ΠΡΠΈΡΠΎΠ΄Π° ΠΏΠ°ΡΠ°ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ
ΡΠ΅Π½ΡΡΠΎΠ² ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π°.
ΠΠΠ ΠΈ UV-VIS-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡ
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
Π ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π° Π² ΠΌ-ΠΊΡΠ΅Π·ΠΎΠ»Π΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΡΠΏΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡΠΎΡΡΠΎΠ²Π΅ΡΠ°, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠ΅Π·ΠΊΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ Π²ΠΎΡΠΏΡΠΈΠΈΠΌΡΠΈΠ²ΠΎΡΡΠΈ ΠΈ ΡΠΈΡΠΈΠ½Ρ Π»ΠΈΠ½ΠΈΠΈ ΠΠΠ ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π° ΠΏΡΠΈ —200 ΠΈ 250 Π, ΠΈΡ ΠΏΠ»Π°Π²Π½ΠΎΠ΅ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΎΡ 293 Π΄ΠΎ 423 Π, ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΠΉ Π³ΠΈΡΡΠ΅ΡΠ΅Π·ΠΈΡ. ΠΠ΅Π΄Π»Π΅Π½Π½ΡΠΉ Π²ΠΎΠ·Π²ΡΠ°Ρ ΠΏΠ°ΡΠ°ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ Π²ΠΎΡΠΏΡΠΈΠΈΠΌΡΠΈΠ²ΠΎΡΡΠΈ ΠΈ ΠΎΠΏ- β’ ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΠΈΡΡ ΠΎΠ΄Π½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Π‘.Π. Chiang, C.R.Fisher, Jr., Y.W.Park, and A J. Heeger H. Shirakawa, EJ. Louis, S.C. Gau, A.G. MacDiarmid. Electrical Conductivity in Doped Polyacetylene. // Phys. Rev. Lett. l977.V39.№ 17.P.1098−1101.
- S.Stafstrom, J.I.Bredas. Electronic structure of highly conducting conjugated polymers: evolution upon doping of polyacetilene, polythiofene and polyemer-aldine. // J. Molecular Structure. 1989. VI88. P. 393−427.
- A.G. MacDiarmid, A.J. Epsteine. «Polyanilines» a novel class of conducting polymers. //A.J. Faradey Discuss. Chem. Soc.l.l989.V.88/p.317−332.
- J.-C. Chiang, .G. MacDiarmid. «Polyaniline»: protonic acid doping of the emer-aldine form to the metallic regime. // Synth.Met. 1986.V. 13.№ 1. P/193−205.
- A.Ray, A.F. Richter, A.G. MacDiarmid, A.J. Epsteine. Polyaniline: protonation / deprotonation of amine and imine sites. // Synth.Met. 1989.V.29.№ 1−3:P. 151−156.
- A.G. Green, A.E. Woodhead. Aniline-black and allied compounds. Part I. // J.Chem. Soc.Trans. 1910. V.97. P.2388−2403.
- D.M.Mohilner, R.N.Adams, W.J.Argersinger, Jr. Investigation of the kinetics and mechanism of the anodic oxidation of aniline in the aqueous acid solution at a platinum electrode. //J.Am. Chem: Soc. 1962. V.84. № 19. P.3618−3622.
- J.Y. Shimano, A. G. MacDiarmid. Phase segregation in polyaniline: a dynamic block copolymer. // Synth.Met.119 (2001), pp.365−366.
- ΠΠ²Π°Π½ΠΎΠ² Π.Π€., Π‘ΡΡΡΠΊΡΡΡΠ° ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π° ΠΈ ΠΈΠ½ΡΠ΅ΡΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π½Π° Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π΅. //ΠΠ²ΡΠΎΡΠ΅ΡΠ΅ΡΠ°Ρ Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡΡΠ΅Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄ΠΎΠΊΡΠΎΡΠ° Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ, ΠΠΎΡΠΊΠ²Π° 2007, ΡΡΡ. 11.
