Помощь в написании студенческих работ
Антистрессовый сервис

Термодинамические аспекты влияния низкомолекулярных углеводов и полисахаридов на функциональные свойства белков

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Белки составляют основу самых разнообразных биологических, пищевых и других систем. При этом многие ключевые функции, выполняемые белками в этих системах, обусловлены их полимерной природой и, связанными с ней, функциональными свойствами. Являясь амфифильными соединениями и, одновременно, полиэлектролитами, белки обладают также характерной способностью к конформационным изменениям, самоассоциации… Читать ещё >

Термодинамические аспекты влияния низкомолекулярных углеводов и полисахаридов на функциональные свойства белков (реферат, курсовая, диплом, контрольная)

Содержание

  • I. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Функциональные свойства пищевых белков и факторы их определяющие
    • 1. 2. Влияние низкомолекулярных Сахаров на функциональные свойства и термодинамические параметры белков. ^
      • 1. 2. 1. Изменение функциональных свойств белков в результате ковалентного связывания с НМ сахарами по реакции Майяра
      • 1. 2. 2. Влияние низкомолекулярных Сахаров на термоденатурацию глобулярных белков
      • 1. 2. 3. Изменение гелеобразующей способности белков под влиянием низкомолекулярных углеводов
      • 1. 2. 4. Влияние низкомолекулярных углеводов на поверхностную активность белков
      • 1. 2. 5. Предложенные механизмы изменения конформационной стабильности и функциональных свойств белков под влиянием низкомолекулярных углеводов
  • 13. Взаимодействия белок-полисахарид и их роль в изменении функциональных свойств белков
    • 1. 4. Взаимодействие белков с ароматобразующими соединениями

Белки составляют основу самых разнообразных биологических, пищевых и других систем. При этом многие ключевые функции, выполняемые белками в этих системах, обусловлены их полимерной природой и, связанными с ней, функциональными свойствами. Являясь амфифильными соединениями и, одновременно, полиэлектролитами, белки обладают также характерной способностью к конформационным изменениям, самоассоциации в водной среде и адсорбции на границе раздела фаз, что, в совокупности, определяет такие важные функциональные свойства белков, как растворимость в водной среде, термодинамическую несовместимость или, напротив, комплексообразование, с другими, различными по своей природе, соединениями (как высокомолекулярными, так и низкомолекулярными) и, кроме того, способность к формированию структуры в объёме и на границах раздела фаз. Все эти свойства широко используются, в частности, при создании желаемой структуры и стабилизации водных растворов и коллоидных систем (гелей, эмульсий, пен и др.) в пищевой, парфюмерно-косметической, а также фармацевтической промышленностях.

Ярко выраженная зависимость функциональных свойств белков от различных физико-химических факторов (рН, ионная сила, температура и др.), а также присутствия в системе других биополимеров или низкомолекулярных соединений открывает широкие возможности для эффективного и целенаправленного использования белков в качестве функциональных ингредиентов. Это является особенно актуальным в настоящее время, когда резко возросший спрос потребителя к качеству продукции со стороны как внешней привлекательности (текстура, аромат и др.), так и положительного воздействия на здоровье (сбалансированность по макрои микрокомпонентам), ставит перед производителями задачу создания продуктов нового поколения, обладающих усовершенствованной или уникальной структурой и свойствами, а также отличающихся высокой физической стабильностью. Очевидно, что для успешного выполнения этой задачи, особенно в условиях современного темпа развития производства и конкуренции между производителями, недостаточно руководствоваться лишь эмпирическими данными, необходимо чёткое понимание механизмов регулирования функциональных свойств белков в многокомпонентных системах.

Однако большая часть фундаментальных знаний, накопленных к моменту начала нашей работы, касалась поведения белков в их индивидуальных растворах, а исследования изменения функциональных свойств белков в многокомпонентных системах, носили, в большинстве случаев, феноменологический характер. Тем не менее, полученные результаты ясно показывали, что введение в систему нового компонента или удаление одного из её компонентов может привести к существенным изменениям поведения белка, обуславливая, тем самым, изменения структуры и свойств всей системы, в целом. Таким образом, было очевидно, что эффективное и целенаправленное использование белков в качестве функциональных ингредиентов действительно станет возможным только при ясном понимании молекулярных механизмов изменения их функциональных свойств в многокомпонентных системах определённого состава. При этом, для более глубокого понимания происходящих процессов, целесообразным представлялся систематический и последовательный термодинамический подход с изучением на модельных системах межмолекулярных взаимодействий между, прежде всего, основными компонентами, входящими, как правило, в состав важных для практики биополимерных водных растворов и коллоидных систем, и постепенным усложнением модели путём введения новых ингредиентов.

Ключевыми компонентами таких систем являются белки (в большинстве случаев, более одного) и полисахариды. Наряду с этим, в состав широкого класса таких систем, в особенности, пищевых, входят низкомолекулярные сахара и, в частности, сахароза, которая является, зачастую, одним из преобладающих по массе компонентом, однако, именно её роль в формировании структуры и физико-химических свойствах белоксодержащих систем оставалась, к моменту начала нашей работы, наименее изученной^ а имеющиеся данные и их интерпретация оказывались, неР^дко, противоречивыми. Поэтому наиболее актуальным и важным для понимания молекулярных механизмов изменения функциональных свойств белков в важных для практики многокомпонентных водных растворах и коллоидных системах, представлялось изучение, в первую очередь, роли межмолекуляр>НЬ1Х взаимодействий белков с низкомолекулярными и высокомолекулярных углеводами в этих системах, что и обусловило выбор основных объектов исследования в настоящей работе. При этом ставилась задача установления качественных и количественных взаимосвязей в ряду: молекулярная структура белков и углеводов — межмолекулярные взаимодействия — функционалу^ свойства белков — структура и свойства водных растворов и коллоидных систем.

I. ЛИТЕРАТУРНЫЙ ОБЗОР.

выводы.

1. В результате проведённого термодинамического анализа впервые установлено, что ключевыми факторами, обуславливающими изменение функциональных свойств белков (растворимости в водной среде, фазового поведения в смешанных растворах с другими биополимерами, поверхностной активности и гелеобразующей способности) под влиянием низкомолекулярных углеводов, являются изменения молекулярных и термодинамических параметров белков, в основе которых лежит формирование белками множественных водородных связей с молекулами этих углеводов.

2. Впервые показаны принципиальные отличия молекулярных механизмов изменения способности белков к адсорбции на границах раздела водной фазы с неполярной средой под влиянием низкомолекулярных углеводов и полисахаридов. Так, в отличие от низкомолекулярных углеводов, ключевым фактором, определяющим характер изменения поверхностной активности белков в присутствии нейтральных полисахаридов, является природа межмолекулярных парных взаимодействий биополимеров, а именно: в условиях термодинамически неблагоприятных взаимодействий биополимеров, повышающих их химические потенциалы (Аеел.пс > 0) в объёме водной среды, поверхностная активность белков возрастаеттермодинамически благоприятные взаимодействия биополимеров (Асел.пс< 0), напротив, приводят к уменьшению способности белков к адсорбции на границах раздела фаз (вода — неполярная фаза).

