vicente M. A., Recent advances in the synthesis and catalytic applications of pillared clays, Catalysis Reviews: Science Engineering, 2000. 42(1−2): p. 145.
  90. Mastalir A., Szollosi Gy., Kiraly Z., Razga Zs., Preparation and characterization of platinum nanoparticles immobilized in dihydrocinchonidine-modified montmorillonite and hectorite, Applied Clay Science, 2002.22:p. 9.
  91. Szollosi Gy., Toroky В., Baranyi L., Bartok M., Chemoselective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Pt/K-10 Catalyst, Journal of catalysis, 1998. 179: p. 619.
  92. Ahmed О. S., Dutta D. K., Generation of Metal Nanoparticles on Montmorillonite К10 and Their Characterization, Langmuir 2003. 19: p. 5540.
  93. Kiraly Z., Dekany I., Mastaliry A., Bartok M., In Situ Generation of Palladium Nanoparticles in Smectite Clays, Journal of catalysis, 1996. 161: p. 401.
  94. Drljaca A., Spiccia L., Anderson J. R., Turney T. W., Intercalation of montmorillonite clay with individual oligomeric rhodium (III) aqua cations, Inorganica Chimica Acta, 1997. 254: p. 219.
  95. P., Malla P. В., Komarneni S., Roy R., Preparation of metal supported montmorillonite catalyst: a new approach, Catalysis Letters, 1990. 6: p. 401
  96. Figueiredo F. C. A., Jordao E., Carvalho E., Adipic ester hydrogenation catalyzed by platinum supported in alumina, titania and pillared clays, Applied Catalysis A: General, 2008. 351: p. 259.
  97. Szollosi Gy., Mastalir A., Kiraly Z., Dekany I., Preparation of Pt nanoparticles in the presence of a chiral modifier and catalytic applications in chemoselective and asymmetric hydrogenations, J. Mater. Chem., 2005. 15: p. 2464.
  98. Clearfield A., Preparation of pillared clays and their catalytic properties in Advanced Catalysts andNanostructuredMaterials, Academic Press, 1996. 50: p. 345.
  99. Auer H" Hofmann H., Pillared clays: characterization of acidity and catalytic properties and comparison with some zeolites, Applied Catalysis A. 1993. 97(1): p. 23.
  100. Chitnis S. R., Sharma M. M., Industrial applications of acid-treated clays as catalysts, Reactive and Functional Polymers, 1997. 32: p. 93.
  101. Ravichandra J., Lakshmanan С. M., Sivasankar В., Acid activated montmorillonite and vermiculite clays as dehydration and cracking catalysts, Reaction Kinetics and Catalysis Letters, 1996. 59(2): p. 301.
  102. Vicente M. A., Lambert J. F., Synthesis of Pt pillared clay nanocomposite catalysts from PtII (NH3)4.Chprecursor, Phys. Chem. Chem. Phys., 2001. 3: p. 4843.
  103. Z., Kloprogge J. Т., Frost R. L., Lu M. G., Zhu H. Y., Porous clays and pillared clays-based catalysts. Part 2: A review of the catalytic and molecular sieve applications, Journal of Porous Materials, 2002. 8(4): p. 273.
  104. Navratilova Z., Kula P., Clay modified electrodes: present applications and prospects, Electoanalysis, 2003.15(10).
  105. Fitch A., Clay-modified electrodes: a review, Clays and Clay Minerals, 1990. 38(4): p. 391.
  106. Song C., Villemure G., Preparation of clay-modified electrodes by electrophoretic depositionof clay films, Journal of Electroanalytical Chemistry, 1999. 462: p. 143.
  107. Lee S. A., Fitch A., Conductivity of clay-modified electrodes: Alkali cation hydration and film preparation effects, Journal of physical chemistry, 1990. 94(12): p. 4998.
  108. Ghosh P. K., Bard A. J., Clay-modified electrodes, J. Amer. Chem. Soc., 1999. 105: p. 5691.
  109. Inoue H., Haga S., Iwakura C., Yoneyama H., Effects of the solution pH on the electrochemical behavior of Ru (bpy)+ and Fe (CN)~ ions at a clay-modified electrode, J. Electroanal. Chem., 1988. 249: p. 133.
  110. Wang J., Martinez Т., Trace analysis at clay-modified carbon paste electrodes, Electoanalysis, 1989.1: 167.
  111. Ogorevc В., Cai X., Grabec I., Determination of traces of copper by anodic stripping voltammetry after its preconcentration via an ion-exchange route at carbon paste electrodes modified with vermiculite, Anal. Chim. Acta, 1995. 305: p. 176.
  112. Svegl I. G., Kolar M., Ogorevc В., Pihlar В., Vermiculite clay mineral as an effective carbon paste electrode modifier for the preconcentration and voltammetric determination of Hg (II) andAg (I) ions, Fresenius J. Anal. Chem., 1998. 361: p. 358.