- M.Lapkovski, Π.Π. Genies. Evidence of two kinds of spin in polyaniline from in situ EPR and electrochemistry. Influenca if the electrolyte composition. // J.Electroanal. Chem. 1990. V.279. № 1−2. P.157−168.
- H. Okamoto, M- Okamoto, T. Kotaka. Structure development in polyaniline films during electrochemical polymerization. il: Structure and properties of polyaniline films prepared via electrochemical polymerization. // Polymer. 1998. V.39.№ 18.p.4359−4367.
- Π’. Toyada, Π. Nakamura. Π Π value dependence of the photothermal and optical spectra for polyaniline films. II Synth.Met. 1995. V.69. βl-3.P.227−228.
- Lj. Duic, S. Grigic. The effect of polyaniline morfology on hydroquinon/quinon redox reaction. // Electrochim. Acta. 2001. V. 46. № 18. P.2795−2803.
- G. del T. Andrade, M.J. Aguirre, S.R. Biagio. Influence of the potential scan on the morphology and electrical properties of potentiodinamically grown polyaniline films. //Electrocim. Acta. 1998. V. 44. № 4. P.633−642.
- Comparison of charge compensation process in aqueous media of polyaniline and selfdoped polyanilines. H. Valera, S.L. deA. Maranhao, P.M.O.O. Mello etal. II Synth. Met. 2001. V. 122. № 2. P. 321−327.
- Anodic polymerisation of aniline and methylsubstituted derivatives: ortho and para coupling. A. Thyssen, A. Holsheld, R. Kessel et al. ll Synth. Met. 1989. V.29. № 1. P. 357−362.
- Lj. Duic, Z. Mandic. Counter-ion and pH effect on the electrochemical synthesis of polyaniline. // J. Electeoanal. Chem. 1992. V. 335. № 1−2. P. 207−221
- G. Zotti, S. Cattarin, N. Comisso. Cyclic potential sweep electropolymerization of aniline the role of anions in the polymerization mechanism. 11 J. Electroanal. Chem. 1988. V. 239. № 1−2. P. 387−396.
- T. Matsunaga, H. Daifuku, T. Nakajima, T. Kawagoe. Development of polyani-line-lithium secondary battery. //Polym. Adv. Technol. 1990. V. 1. № 1. P.33−39.
- Some aspectsof the electrochemical growth of polyaniline films. T. Boschi, G. Montesperelli, P. Nunziante et al. II Solid State Ionics. 1989. V.31. № 4. P. 281 286.
- C.Q. Cui, L.H. Ong, T.C. Tan, J.Y. Lee. Extent of incorporation of hydrolysis products in polyaniline films deposited by cyclic potential sweep. // Electrochim. Acta. 1993. V. 38. № 10. P. 1395−1404.
- D. Nicolas-Debarnot, F. Poncin-Epaillard. Polyaniline as new sensitive layer for gas sensors. I I Analytica Acta. 2003. V. 475. № 1. P. 1−15.
- The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. J. Stejskal, A. Riede, D. Hlavata et al. II
- Synth. Metals, 96(1998)55−61.
- ΠΠΈΡΠ΅Π»Π΅Π²Π° Π‘.Π., ΠΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΡ Π°Π½ΠΈΠ»ΠΈΠ½Π° Π² Π³Π΅ΡΠ΅ΡΠΎΡΠ°Π·Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅. // ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡΡΠ΅Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ° Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΠΊ, ΡΠΏΠ΅Ρ.02.00.06, ΠΠΎΡΠΊΠ²Π°-2003.
- A. Malinauskas. Chemical deposition of conducting polymers. // Polymer. 2001 V.42. № 9P.3957−3972.
- J.K. Avlyanov, J.Y. Yosefowicz, A.G. MacDiarmid. Atomic force microscopy surface morphology studies of «in situ» deposited polyaniline films. // Synth.Met. 1995. V.73.№ 3. P.205−208.