3. В случае коллоидных систем, а именно прямых эмульсий типа «масло в воде», стабилизированных смесями asi — казеина с пектином (Е = 76%) и Р — казеина с пектином (Е = 76%) впервые, на количественном уровне, установлены основные взаимосвязи между характером межмолекулярных взаимодействия белок-полисахарид в объёме водной дисперсионной среды, её фазовым состоянием и особенностями структуры, реологического поведения и стабильности эмульсий.

Показано, что:

1) Термодинамически неблагоприятные взаимодействия между биополимерами (Абел.пс > 0) приводят к:

— возрастанию величины адсорбции белка на каплях эмульсии (за счёт увеличения его термодинамической активности в системе) и, как следствие, понижению среднего размера капель эмульсий, а также увеличению вязкости сдвига в белковых адсорбционных слоях;

— интенсивной флоккуляции капель в эмульсиях по механизму «вытеснительной флоккуляции», приводящей к росту вязкоэластичности концентрированных эмульсий и быстрому образованию сывороточного слоя (кримингу) в разбавленных эмульсиях;

2) При термодинамически благоприятных взаимодействиях биополимеров бел-пс <0):

— не происходит изменений величины адсорбции белка на каплях эмульсий и их размера;

— наблюдается значительное увеличение вязкости сдвига в белковых адсорбционных слоях за счёт интенсивных межмолекулярных взаимодействий биополимеров;

— интенсивная флоккуляции капель в эмульсиях происходит по механизму «мостичной флоккуляции», что сопровождается ростом вязкоэластичности концентрированных эмульсий, а также более быстрым, чем в первом случае, образованием сывороточного слоя (кримингом) в пазбавленных эмульсиях.

4. На примере легумина впервые показано изменение способности белков к связыванию ароматобразующих соединений в присутствии мальтодекстринов. Установлено, что характер этих изменений обусловлен, главным образом, конформационными изменениями, происходящими в молекулах белка под влиянием мальтодекстринов.

ЗАКЛЮЧЕНИЕ

.

Таким образом, на основании всех вышеизложенных результатов, очевидно, что характер взаимодействия между белком и полисахаридом в объёме водной дисперсионной среды играет определяющую роль в таких ключевых свойствах эмульсий, приготовленных на основе смесей этих биополимеров, как дисперсность, стабильность во времени и вязкость.