  113. Navratilova Z., Kula P., Determination of gold using clay modified carbon paste electrode, Fresenius J. Anal. Chem., 2000. 367: p. 369.
  114. Marshal V., Babier F., Plassard F., Faure R., Vittori O., Determination of cadmium in Bentonite clay mineral using a carbon paste electrode, Fresenius J. Anal. Chem., 1999. 363: p. 710.
  115. Rodrigues I. N., Leyva J. A. M., de Cisneros J. L. H. H., Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry, Anal. Chim. Acta 1997. 344: p. 167.
  116. Hernandez L., Hernandez P., Blanco M. H., Lorenzo E., Alda E., Determination of flunitrazepam by differential-pulse voltammetry using a bentonite-modified carbon paste electrode, Analyst 1998.113: p. 1719.
  117. Saradin D., Karadag E., Guven O., Adsorption of Some Basic Dyes by Acrylamide-Maleic Acid Hydrogels, Separation science and technology, 1996. 31(3): p. 423.
  118. Musiani M., Electrodeposition of composites: an expanding subject in electrochemical materials science, Electrochimica Acta, 2000. 45: p. 3397.
  119. Hovestad A., Jansen L. J. J., Electrochemical codeposition of inert particles in a metallic matrix, J. Appl. Electrochem., 1995. 25: p. 519.
  120. PCPDFWin, ver. 1.30, JCPDSICDD, Swarthmore, PA, USA, 1997.
  121. Le Bail A., Duroy H., Fourquet J. L., Ab-initio structure determination of LiSbWOe by X-ray powder diffraction, Mat. Res. Bull., 1988. 23: p. 447.
  122. V., Dusek M. (2000). Jana2000. The crystallographic computing system. Institute of Physics, Praha, Czech Republic.
  123. Mourchid A., Delville A., Lambard J., Lecolier E., Levitz P., Phase Diagram of Colloidal Dispersions of Anisotropic Charged Particles: Equilibrium Properties, Structure, and Rheology of Laponite Suspensions, Langmuir, 1995. 11: p. 1942.
  124. Cervantes J. M., Cauich-Rodriguez J. V., Torres U. V., Garfias-Mesias L. F., Paul D. R., Thermal degradation of commercially available organoclays studied by TGA-FTIR, Thermochimica Acta, 2007. 457: p. 92.
  125. E. А., Тимошин Ю. H., Новосёлова H. В., Матвеенко В. H., Реология дисперсных систем с заряженными частицами, Вестник Московского Университета, Сер. 2. Химия, 2006. 47(6): с. 5.
  126. Krieger I.M., Rheology of Polymer Colloids, Ed. R. Buscall, T. Corner, J. Stageman. N.-Y., 1985. Chap. 6. p. 219.
  127. Song C., Villemure G., Preparation of clay-modified electrodes by electrophoretic deposition of clay films, Journal of Electroanalytical Chemistry, 1999.462: p. 143.
  128. Ю. Д., Электрокристаллизация металлов и сплавов. М.: Янус-К, 1997, с. 384.
  129. Ю. Д., Петухова P. П., Подловченко Б. И., Полукаров Ю. М., Исследование структуры платинированной платины, Элетрохимия 1974. 10: с. 751.
  130. Ю. Д., Петухова Р. П., Лифшиц А. Д., Подловченко Б. И., Полукаров Ю. М., Исследование структуры электролитических осадков палладия, Электрохимия, 1979. 15: с. 1875.
  131. Cherstiouk О. V., Gavrilov A. N., Plyasova L. M., Molina I. Yu., Tsirlina G. A., Savinova E. R., Influence of structural defects on the electrocatalytic activity of platinum, J Solid State Electrochem, 2008.12: p. 497.
  132. Frumkin A., Damaskin В., Grigoryev N., Bagotskaya I., Potentials of zero charge, interactions of metals with water and adsorption of organic substances-I. Potentials of zero charge and hydrophilicity of metals, Electrochimica Acta, 1974. 19: p. 69.
  133. Frumkin A. N., Petry O. A., Adsorption of ions and atoms on platinum-group metals, Electrochimica Acta 1970. 15: p. 391.
  134. . И., Петухова Р. П., Влияние потенциала и температуры электроосаждения на свойства платинированного платинового и платино-рутениевого электродов, Электрохимия, 1970. 6: р. 198.
  135. М. Р., Электрохимия углеродных материалов. М.:Наука, 1984, 253 с.
  136. Petry О. A., Podlovchenko В. I. Frumkin A. N., Hira Lai, The behaviour of platinized-platinum and platinum-ruthenium electrodes in methanol solution, J. Electroanal. Chem., 1965. 10: p. 263.
  137. Podlovchenko В. I., Petry O. A., Frumkin A. N., Hira Lai, The behaviour of a platinized-platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes andformic acid, J. Electroanal. Chem., 1965.10: p. 263. f
Заполнить форму текущей работой