- P.-C. Wang, Z. Huang, A.G. MacDiarmid. Critical dependency of the conductivity ofpolypyrrole and polyaniline films on the hydrophobicity/hydrophilicity on the substrate surface. // Synth.Met. 1999. V. 101. № 1−3. P.852−853.
- A.G. MacDiarmid. Polyaniline and polypyrrole: Where are we headed? // Synth.Met. 1997. V.84. № 1−3. P.27−34″.
- Selective deposition of films polypyrrole/ polyaniline and nickel on hydropho-bic/hydrophilic patterned surface and application. Z. Huang, P.-C. Wang, J. Feng' et al. ll Synth.Met. 1997. V.85. № 1−3. P.1375−1376. '
- W. Liang, C.R. Martin. Gas transport in electronically conductive polymers. // Chem. Mater. 1991. V. 3.P. 390−391.
- S .W. Dyun, S.S. Im. Physical properties and doping characteristics of polyaniline- Nylon 6 composite films. // Polymer. 1998. V.39.№ 2.P.485−489:
- Ch.R. Martin. Membrane-based syntesis of nanomatterials. I I Chem.Mater. 1996. V.8.№ 8. P.1739−1746.
- R. V. Parthasarathy, Ch.R. Martin. Template-synthesized polyaniline microtubules. // Chem.Mater. 1994.V.6.№ 10. P.1627−1632.
- R. M. Penner, Ch.R. Martin. Controlling the morphology of electronically contuc-tive polymers. //J. Electrochem.Soc. 1986. V.133.№ 10.P.2206−2208.
- Z.Cai, Ch.R. Martin. Electronically contuctive polymer fibers with mesoscopic diameters show enhanced electronic conductivities.// J.Am. Chem.Soc. 1989.1. V.111. № 11. P.4138−4139.
- CH.J. Brumlik, Ch.R. Martin. Template syntesis of metal microtubules.// J.Am. Chem.Soc. 1991. V.113. № 8. P.3174−3175.
- A new family of mesoporous molecular sieves prepared with liguid crystal tam-plates. J.S. Beck, J.C. Vartuli, W.J. Roth etal. J/ .Am. Chem.Soc. 1992. V.114. № 27. P. l0834−10 843.
- Chemical and electrochemical synthesis of polyaniline micro- and nano-tubules. M. Delvaux, J. Duchet, P.-Y. Stavaux et all I Synth. Met. 2000. V. 113. № 3. P. 275−280.
- Q. Wu, Z. Xue, Z. Oi. Synthesis and characterization of Pan/claynanocomposite with extended chain conformation of polyaniline.// Polymer. 2000.V. 41. № 6. P. 2029−2032.
- M.G. Kanatzidis, C.G. Wu, H. O. Marcy, C.R. Kannewurf. Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels.// J. Am.Chem. Soc. 1989. V. 111.№ 11. P. 4139−4141.
- M. Kryszewski. Nanointercalates—novel class of materials with promisingproper-ties. // Synth. Met. 2000. V. 109. № 1−3. P. 47−54.
- N. Kinomura, T. Toyama, N. Kumada. Intercalative polymerization of aniline in VOPO4 2H20./ / Solid State Ionics. 1995. V. 78. № 1−2. P. 281−286.
- P.R. Somani, R. Marimutu, A.B. Mandale. Synthesis, characterization and charge transport mechanism in conducting polyaniline/V205 composites. // Polymer. 2001. V. 42. № 7. P. 2991−3001.
- F. Lerowc, G. Goward, W. P. Power, L. F. Nazar. Electrochemical Li Insertion-into Conductive Polymer/V205 Nanocomposites. // J. Elecnrochem. Soc. 1997.V.144.β ΠΏ. p. 3886−3896.
- K. Gurunathan, D.Ch. Trivedi. Studies on polyaniline and colloidal Ti02 composites. // Materials Letters. 2000. V. 45. № 5. P. 262−268.
- H. S. O. Chan, L. M. Gan, L. H. Zhang, Π‘. H. Chew. Preparation of conducting polyaniline-coated barium sulfate nanoparticles in inverse microemulsions.// Mater. Chem. Phys. 1995. V. 40. № 2. P. 94−98.