Показать весь текст

Список литературы

  1. , J.E. 1976. Functional properties of proteins in foods A survey // Critical reviews in Food Science and Nutrition. — 1976. — 7 — P. 219−296.
  2. Pour-El A. Protein functionality: Classification, definition and methodology // Cherry J. P. (Ed.). Protein Functionality in Foods. Washington DC: American Chemical Society Symposium Series # 147, 1981. — P. 1−5.
  3. Damodaran S. Food proteins: an Overview // Damodaran S. & Paraf A. (Eds.). Food proteins and their applications. Boca Raton: CRS Press USA, 1997. -P. 1−24.
  4. Kinsella J.E. Relationship between structure and functional properties of food proteins // Fox P.F. & Condon J.J. (Eds.). Food Proteins. New York: Applied Science Publishers, 1982. — P. 51−103.
  5. Dickinson E. Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions (a review) // Soft Matter. 2008. — 4 -P. 932−942.
  6. Chandler D. Interfaces and the driving force of hydrophobic assembly // Nature. 2005. — 47. — P. 640−647.
  7. Nakai S. Structure-function relationships of food proteins with an emphasis on the importance of protein hydrophobicity // Journal of Agricultural and Food Chemistry. 1983. -31 — P. 676−683.
  8. A. & Nakai S. Hydrophobicity determined by a fluorescent probe method and its correlation with surface properties of proteins // Biochimica et. Biophysica Acta. 1980. — 624 — P. 13−20.
  9. Dickinson E. An introduction to food colloids. Oxford: Oxford Science Publications, 1992. — 206 p.
  10. L. P., Cheung E. & Nakai S. Relationships of hydrophobicity to emulsifying properties of heat denatured proteins // Journal of Food Science. — 1983.-48.-P. 26−32.
  11. Wolf W.J. Soy proteins: their functional, chemical and physical properties // Journal of Agricultural and Food Chemistiy. 1970. — 18 — P. 969−976.
  12. D., Pearce J. & Burley R.W. Protein gelation // Damodaran S. & Paraf A. (Eds.). Food proteins and their applications. Boca Raton: CRC Press USA, 1997.-P. 111−142.
  13. Hegg P. Contributions for the formation of heat-induced gels of some globular food proteins // Journal of Food Science. 1982. — 47 — P. 1241−1244.
  14. Damodaran S. Functional Properties // Nakai S. & Modler H.W. (Eds.). Food proteins: properties and characterization. Weinheim: Wiley-VCH, 1996. -P. 167−234.
  15. Zayas J.F. Functionality of proteins in food. New York: Springer, 1996. — 373 p.
  16. McClements D.J. Food Emulsions: Principles, Practices and Techniques (2nd edition). Boca Raton: CRC Press, 2005. — 609 p.
  17. Dickinson E. Proteins at interfaces and in emulsions. Stability, rheology and interactions // Journal of the Chemical Society, Faraday Transactions. -1998.-94-P. 1657−1669.
  18. Damodaran S. Protein stabilization of emulsions and foams // Journal of Food Science. 2005. — 70 (3) — P. R54-R66.
  19. W. & Lyklema J. Why proteins prefer interfaces // Journal of Biomaterials Science, Polymer Edition. 1991. — 2 № 3 — P. 183−202.
  20. Chobert J.-M. & Haetle T. Protein-lipid and protein-flavour interactions // Damodaran S. & Paraf A. (Eds.). Food proteins and their applications. Boca Raton: CRC Press USA, 1997. — P. 143−170 (всего 694 стр.).
  21. M.C., Torre M., Marina M.L. & Laborda F. Composition and characterization of soybean and related products // Critical Reviews in Food Science and Nutrition. 1997. — 37 (4) — P. 361−391.
  22. J.E. & Damodaran S. Flavor problems in soy proteins: origin, nature, control and binding phenomena // Charalambous G. (Ed.). The Analysis and control of less desirable flavors in food and beverages. New York: Academic Press, 1980.-P. 95−131.
  23. S. & Kinsella J.E. Interaction of carbonyls with soy protein: thermodynamic effects // Journal of Agricultural and Food Chemistry. -1981.-29-P. 1249−1253.
  24. O’Neill Т.Е. & Kinsella J.E. Flavor protein interactions: characteristics of 2-nonanone binding to isolated soy protein fractions // Journal of Food Science. -1987.-52 (1)-P. 98−101.
  25. K., Landy P., Guilard R. & Voilley A. Physicochemical interactions between aroma compounds and milk proteins effect of water and protein modification // Journal of Dairy Science. — 1998. — 81 (1) — P. 82−91.
  26. K.L. & Kinsella J.E. Parameters affecting the binding of volatile flavor compounds in model food systems. Part I. Proteins // Journal of Agricultural and Food Chemistry. 1974. — 22 (4) — P. 675−678.
  27. Gremli H.A. Interaction of flavor compounds with soy protein // Journal of American Oil Chemists' Society. 1974. — 51 (1) — P. 95A- 97A.
  28. P., Daraux C. & Voilley A. Retention of aroma compounds by proteins in aqueous solution // Food Chemistry. 1995. — 54 (4) — P. 387- 392.
  29. Voilley A.J. Flavour encapsulation-influence of encapsulation media on aroma retention during drying //ACS Symposium series. 1995. — 590 — P. 169−179.
  30. E. & Deeroos K.B. Performance of vanilla flavour in low-fat ice-cream // ACS Symposium series. 1996. — 633 — P. 24−35.
  31. K.S., Upadhyaya S.K. & Krochta J.M. Permeability of D-limonene in whey-protein films // Journal of Food Science. 1998. — 63 — P. 244−247.
  32. Damodaran S. Structure-function relationship of food proteins // Navam S. Hettiarachchy N.S. & Ziegler G. R. (Eds.) Protein Functionality in Food Systems: Basic Symposium (17o. Chicago). Boca Raton: CRC Press USA, 1994. — P. 1−38 (всего 519 стр.).
  33. Kilara A. Standardization of Methodology for Evaluating Whey Proteins // Journal of Dairy Science. 1984. — 67 — P. 2734−2744.
  34. Walstra P. Proteins // Walstra P. (Ed.). Physical Chemistry of Foods. -London: CRC Press, 2002. P. 203−249.
  35. E. & McClements D.J. Advances in food colloids. Glasgow: Blackie Academic & Professional, 1995. — 333 p.
  36. Якубке Х.-Д., Ешхайт X. Амонокислоты, пептиды, белки (под ред. Митина Ю.В.). Москва: Мир, 1996. — 438 с.
  37. Belitz H.-D., Grosch W. & Schieberle P. Food Chemistry 3rd revised edition (translation from German edition by Burghagen M.M.). — New York: Springer, 2004.- 1070 p.
  38. Osborne T.B. The Vegetable Proteins (2nd edition). London: Longmans, Green and Co., 1924. — 154 p.
  39. Т., Renault A., Beaufils S., Dubois J.J. & Pezennec S. // Interfacial properties of heat treated ovalbumin. Journal of Colloid and Interface Science. 2007. — 315- P. 627−636.
  40. Renkema J.M.S. Soy protein gelation and gel properties // Industrial Proteins. -2000. 8 (3) — P. 12−14.
  41. Hermansson A.-M. Microstructure of protein gels related to functionality // Yada R.Y., Jackman R.L. & Smith J.L. (Eds.). Protein structure-function relationships in foods. London: Blackie Academic & Professional. — 1994. — P. 22−42.
  42. Foegeding E. A. Food biophysics of protein gels: a challenge of nano and macroscopic proportions // Food Biophysics. -2006. 1 (1) — P. 41−50.