- Reaction of Aniline with FeOCl. Formation and Ordering of Conducting Polyani-line in a Crystalline Layered Host. C.-G. Wu, D.C. DeGroot, Π.Π. Marcy et al. II J. Am. Chem. Soc. 1995. V. 117. № 36. P. 9229 9242.
- N. Gospodinova, P. Mokreva, T. Tsanov, L. Terlemezyan. A new route to polyani-line composites. //Polymer. 1997. V. 38. № 3. P. 743−746.
- B.-J. Kim, S.-G. Oh, M.-G. Han, S.-S. Im. Synthesis and characterization ofpoly-aniline nanoparticles in SDS micellar solutions. // Synth. Met. V. 122. № 2. P.297−304.
- T. Sulimenko, J. Stejskal, I. Kfivka, J. Prokes. Conductivity of colloidal polyani-line dispersions. // European Polymer Journal. 2001. V. 37. № 2. P. 219- 226.
- Preparation of aqueous polyaniline dispersion by micellar-aided polymerization. L. Yu, J.-I. Lee, K.-W. Shin etal. H J. Appl. Polymer Sci. V. 88. P. 1550−1555.
- L. Sun, CO. Yang. Template-guioded synthesis of conducting polymers: molecur lar complex of polyaniline and polyelectrolite.// Am. Chem. Soc. Polymer Preprints. 1992. V. 33. P. 379.
- X-Ray photoelectron spectroscopy and electrical conductivity in polyaniline doped with DBSA as a function of the synthesis method. G.M.O. Barra, M.E. Leyva, MM. Gorelova et all! J. Appl. Polymer Sci. 2001. V. 80: № 4. P. 556 565.
- Emulsion polymerization of aniline. J.-E. Osterholm, Y. Cao, F. Clavetter, P. Smith.// Polymer. 1994. V. 35. P.2902−2906.
- Emulsion polymerization process for organically soluble and electrically conducting polyaniline. P.J. Kinlen, J. Liu, Y. Ding et «/.//Macromolecules. 1998. V.31. № 6. P. 1735−1744.
- F. Yan, G. Xae. Synthesis and characterization of electrically conducting polyaniline in water-oil microemulsion.// J. Mater. Chem. 1999'. V. 9. № 12. P. 30 353 039.
- D. Ichinihe, T. Arai, H. Kise. Synthesis of soluble polyaniline in reversed micellar system.// Synth. Met. 1997. V. 84. № 1−3. P. 75−76.
- E. Ruckenstein, Y. Sun. Polyaniline-containing electrical conductive compositeprepared by two inverted emulsion pathways.// Synth. Met. 1995. V. 74. № 2. P. 107−113.
- S. Yang, F. Ruckenstein. JProcessable conductive composites of polyani-line/poly (alkyl methacrylate) prepared via an emulsion method. // Synth. Met. 1993. V. 59. P. 1−12.
- F. Li, F. Zeng, Y. Zhu, S. Wu. Synthesis of soluble polyaniline in reversedmicel-lar system.// Synth. Met. 1997. V. 84. № 1−3. P. 75−76.
- N. Kuramoto, A. Tomita. Aqueous polyaniline suspensions: chemical oxidative-polymerization of dodecylbenzene-sulfonic acid aniline salt.// Polymer. 1997. V.38. № 12. P. 3055−3058.
- F. Yan, Π‘ Zheng, X. Zhai, D. Zhao. Preparation and characterization of poly-acrylamide in cationic microemulsion.//J. Appl. Polym. Sci. 1998. V. 67. № 4. P. 747−754.
- H.-Q. Xie, Y.-M. Ma, J. S. Guo. Conductive polyaniline-SBS composites from in situ emulsion polymerization.//Polymer. 1998. V. 40. β P. 261−265.,
- A.J. Heeger. Semiconducting and metallic polymers: the fourth generation of the polymeric materials. // Synth.Met.2002.V.125.βl. P.23−42.