  43. Clark A. H. Gelation of globular proteins // Hill S.E., Ledward D.A. & Mitchell J.R. (Eds.). Functional Properties of Food Macromolecules. -Gaithersburg, MD: Aspen Publishers, 1998. P. 77−142.
  44. A. H., Kavanagh G. M. & Ross-Murphy S.B. Globular protein gelation -theory and experiment // Food Hydrocolloids. 2001. — 15 — P. 383−400.
  45. M. Visschers R.W. & Nicolai T. Light scattering study of heat-induced aggregation and geletion of ovalbumin // Macromolecules. 2002. — 35 — P. 4753−4762.
  46. Alting A.C., de Jongh H.H.J., Visschers R.W. & Simons J.-W. F.A. Physical and chemical interactions in cold gelation of food proteins // Journal of Agricultural and Food Chemistry. 2002. — 50 — P. 4682−4689.
  47. Alting A.C., Hamer R.J., de Kruif C.G. & Visschers R.W. Cold-set globular protein gels: interactions, structure and rheology as a function of protein concentration // Journal of Agricultural and Food Chemistry. 2003. — 51 (10) -P. 3150−3156.
  48. A.S. & Khan S.A. Acid-induced gelation of enzymatically modified, preheated whey proteins // Journal of Agricultural and Food Chemistry. -2005. 53 (12) — P. 5010−5017.
  49. Messens W., van Camp J. & Huyghebaert A. The use of high pressure to modify the functionality of food proteins // Trends in food science and technology. 1997. — 8 — P. 107−112.
  50. Heramans K., van Camp J. & Huyghebaert A. High pressure effects on proteins // Damodaran S. & Paraf A. (Eds.). Food proteins and their applications. Boca Raton: CRC Press USA, 1997. — P. 473−502.
  51. Banachowicz E. Light scattering studies of proteins under compression // Biochimica et Biophysica Acta: Proteins and Proteomics. 2006. — 1764 (3) -P. 405−413.
  52. Swaisgood H.E. Chemistry of the caseins // Fox P.P. (Ed.). Advanced dairy chemistry 1: proteins. — London: Elsevier Applied Science, 1992. -P. 63−110.
  53. J.J. & Brule G. Bindings of bivalent cations to a-lactalalbumin and |3-lactoglobulin: effect of pH and ionic strength // Le Lait. 1988. — 68 -P. 33−48.
  54. J. & Jelen P. Calcium association with isolated whey proteins // Canadian Institute of Food Science and Technology Journal. 1991. — 24 -P. 218−223.
  55. Hermansson A.-M. Aggregation and denaturation involved in gel formation // Pour-El A. (Ed.). Functionality and protein structure. Washington DC: American Chemical Society Symposium Series # 92, 1979. — P. 81−103.
  56. Schmidt R.H. Gelation and coagulation // Cherry J.P. (Ed.). Protein Functionality in Foods. Washington DC: American Chemical Society Symposium Series # 147, 1981.-P. 131−147.
  57. Z.Z. & Aryana K.J. Effect of Copper, Iron, Zinc and Magnesium Ions on Bovine Serum Albumin gelation // Journal of Food Science and Technology
  58. Research. 2002. — 8 (1) — P. 1−3.2+
  59. S. & Foegeding E.A. Ca indiuced gelation of preheated whey protein isolate // Journal of Food Science. — 1993. — 58 — P. 867−871.
  60. Ye A. & Singh H. Interfacial composition and stability of sodium casemate-emulsions as influenced by calcium ions // Food Hydrocolloids. — 2001. — 15 — P. 195 207.
  61. Ye A. & Singh H. Influence of calcium chloride on the properties of emulsions stabilized by whey protein concentrate // Food Hydrocolloids. 2001. — 14 -P. 337 — 346.
  62. E. & Davis E. Influence of ionic calcium on stability of sodium caseinate emulsions // Colloids and Surfaces B: Biointerfaces. — 1999. 12 — P. 203 -212.
  63. E., Hunt J.A. & Home D.S. Calcium induced flocculation of emulsions containing adsorbed P-casein or phosvitin // Food Hydrocolloids. — 1992.-6-P. 359−370.
  64. S.O. & Dalgleish D.G. Calcium induced destabilization of oil-in-water emulsions stabilized by caseinate or p-lactoglobulin // Journal of Food Science. 1995. — 6 — P. 399−403.
  65. A. S., Dickinson E., Murray B. S. & Semenova M. G. On the effect of calcium ions on the sticking behaviour of casein-coated particles in shear flow // Colloids and Surfaces B: Biointerfaces. 2002. — 27- P. 123 -131.
  66. Dauphas S., Mouhous-Riou N., Metro B., Mackie A.R., Wilde P.J. Anton M. & Riaublanc A. The supramolecular organisation of p-casein: effect on interfacial properties // Food Hydrocolloids. 2005. — 19 — P. 387−393.
  67. M., Singh H. & Munro P.A. Adsorption behaviour of sodium and calcium caseinates in oil-in-water emulsions // International Dairy Journal. -1999. 9 — P. 337−341.
  68. Kim S.K., Park P. S. & Rhee K.C. Functional Properties of Proteolytic Enzyme Modified Soy Protein Isolate // Journal of Agricultural and Food Chemistry. — 1990.-38 (3)-P. 651−656.
  69. Linares E., Lare C., Le Meste M. & Popineau Y. Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis: role of soluble and insoluble fractions // Cereal Chemistry. 2000. — 77 -P. 414−420.
  70. Y., Huchet B., Lare B. & Berot S. Foaming and emulsifying properties of fractions of gluten peptides obtained by limited enzymatic hydrolysis and ultra filtration // Journal of Cereal Science. 2002. — 35 -P. 327−335.
  71. J. R. & Anon M. C. Influence of denaturation degree, hydrophobicity and sulphydryl content on solubility and water absorbing capacity of soy protein isolates // Journal of Agricultural and Food Chemistry. 1990. — 50 — P. 765−770.
  72. Graveland-Bikker J.F. & de Kruif C.G. Unique milk protein-based nanotubes: food and nanotechnology meet // Trends in Food Science and Technology. -2006.- 175-P. 196−203.
  73. Graveland-Bikker J.F., Fritz G., Glatter O. & de Kruif C.G. Growth and structure of a-lactalbumin nanotubes // Journal of Applied Crystallography. -2006.-39-P. 180−184.
  74. A.G. & McPherson A. (Eds.). Ingredient Interactions: Effects on Food Quality (2nd edition). Boca Raton: CRC Press, 2006. — 554 p.
  75. Tolstoguzov V. Structure property relationships in Foods // Parris N., Kato A., Creamer L.K. & Pearce J. (Eds.). Macromolecular interactions in food technology. — Washington DC: American Chemical Society, 1996. — P. 2−14.
  76. Semenova M.G. Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems // Food Colloids. 2007. — 21 — P. 23−45.
  77. McClements D.J. (Ed.). Understanding and Controlling the Microstructure of Complex Foods. Cambridge: Woodhead Publishing Lim., 2007. -792 p.
  78. I.T. & Frith W.J. Microstructure design in mixed biopolymer composities // Food Hydrocolloids. 2001. — 15 — P. 543−553.
  79. D. & McClements D.J. Interactions of bovine serum albumin with ionic surfacatants in aqueous solutions // Food Hydrocolloids. — 2003. 17 -P. 73−85.
  80. A. & Coupland J. N. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates // Food Hydrocolloids. 2004. -18 — P. 101−108.
  81. M.M. Термодинамический анализ влияния низкомолекулярных поверхностно активных веществ на структурообразующие свойства белков: Дис.. канд. хим. наук. Москва, 2005. 187 с.
  82. Bos М.А. & van Vliet Т. Interfacial rheological properties of adsorbed protein layers and surfactants: a review // Advances in Colloid and Interface Science. -2001.-91 -P. 437−471.
  83. E. & Eliot C. Defining the conditions for heat-induced gelation of a caseinate-stabilized emulsion // Colloids and Surfaces B: Biointerfaces. — 2003.-29 (2−3)-P. 89−97.
  84. C., Girouxb H.J., Paquina P. & Brittena M. Characterization and acid-induced gelation of butter oil emulsions produced from heated whey protein dispersions // International Dairy Journal. 2007. — 17 (6) — P. 696−703.
  85. Dickinson E. Colloid science of mixed ingredients // Soft Matter. 2006. — 2 — P. 642 — 652.
  86. Helstad S. Ingredient interactions: sweeteners // Gaonkar A.G. & McPhersonj
  87. A. (Eds.). Ingredient Interactions: Effects on Food Quality (2 edition). Boca Raton: CRC Press, 2006. — P. 167−194.
  88. Brands C.M.J., Wedzicha B.L. & van Boekel M.A.J.S. Quantification of malanoidin concentration in sugar-casein system // Journal of Agricultural and
  89. Food Chemistry.-2002.-50-P. 1178 1183.229
  90. Brands C.M.J. & van Boekel M.A.J.S. Reactions of monosaccharides during heating of sugar-casein systems: building of reaction network model // Journal of Agricultural and Food Chemistry. 2001. — 49 — P. 4667 — 4675.
  91. T.P. & Salmarch M. Kinetics of browning and protein quality loss in whey powders during steady-state and non-steady-state storage conditions // Journal of Food Science. 1981. — 46 — P. 92−96.
  92. Davies C.G.A., Netto F.M. Glassenap N., Gallaher C.M., Labuza T.P. & Gallaher D.D. Indication of Maillard reaction during storage of protein isolates // Journal of Agricultural and Food Chemistry. 1998. — 46 — P. 2485−2489.
  93. A.V. Ismail A. A. & Mandeville S. Quantitative determination of the effect of pH and temperature on the keto form of D-fructose by FTIR spectroscopy // Carbohydrate Research. 1993. — 248 — P. 355 — 360.
  94. T.P. & Baisier W.M. The kinetic of nonenzymatic browning // Schwartzberg H.G. & Hastel R.W. (Eds.). Physical Chemistry of Food. IFT Basic Symposium Series 7. New York: Dekker, 1992. — P. 595−689.
  95. A. & White J. Small angle scattering from protein/sugar conjugates // Physica B: Condensed. 2006. — 385−386 (1) — P. 818 — 820.
  96. A., Abirached C., Panizzolo L., Moyna P. & Anon M.C. The effect of glycation on foam and structural properties of P-lactoglobulin // Food Chemistry. 2008. — 112 (1) — P. 127−133.
  97. Chevalier F., Chobert J.-M., Dalgalarrondo M. & Haertle T. Characterization of the Maillard reaction products of p-lactoglobulin glycosylated in mild conditions // Journal of Food Biochemistry. 2001. — 25 — P. 33−55.
  98. Yeboah T.F.K., Alii I. & Yayalayan A.V. Reactivities of D-glucose and D-fructose during glycation of Bovine Serum Albumin // Journal of Agricultural and Food Chemistry. 1999. — 47 — P. 3164 — 3172.
  99. Chevalier F., Chobert J.-M., Dalgalarrondo M., Choiset Y. & Haertle T. Maillard glycation of (3-lactoglobulin induces conformation changes // Nahrung/Food. 2002. — 46 — P. 58 — 63.
  100. L.M. & Foeding E.A. Effect of sugars on whey protein isolate gelation // Journal of Agricultural and Food Chemistry. 2000. — 48 — P. 5046 — 5052.
  101. C.M., Melton L.D. & Stanley R.A. Creating Proteins with Novel Functionality via the Maillard Reaction: A Review // Critical Reviews in Food Science and Nutrition. 2006. — 46(4) — P. 337−350.
  102. Chevalier F., Chobert J.-M., Molle D. & Haertle T. Maillard glycation of (3-lactoglobulin with several sugars: comparative study of the properties of the obtained polymers and of the substituted sites // Le Lait. 2001. — 81 — P. 651 666.
  103. R., Robertson A. & Ofman D. Dairy glycoconjugates emulsifiers: casein-maltodextins // Food Hydrocolloids. 2000. — 14 — P. 281−286.
  104. L., Raikos V. & Euston S.R. Modification of functional properties of egg-white proteins // Nahrung/Food. 2003. — 47 (6) — P. 369 — 376.
  105. Cabodevila O., Hill S. E., Armstrong H. J., De Sousa I. & Mitchell J. R. Gelation enhancement of soy protein isolate using Maillard reaction and high temperatures // Journal of Food Science. 1994. — 59 — P. 872−875.
  106. L.K., Ismail N. & Mat Easa A. Effect of reducing sugars on texture of thermally processed soy protein isolate-glucono-5-lactone gels // Journal of Food Science and Technology. -2000. -37(2)-P. 188−190.
  107. Mat Easa A., Hill S.E. & Mitchell J.R. Bovine serum albumin gelation as result of Maillard reaction // Food Hydrocolloids. 1996. — 10 (2) -P. 199−202.
  108. A., Brayant C. & McClements D.J. Influence of sucrose on the thermal denaturation, gelation, and emulsion stabilization of whey proteins // Journal of Agricultural and Food Chemistry. 2000. — 48 (5) — P. 1593 — 1597.
  109. Arntfield S.D., Ismond M.A.H. & Murray E.D. Thermal analysis of food proteins // Harwalkar V.R. & Ma C.Y. (Eds.) Thermal analysis of Foods. -London: Elsevier, 1990. P. 51−91.
  110. Lee J.C. & Timasheff S.N. The stabilization of proteins by sucrose // Journal of Biological Chemistry. 1981. — 256 — P. 7193−7201.
  111. S. & McClements D.J. Impact of preferential interactions on thermal stability and gelation of bovine serum albumin in aqueous sucrose solutions // Journal of Agricultural and Food Chemistry. 2001. — 49 — P. 2600 — 2608.
  112. R.H. & Shabnum M.S. Effect of sugars on rabit serum, albumin stability and induction of secondary structure // Biochemistry Moscow. — 2001. — 66 — P. 1042−1046.
  113. Jou K.D. & Harper W.J. Effect of disaccharides on the thermal properties of whey proteins determined by differential scanning calorimetry (DSC) // Milchwissenschaft. 1996. — 51 — P. 509−512.
  114. J.F., Oakenful D. & Smith M.B. Increased thermal stability of proteins in the presence of sugars and polyols //Biochemistry. 1979. — 18 -P. 5191−5196.
  115. M., Stairs R.A. & Annet R.G. Thermal denaturation and coagulation of whey proteins. Effect of sugars // Journal of Dairy Science. 1988. — 71 -P. 10−16.
  116. I. & Bolden D.W. Forcing thermodynamically unfolded proteins to fold // Journal of Biological Chemystry. 1998. — 273 — P. 4831−4834.
  117. E.M., Abena A.A., Gbeassor M. & Chaveron H. Effect of glucides on thermal denaturation and coagulation of whey proteins studied by ultraviolet spectroscopy // Journal of Applied Sciences. 2007. — 7 (4) — P. 472 — 477.
  118. De Wit J.N. & Klarenbeek G. Effects of Various Heat Treatments on Structure and Solubility of Whey Proteins // Journal of Dairy Science. 1984. — 67 -P. 2701−2710.