- A.G. MacDiarmid. Synthetic metals: a novel role for organic polymer.// .// Synth.Met.2002.V. 125.№ 1. P. 11−22.
- Electrical Conductivity in Doped Polyacetylene. C.K. Chiang, C.R.Fisher, /Π³., Y.W.Park et alH Phys.Rev.Lett.l978.V.40. № 22.P:1472−1475.
- Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles. Wahid Mottaghitalab, BinbinXi, Geoffrey M. Spinks et.al. //Synthetic Metals 156 (2006) 796−803.
- S.Stafstrdm. Defects states in polyaniline.// Synth.Met.l987.V.18. № 1−3. P.387−392.
- K. Nanaka, S. Wang, T.Yamabe. Will bipolarons be formed in heavely oxidized polyaniline? // Synth.Met.l990.V.36. P.129−135.
- A. G. MacDiarmid, A.J. Epsteine. Secondary doping in polyaniline. II Synth.Met. 1995.V.69. № 1−3. P.89−92.
- Z. H. Wang, A. Ray, A. G. MacDiarmid, A. J. Epstein. Electron localization and charge transport in poly (o-toluidine): A model polyaniline derivative.// Phys. Rev. B, 1991,43, 4373.
- Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional «Metallic» states. Z. H. Wang, E. M. Scherr, A. G. MacDiarmid etal. II Phys. Rev. Π, 1992, 45, 4190.
- A. Raghunathan, P. K. Kahol, D. J. McCormic. Electron localization studies of alkoxy polyanilines. II Synth. Met., 1999,100, 205−216.
- Processible polyaniline complexes due to molecular recognition: Supramolecular structures based on hydrogen bonding and phenyl stacking, Π. T. Ikkala, L.-O. Pietila, P. Passiniemi. et alJI Synth. Met., 1997, 84, 55−58.
- On metallic characteristics in some conducting polymers, P. K. Kahol, J. Π‘. Ho, Y. Y. Chen et al. I I Synth. Met. 2005.151. P.65−72.
- Electrical, magnetic and structural properties of chemically and electrochemically synthesized polypyrroles, J. Joo, J. K. Lee, J.S. Baeck et al. II Synth. Met., 2001, 117, 45−51.
- P. K. Kahol, A. Raghunathan, B. J. McCormick. A magnetic susceptibility study of emeraldine base polyaniline.//^^. Met. 2004. 140.P.261−267 *
- Solitons in Polyacetylene: Magnetic Susceptibility, S. Ikehata, J. Kaufer, T. Wo-erner et al.!IPhys. Rev. Lett. 1980. 45. P. 123−1126.
- T. Masui, T. Ishiguro, J. Tsukamoto. Spin susceptibility and its relationship to structure in perchlorate doped polyacetylene in the intermediate dopant-concentration XQgion.HSynth. Met. 1999.104. P. 179−188.
- J. Chen, A. J. Heeger and F. Wudl, Confined soliton pairs (bipolarons) in polythiophene: In-situ magnetic resonance measurements. // Solid State Commun.1986, 58, 251−257.
- Bipolarons in poly-(3-methylthiophene): Spectroscopic, magnetic and electrochemical measurements, N. Colaneri, M. Nowak, D. Spiegel et al. lI Phys. Rev. B.1987. 36. P.7964−7968.
- G. Cik, F. Sersen, L. Dlhan. Thermally induced transitions of polarons to bipolarons in poly (3-dodecylthiophene). II Synth Met. 2005.151. P.124−130.
- Metallic transport in polyaniline, K. Lee, S. Cho, S. H. Park et al. II Nature. 2006. 441. P.65−68.
- P. K. Kahol, A. Raghunathan, B. J. McCormick, A.J. Epstein. High temperature magnetic susceptibility studies of sulfonated poly anilines.// Synth. Met. 1999. V.101. P.815−816.
- Low-temperature heat capacities of polyaniline and polyaniline polymethylmethacrylate blends, A. Raghunathan, P. K. Kahol, J. Π‘. Ho et al. II Phys. Rev. B. 1998. V.58. P.15 955−15 958.