  119. Vasbinder A. J, Alting A.C. & de Kruif C.G. Quantification of heat-induced casein-whey protein interactions in milk and its relation to gelation kinetics // Colloids and Surfaces B: Biointerfaces. 2003. — 31 — P. 115−123.
  120. T., Nagata M. & Imoto T. Aggregation and chemical reaction in hen lysozymecaused by heating at pH 6 are depressed by osmolytes, sucrose and trehalose // Journal of Biochemistry. 2001. — 130 — P. 491−496.
  121. G., Valax P., Ostermeier M. & Horowitz P.M. Folding and aggregation of TEM beta-lactamase: Analogies with the formation of inclusion bodies in Escherichia coli II Protein Science. 1994. — 3 — P. 1953−1960.
  122. R.B. & Kauzmann W. Kinetics of protein denaturation. I. Behaviour of the optical rotation of ovalbumin in urea solutions // Journal of American Chemical Society. 1953. — 75 — P. 5139−5192.
  123. C. & McClements D.J. Influence of sucrose on NaCl-induced gelation of heat denatured whey protein solution // Food Research International. — 2000.-33-P. 649−653.
  124. A., Cancelliere C. & McClements D. J. Influence of sucrose on cold gelation of heat-denatured whey protein isolate // Journal of Science of Food and Agriculture. 2000. — 80 — P. 1314−1318.
  125. D., Talceuchi K. P. & Cunha R. L. Effect of sucrose addition and heat treatment on egg albumen protein gelation // Journal of Food Science. -2005. 70 (3) — P. E230-E238.
  126. Choi S.J., Lee S.E. & Moon T.W. Influence of sodium chloride and glucose on acid-induced gelation of heat-denatured ovalbumin // Journal of Food Science. 2008. — 73 (5) — P. 313−322.
  127. Y.A. & Adebowale K.O. Evaluation of the gelation characteristics of Mucuna bean flour and protein isolate // Electronic Journal of Environmental, Agricultural and Food Chemistry. 2008. — 7 (9) — P. 3206−3222.
  128. Fox P.F. & Mulvihill D.M. Casein // Harris P. (Ed.). Food Gels. London: Elsevier Appllied Science, 1990.-P. 121−173.
  129. Roefs S.P.F.M., Degrootmostert A.E.A. & Van Vliet T. Structure of acid casein gels. 1. Formation and model of gel network // Colloids and Surfaces A: Physicochemical and Engineering Aspects. — 1990. 50 — P. 141−159.
  130. I., Visser J. & Smits P. Structure formation in acid milk gels // Food Microstructure. 1985. — 4 — P. 267−277.
  131. D.S. & Davidson C.M. The use of dynamic light-scattering in monitoring rennet curd formation // Milchwissenschaft 1990. — 45 -P. 712−715.
  132. De Kruif C.G., Jeumink Th.J.M. & Zoon P. 1992. The viscosity of milk during the initial stages of renneting // Netherlands Milk and Dairy Journal. 1992. -46-P. 123−137.
  133. McMahon D.J. & Brown R.J. Effects of calcium, phosphate and bulk culture media on milk coagulation properties // Journal of Dairy Science. 1984. -67-P. 499−512.
  134. C., Jones M.G. & Norton I.T. Micellar casein gelation at high sucrose content // Journal of Dairy Science.- 2002. 85 (12) — P. 3155−3163.
  135. Matia-Merino L. & Dickinson E. Effect of sugars on milk protein gels and stabilized-milk protein emulsion gels // Food Hydrocolloids. 2002. — 16 -P. 321−331.
  136. S. & Dickinson E. Influence of sugars on high-pressure induced gelation of skim milk dispersions // Food Hydrocolloids. 2001. — 15 -P. 315−319.
  137. R.D., Young D.J., Tier C.M., Jones A.D. & Underdown J. Mechanism of pressure-induced gelation of milk // Journal of Agricultural and Food Chemistry. 2001. — 49 — P. 3394−3402.
  138. Nino M.R.R. & Patino J.M.R. Effect of the aqueous phase composition on the adsorption of bovine serum albumin to the air-water interface // Industrial and Engineering Chemistry Research.-2002.-41 (6)-P. 1489−1495.
  139. Patino R.J.M. & Nino M.R.R. Protein adsorption and protein-liquid interactions at the air-aqueius solution interface // Colloids and Surfaces A: Physicochemical and Engineering Aspects. — 1995. 103 — P. 91−103.
  140. Patino R.J.M. & Martin R. Spreading of acylglyceroles on aqueous surfaces at equilibrium // Journal of Colloid and Interface Science. 1994. — 167 — P. 150−158.
  141. Ruiz-Henestrosa V.P., Cecilio Carrera Sanchez C.C. & Patino R.J.M. Effect of sucrose on functional properties of soy globulins: adsorption and foamcharacteristics // Journal of Agricultural and Food Chemistry. 2008. -56 (7)-P. 2512−2521.
  142. MacRitchie F.A. & Alexander A.E. The effect of sucrose on protein films. I. Spread monolayers // Journal of Colloid and Interface Science. 1961. — 16 -P. 57−61.
  143. J.H., Crowe L.M., Carpenter J.F. & Wistrom C.A. Stabilization of dry phospholipid bilayers and proteins by sugars // Bochemical Journal. 1987. -242-P. 1−10.
  144. Lide D. R. Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data. Boca Raton: CRC Press, 2006. — 2712 p.
  145. Clarkson J.R., Cui Z.F. & Darton R.C. Effect of solution conditions on protein damage in foam // Biochemical Engineering Journal Journal. 2000. — 4 — P. 107−114.
  146. L.G., Yang S.T., Schulman W. & Kinsella J.E. Effects of lysozyme, clupeine and sucrose on the foaming properties of whey protein isolate and P-lactoglobulin // Journal of Food Science. 1989. — 54 (3) — P. 743−747.
  147. Singh D.G., Gagan W., Ali Abas W., Devinder K. & Singh S. D. Characterisation and functional properties of proteins of some Indian chickpea (Cicer arietinum) cultivars // Journal of Agricultural and Food Chemistry. -2008.-88 (5)-P. 778−786.
  148. J.P. & Foegeding E.A. Foaming and interfacial properties of polymerized whey protein isolate // Journal of Food Science. 2004. — 69 (5) -P. C404-C410.
  149. Hailing P.J. Protein-stabilized foams and emulsions // CRC Critical Reviews in Food Science and Nutrition. 1981- 15 (2) — P. 155−203.
  150. Zhu H.M. & Damodaran S. Proteose peptones and physical factors affect foaming properties of whey-protein isolate // Journal of Food Science. — 1994.-59(3)-P. 554−560.
  151. B.S. & Liang H.J. Enhancement of the foaming properties of protein dried in the presence of trehalose // Journal of Agricultural and Food Chemistry. 1999.-47 (12)-P. 4984−4991.236
  152. B.S. & Liang H.J. Evidence for conformation stabilization of p-lactoglobulin when dried with trehalose // Langmur. 2000. — 16 -P. 6061−6063.
  153. Clarkson J.R., Cui Z.F. & Darton R.C. Effect of solution conditions on protein denaturation in foam // Biochemical Engineering Journal. 2000. — 4 — P. 107−114.
  154. McClements D.J. Estimation of steric exclusion and differential interaction contributions to protein transfer free energies in aqueous cosolvent solutions // Food Hydrocolloids. 2001. — 15 — P. 355−363.
  155. Mora-Gutierrez A., Kumosinski T.F. & Farrel H.M.Jr. Oxygen-17 nuclear magnetic resonance studies of bovine and caprine casein hydration and activity in deuterated sugar solutions // Journal of Agricultural and Food Chemistry. -1997.-45-P. 4545−4553.
  156. Timasheff S.N. Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated // Advances in Protein Chemistry. 1998.-51 -P. 355−432.
  157. Saunders A.J., Davis-Searles P.R., Allen D.L., Pielak G.J. & Erie D.A. Osmolyte-induced changes in protein conformational equilibria // Biopolymers. 2000. — 53 — P. 293−307.
  158. C., Eisenberg H. & Ghirlando R. Probing protein-sugar interactions // Biophysical Journal. 2000. — 78 — P. 385−393.
  159. Timasheff S.N. Protein-solvent preferential interactions, protein hydratation and the modulation of biochemical reactions by solvent components // Proceedings of National Academy of Sciences USA. 2002. — 99 -P. 9721−9726.
  160. Brands C.M.J. & van Boekel M.A.J.S. Reactions of monosaccharides during heating of sugar-casein systems: building of a reaction network model // Journal of Agricultural and Food Chemistry. 2001. — 49 — P. 4667 — 4675.
  161. В.П. Катализ в химии и энзимологии. Москва: Мир, 1972. -С. 254−273.
  162. I.M., Stairs R.A. & Annet R.G. Thermal denaturation and coagulation of whey proteins: effect of sugars // Journal of Dairy Science. 1988. — 71 -P. 10−16.
  163. P. & Steinberg M.P. Interaction of Sucrose with gelatin, egg albumin and gluten in freeze-dried mixtures as shown by water sorbtion // Journal of Food Science. 1988. — 53 — P. 932−934.
  164. P. & Steinberg M.P. Moisture hysteresis is due to amorphous sugar// Journal of Food Science. 1986.-51 (2)-P. 453−455.
  165. S.D., Chang В., Randolph T.W. & Carpenter J.F. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding // Archives of biochemistry and Biophysics. 1999. — 365 -P. 289−298.
  166. Oasba P.K. Involvement of sugars in protein-protein interactions // Carbohydrate Polymers. 2000. — 41 — P. 293−309.
  167. S.T. & Prestrelski S.J. Moisture effect on protein-excipient interactions in spray-dried powders. Nature of destabilizing effect of sucrose // Journal of Pharmaceutical Sciences. 1999. — 88 (3) — P. 360−370.
  168. Lopez-Diez E.C. & Bone S. An investigation of the water-binding properties of protein + sugar systems // Physics in Medicine and Biology. 2000. — 45 -P. 3577−3588.
  169. S.L., Beaulieu M., Schmitt C. & Sanchez C. Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects // Current Opinion in Colloid and Interface Science. 2003. — 8 — P. 401−414.
  170. J.L., Gamier C., Renard D. & Sanchez C. Protein-polysaccharide interactions // Current Opinion in Colloid & Interface. 2000. — 5 — P. 202−214.
  171. De Kruif, C.G., Weinbreck F. & de Vries R. Complex coacervation of proteins and anionic polysaccharides // Current Opinion in Colloid & Interface. -2004. P. 340−349.
  172. V. B., Smith D., Ledward D. A. & E.Dickinson. Complexes of bovine serum albumin with sulphated polysaccharides: effects of pH, ionic strength and high pressure treatment aspects // Food Chemistry. 1999. — 64 (3) -P. 303−316.
  173. Matia-Merino L., Lau K. & Dickinson E. Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels // Food Hydrocolloids. 2004. — 18(2) — P. 271−281.
  174. D.A. 1979. Protein-polysaccharide interactions // Blanshard J.M.V. & Mitchell J.R. (Eds.). Polysaccharides in Food. London: Butterworths- 1979.-P. 205−217.
  175. Galazka V.B., Ledward D. A, Sumner I.G. & Dickinson E. Influence of high pressure on bovine serum albumin and its complex with dextran sulfate // Journal of Agricultural and Food Chemistry. 1997. — 45 — P. 3465−3471.
  176. I.G., Mrachkovskaya T.A. & Danilenko N. Complex formation of Faba Bean legumin with chitosan // Dickinson E. & Mitchel R. (Eds.). Food Colloids: Fundamental of Formulation. Cambrige: Royal Society of Chemistry, 2001. — P. 293−303.
  177. Dickinson E. Mixed biopolymers at interfaces // Harding S. E., Hill S. E. & Mitchell J. R. (Eds.). Biopolymer Mixtures, 1995. P. 349.
  178. Ganzevles R., Zinoviadou K., van Vliet T., Cohen Stuart M.A. & de Jong H.H.J. Modulating surface rheology by electrostatic protein/polysaccharide interactions // Langmuir. 2006. — 22 — P. 10 089−10 096.
  179. M., Sanchez C., Laneuville S.I., Turgeon S.L. & Gauthier S.F. // Colloids and Surfaces B: Biointerfaces. 2004. — 35 — P. 15−22.
  180. Gu Y.S., Decker A.E. & McClements D.J. Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of beta-lactoglobulin, iota-carrageenan and gelatin // Langmuir. -2005.-21 P. 5752−5760.
  181. McClements D.J. Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions // Langmuir. 2005. — 21 -P. 9777- 9785.
  182. J., Leser M.E., Schmitt M., Michel M. & Dickinson E. // Food Hydrocolloids. 2008. — 22 — P. 267.
  183. J., Leser M.E., Schmitt M. & Dickinson E. // Williams P.A. & Phillips G.O. (Eds.). Gums and Stabilizers for the Food Industry 14. — Cambrige: Royal Society of Chemistry, 2008. — in press.
  184. Heeney L. The influence of biopolymers on emulsion stability // M. Phil. Thesis. University of Leeds, Leeds, UK. 1994.
  185. B., Edwards J., Emmett S., & Croot R. Phase separation in dispersions of weakly-interacting particles in solutions of non-adsorbing polymer // Colloids and Surfaces. 1987. — 31 — P. 267−298.
  186. Cao Y., Dickinson E. & Wedlock D J. Creaming and flocculation in emulsions containing polysaccharide // Food Hydrocolloids. — 1990. 4 — P. 185−195.
  187. Cao Y., Dickinson E. & Wedlock D.J. Influence of polysaccharides on the creaming of casein-stabilized emulsions // Food Hydrocolloids. 1991. -5 (5) — P. 443−454.
  188. Dickinson E. Properties of emulsions stabilized with milk proteins: overview of some recent developments // Journal of Dairy Science. 1997. — 80 -P. 2607−2619.
  189. Napper D.H. Polymeric stabilization of colloidal dispersions. London: Academic Press, 1983. — 267 p.
  190. B., Edwards J., Emmett S. & Jones A. Depletion flocculation in dispersions of sterically stabilized particles («soft spheres») // Colloids and Surfaces. 1986. — 18 — P. 61−67.
  191. Asakura S. and Oosawa F. On interaction between two bodies immersed in a solution of macromolecules // Journal of Chemical physics. 1954. — 22 -P. 1255−1256.
  192. Mao Y., Cates M.E. & Lekkerkerker H.N.W. Depletion force in colloidal systems //Physica A. 1995. -222 — P. 10−24.
  193. Dickinson E. Aggregation processes, particle interactions and colloidal structure // Dickinson E. & Bergenstahl B. (Eds.). Food Colloids. Protein, Lipids and Polysaccharides. Cambridge: The Royal Society of Chemistry, 1997.-P. 107- 126.
  194. E., Golding M. & Povey M.J.W. Creaming and flocculation of oil-in-water emulsions containing sodium caseinate // Journal of Colloid and Interface Science. 1997. — 185 — P. 515−529.
  195. B.S., Dickinson E., Gransard C. & Sodeberg I. Effect of thickeners on the coalescence of protein-stabilized air bubbles undergoing a pressure drop // Food Hydrocolloids. 2006. — 20 — P. 114−123.