- Heat capacity, EPR, and dc conductivity investigations of dispersed polyaniline and poly (ethylene dioxythiophene), P. K. Kahol, J. Π‘. Ho, Y Y. Chen et al. II Synt. Met. 2005. 153. P.169−172.
- Electronic processes in polyaniline films photoexcited with picosecond laser pulses: A three-dimensional model for conducting polymers, I. A. Misurkin, T. S. Zhuravleva, V. M. Geskin et all I Phys. Rev. B. 1994. 49. P.7178−7192.
- Π. Π. ΠΠΈΡΡΡΠΊΠΈΠ½. Π’Π΅ΠΎΡΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ².//Π₯ΠΈΠΌ. Π€ΠΈΠ·ΠΈΠΊΠ°. 1996. V.15. № 8. Π .110−115.
- Π. Π. ΠΠ΅ΡΠ»ΠΈΠ½, Π. Π. ΠΠΈΠ½ΠΎΠ³ΡΠ°Π΄ΠΎΠ², Π. Π. ΠΠ²ΡΠΈΠ½Π½ΠΈΠΊΠΎΠ². Π ΠΏΡΠΈΡΠΎΠ΄Π΅ ΠΏΠ°ΡΠ°ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΡΠ΅Π½ΡΡΠΎΠ² ΠΌΠ°ΠΊΡΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ» Ρ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΡ Π‘-Π‘ ΡΠ²ΡΠ·Π΅ΠΉ.// ΠΠ·Π². ΠΠ, Π‘Π΅Ρ. Ρ ΠΈΠΌ. 1971. Π .1398−1402.
- Π. Π. ΠΠΈΠ½ΠΎΠ³ΡΠ°Π΄ΠΎΠ², Π. Π. ΠΠΈΡΡΡΠΊΠΈΠ½, Π. Π. ΠΠ²ΡΠΈΠ½Π½ΠΈΠΊΠΎΠ². Π Π²ΠΎΠΏΡΠΎΡΡ ΠΎ ΡΠ΅ΡΠΌΠΎΠ²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½Π½ΠΎΠΌ ΠΏΠ°ΡΠ°ΠΌΠ°Π³Π½Π΅ΡΠΈΠ·ΠΌΠ΅ ΠΌΠ°ΠΊΡΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ» Ρ ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΠΌΠΈ ΡΠ²ΡΠ·ΡΠΌΠΈ. // Π’Π΅ΠΎΡΠ΅Ρ. ΡΠΊΡΠΏΠ΅ΡΠΈΠΌ. Π₯ΠΈΠΌΠΈΡ. 1978. 12. Π .723−730.
- Magnetic properties in polypyrrole doped by series of dopants, K. Mizoguchi, N. Kachi, H. Sakamoto et. al.//Synth. Met. 1997 84. P. 695.
- Π ΠΎΠ»Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π²ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π½Π° ΡΠΏΠ΅ΠΊΡΡΡ ΠΠΠ ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π°, Π. Π. ΠΡΠ»ΠΈΠΊΠΎΠ², Π. Π . ΠΠΎΠ³Π°ΡΡΡΠ΅Π½ΠΊΠΎ, Π. Π. ΠΠ΅Π»ΠΎΠ½ΠΎ-Π³ΠΎΠ²Π° et al. H ΠΠ·Π². ΠΠ, Π‘Π΅Ρ. Ρ ΠΈΠΌ., 2000, 1762.
- Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy, ,/.?. de Albuquerque, L.H.C. Mattoso, RM. Faria et al. Π Synth.1. Met.2004. Y.146. P. l-10.
- C.R. Duke, E.M. Conwell, A. Palon, Localized molecular excitons in polyaniline // Chem. Phys. Lett. 1986. V.131. P.82−86.
- J. Stejskal, P. Kratochvil, A.D. Jenkins. Polyaniline: form and formation.// Collect. Czech. Chem. Commun. 1995. V.60. P. 1747−1755.
- A.P. Monkman, P. Adams. Structural characterization of polyaniline free standing films. // Synth. Met. 1991. V.41−43. P. 891−896.
- Y. Wang, S. SaebO, C. U. Pittman Jr., The structure of aniline by ab initio studies. // J. Mol. Struct. (Theochem). 1993. V.281. P.91−98.
- D.G. Lister, J.K. Tyler, Non-planarity. of the aniline. Molecule. 11 Chem. Commun. 00(1966)152−153.
- The microwave spectrum, structure and dipole moment of aniline, D.G. Lister, J.K. Tyler, J.H. H0g et al. II J. Mol. Struct. (Theochem) 23 (1974) 253−264.
- M. Fukuyo, K. Hirotsu, T. Higuchi, The structure of aniline at 252 K. //Acta Cryst. B38 (1982) 640−643.
- Mariana E. Vaschetto, Bernardo A. Retamal, Andrew P. Monkman. Density functional studies of aniline and substituted anilines// J.Mol. Struct. (Theochem) 1999. V.468. P.209−221.
- M.J.S.Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. AMI: a new general purpose quantum mechanical molecular model// J.Am.Chem.Soc. 1985. V.107. P.3902−3909.103.
- BeckeA.D., Density-functional thermochemistry. III. The role of exact exchange. // J. Chem. Phys. l993.V.98. P.5648−5662.
- Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. // Phys. Rev. B.1988.V.32. P.785−789.
- Gaussian 98, Revision A.7, Manual, M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. //Gaussian, Inc., Pittsburgh PA, 1998.
- Π. ΠΠ±ΡΠ°Π³Π°ΠΌ, Π―Π΄Π΅ΡΠ½ΡΠΉ ΠΌΠ°Π³Π½Π΅ΡΠΈΠ·ΠΌ II ΠΠ, ΠΠΎΡΠΊΠ²Π°, 1963, Π³Π»Π°Π²Ρ 9 ΠΈ 10
- Π . Π. Kahol, M. Mering, Exchange-coupled pair model for the non-Curie-like susceptibility in conducting polymers // Synth. Met., 1986,16, 257−264.
- EPR of mesoscale polyanilines, K. R. Brenneman, J. Feng, Y. Zhou et al. II Synth. Met., 1999,101, 785−786.
- Π Kanemoto, J. Yamauchi, A. Adachi, Electron spin relaxation studies of conducting polypyrroles: The difference of the relaxation processes between highly conducting and semiconducting polypyrroles. // Solid State Commun., 1998,107, 203−207.
- K. Kanemoto, J. Yamauchi, Doping-induced variation of electron spin relaxation behavior in polypyrroles. // Synth. Met., 2000,114, 79−84.
- Π§. Π‘Π»ΠΈΠΊΡΠ΅Ρ, ΠΡΠ½ΠΎΠ²Ρ ΡΠ΅ΠΎΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ°.!! Π., ΠΠΈΡ, 1981, Π³Π»Π°Π²Π° 5.
- Π. ΠΠΆΠ΅ΡΡΠΈΡ, ΠΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡΡΠ΄Π΅Ρ.ΠΠ«., ΠΠΈΡ, 1965, Π³Π»Π°Π²Π° 3.
- EPR and charge transfer in H2S04-doped polyaniline, V. I. Krinichnyi, H.-K. Roth, G. Hinrichsen et al. I/Phys. Rev. B, 2002, 65, 155 205.
- Π. Π. ΠΡΠ»ΠΈΠΊΠΎΠ², Π. P. ΠΠΎΠ³Π°ΡΡΡΠ΅Π½ΠΊΠΎ, Π. Π. ΠΠ΅Π»ΠΎΠ½ΠΎΠ³ΠΎΠ²Π°, ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠΠ . // ΠΠ·Π². ΠΠ, Π‘Π΅Ρ. Ρ ΠΈΠΌ., 2002, 2057.
- Spin dynamics study in doped polyaniline by continuous wave and pulsed electron paramagnetic resonance, C. J. Magon, R. R. de Souza, A. J. Costa-Filho et al. II J. Chem. Phys., 2000,112, 2958−2966.
- Π. Π. ΠΠΈΡ ΡΠ΅Π½ΡΡΠ΅ΠΉΠ½, Π. Π. ΠΠΎΡΠ΅Π»ΡΠ½ΠΈΠΊΠΎΠ², Π. Π. ΠΡΠ»ΠΈΠΊΠΎΠ², Π ΡΡΡΠΎΠ΅Π½ΠΈΠΈ ΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠ° ΡΠΎΡΠΎΡΠΈΠ½ΡΠ΅Π·ΠΈΡΡΡΡΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ. II ΠΠΠ Π‘Π‘Π‘Π , 1981, 257, 733−736.
- Multiple lattice phases and polaron-lattice—spinless-defect competition in poly-anilin, M. E. Jozefowics, R. Laversanne, H. H. S. Javadi. II Phys. Rev. B, 1989, 39, 12 959- 12 961.
- B. Beau, J. P. Travers, E. Banka, NMR evidence for heterogeneous disorder and quasi-ID metallic state in polyaniline CSA. // Synth. Met., 1999,101, 772−775.
- F. D. Dyson, Electron Spin Resonance Absorption in Metals. II. Theory of Electron Diffusion and the Skin Effect. II Phys. Rev., 1955, 98, 349−359.
- Π§. ΠΡΠ», Π’Π΅Ρ Π½ΠΈΠΊΠ° ΠΠΠ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ.!! Π., ΠΠΈΡ, 1970, Π³Π»Π°Π²Π° 12 121., Annealing effect in polyaniline-CSA upon moderate heating. D. Berner, J. Davenas, D. Djurado et al. II Synth. Met., 1999,101, 727−728.
- E. Houze and M. Nechtschein, ESR in conducting polymers: Oxygen-induced contribution to the linewidth. II Phys. Rev. B, 1996, 53, 14 309−14 318.
- P. Gutlich, Y. Garcia, andH.A. Goodwin, Spin crossover phenomena in Fe (II) complexes. // Chem. Soc. Rev., 2000, 29, 419−427.
- Correlations of the distribution of spin states in spin crossover compounds, H. Spiering, T. Kohlhaas, H. Romstedt et al. //Coord. Chem. Rev., 1999,190, 629 647.
- Nonclassical Spin Transitions, V.I. Ovcharenko, S.V. Fokin, G.V. Romanenko et.al. II J. Sruct. Chem., 2002,1,153−167.
- J.M. Grinder and A.J. Epstein, Role of ring torsion angle in polyaniline: Electronic structure and defect states. U Phys. Rev. B, 1990, 41, 10 674−10 685.
- Kulikov A.V., Kogan Ya.L., and Fokeeva L.S., Molecular mobility in polyanilinestudied by ESR method. h Syn. Metals, 1995, 69, 223−224.
- B. Bleany, K.D. Bowers. Anomalousparamagnetism of copper acetate// Proc. Roy. Soc. London, Ser. F, 1952, 214,451−456.
- P. K. Kahol, A. J. Dyakonov, B. J. McCormick, An electron-spin-resonance study of polyaniline and its derivatives: polymer interactions with moisture.// Synth. Met., 1997, 84, 691−694
- S. Sinnecker, F. Neese, Spin-Spin contribution to Zero-Field Splitting tensor in organic triplets, carbens and biradicals A density functional and ab initio study. // J. Phys. Chem. A 2006, 110, 12 267−12 275
- P. K. Kahol, A. J. Dyakonov, B. J. McCormick, An electron-spin-resonance study of polymer interactions with moisture in polyaniline and its derivatives.// Synth. Met. 1997, 89, 17−28.
- Conducting polymer interaction with gaseous substances. 1. Water., O. N. Ti-mofeeva, B. Z. Lubentsov, Ye. Z. Sudakova et al. ll Synth. Met., 1991, 40, 111−116.