  196. N. & Hermansson A.-M. Phase separation and gel formation in kinetically trapped gelatin/maltodextrin gels // Journal of Biological Macromolecules. 2000. — 27(4) — P. 249−262.
  197. N., Aiskar A. & Hermansson A.-M. Structure evolution during gelation at later stages of spinodal decomposition in gelatin/maltodextrin mixtures // Macromolecules. 2001. — 34 — P. 8117−8128.
  198. I.T. & Friyh W.J. Microstructure design in mixed biopolymer composities // Food Hydrocolloids. 2001. — 15 — P. 543−553.
  199. N. & Hermansson A.-M. Structure evolution during phase separation and gelation of biopolymer mixtures // Dickinson E. & van Vliet T. (Eds.). Food Colloids, bipolymers and Materials. Cambridge: The Royal Society of Chemistry, 2003. — P. 298−308.
  200. Syrbe A. Polymer incompatibility in aqueous protein and polysaccharide solutions: phase separation phenomena and microgel particle formation // Ph.D. Dissertation from Technical Munchen University. Dusseldorf: VDI Verlag GmbH, 1998.
  201. Morris V.J. Mixed gels // Phillips G.O., Wedlock D.J. & Williams P.A. (Eds.). Gums and Stabilizers for the Food Industry 3. — London: Elsevier Applied Science Publishers, 1986. — P. 87−99.
  202. Morris V.J. Weak and strong polysaccharide gels // Dickinson E. (Ed.). Food Polymers, Gels and Colloids. Cambridge: Royal Society of Chemistry, 1991.- P. 310.
  203. Ji S., Corredig M. & Goff H.D. Production and functional properties of micellar casein / A:-carrageenan aggregates // International Dairy Journal. -2008.-18-P. 64−71.
  204. Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems // Food Hydrocolloids. 2003. — 17 — P. 25−39.
  205. M. & Dickinson E. Whey protein-maltodextrin conjugates as emulsifying agents: An alternative to gum Arabic // Food Hydrocolloids. -2007.-21 (4)-P. 607−616.
  206. Ray A.K., Bird P.B., Iacobucci G.A. & Clark B.C. Functionality of gum arabic: Fractionation, characterization and evaluation of gum fractions in citrus oil emulsions and model beverages // Food Hydrocolloids. 1995. — 9 -P. 123−131.
  207. McDaniel M.R. & Chan N. Masking of soy protein flavor by tomato sauce // Journal of Food Science. 1988. — 53 (1) — P. 93−96.
  208. J.P. & Land D.G. Binding of diacetil by pea proteins // Journal of Agricultural and Food Chemistry. 1986. — 34. — P. 1041−1045.
  209. H.E., Salunkhe D.K., Sathe S.K. & Reddy N.R. Legume lipids // Critical Review of Food Science and Nutrition. 1982. — 17(2) — P. 97−139.
  210. S. & Crouzet T. Study of aroma compounds polysaccharides interactions by dynamic exponential dilution // Food Science and Technology Lebensmittel -Wissenschaft & Technologie. 1994. — 27 (6) — P. 544−549.
  211. Nuessli J., Sigg B., Conde-Petit B. & Escher F.E. Characterization of amylose flavor complexes by DSC and X-Ray-diffraction // Food Hydrocolloids. -1997.-11 (1)-P. 27−34.
  212. M.A. & Solms J. Flavor and sweetener interactions with starch // Food Technology. 1992.-46-P. 140−145.
  213. N., Taisant C. & Voilley A. Release and perception of isoamyl acetate from a starch-based food matrix // Journal of Agricultural and Food Chemistry. 1998. — 46 (8) — P. 3201−3206.
  214. И.А., Сучков В. В., Гринберг В.Я, Толстогузов В. Б. Выделение и очистка 11S глобулинов из семян кормовых бобов и гороха. // Прикладная биохимия и микробиология. 1988. — 24 № 1 — С. 50−55.
  215. Law А. & Leaver J. (Hannah Research Institute, Ayr, Ayrshire KA6 5HL, GB). Method of extracting casein fractions from milk and caseinates and production of novel products // Patent W0/2003/3 847 (International Application No PCT/GB2002/3 098)
  216. Maubois J.-L. Fractionation of milk proteins // Proceedings of the 25th International Dairy Congress. 1998. — P. 74−86.
  217. I.G., Semenova M.G., Braudo E.E. & Tolstoguzov V.B. Structural studies of the solutions of anionic polysaccharides. 4. Study of pectin solutions by light scattering // Carbohydrate Polymers. 1985. — 5 — P. 159−179.
  218. E. & Tanai S. Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants // Journal of Agricultural and Food Chemistry. 1992.-40-P. 179−183.
  219. A.B., Bardavil C.I. & David M.M. Determination of serum proteins by means of the biuret reaction // Journal of Biological Chemistry. 1949. — 177 — P. 751−766.
  220. M., Gilles K.M., Hamilton J.K., Rebers P.A. & Smith F. Colorimetric method for determination of sugars and related substances // Analytical Chemistry. 1956.-28-P. 350−356.
  221. Huglin M. B. Specific refractive increments // Huglin M. B. (Ed.) Light scattering from polymer solutions. London: Academic Press, 1972. -P. 165−332.
  222. В.И. Термодинамическая совместимость белков в растворе: Дис.. канд. хим. наук. Москва, 1987. 167с.
  223. V.I., Grinberg V.Ya. & V.B. Tolstoguzov. Application of phase volume ratio method for determining of phase diagram of water — casein soy• bean globulin system // Polymer Bulletin. 1980. — 2 — P. 757−760.
  224. V.I., Kireyeva O.K., Grinberg V.Ya. & Tolstoguzov V.B. // Thermodynamic compatibility of proteins in aqueous media. Part I. Phasediagrams of some water-protein A- protein В systems // Die Nahrung. 1985. -29 № 2-P. 153−160.
  225. R. & Staverman A.J. Liquid-liquid phase separation in multicomponent polymer solutions // Journal of Polymer Science, A-2. — 1968.-6-P. 305−366.
  226. B.E. Рассеяние света растворами полимеров и свойства макромолекул. JL: Наука, 1986, 287 с.
  227. Pike E.R., Pomeroy W.R.M. & Vaughan J.M. Measurement of Rayleigh ratio for several pure liquids using a laser and monitored photon counting // Journal of Chemical Physics. 1975.-62 (8)-P. 3188−3192.
  228. Burchard W. Light scattering // Ross-Murphy S.B. (Ed.) Physical Techniques for the Study of Food Biopolymers. Glasgow: Blackie, 1994. — P. 151- 214.
  229. Ч. Химия полимеров. M.: Химия, 1965. — 772 с.
  230. Evans J.M. Manipulation of light scattering data // Huglin M.B. (Ed.). Light scattering from polymer solutions. London: Academic Press, 1972. -P. 89−164.
  231. P. & Sudelof L.O. Interactions in polymer solutions // Acta Pharmaceutica Suecica. 1986. — 23 — P. 31−46.
  232. P., Strakova D., Stejskal J. & Prochazka O. Light scattering characterization of thermodynamic interaction of polymers in dilute solution. Effect of experimental error and temperature // European Polymer Journal. — 1983.- 19 № 3 -P. 189−193.
  233. Yang J.T. An improvement in the graphic treatment of angular light scattering data // Journal of Polymer Science. 1957. — 26 — P. 305−310.
  234. Wells I.D. The transformation of virial equations for polymer solutions between different concentration scales // Chemica Scripta. 1984. — 23 № 4 — P. 202−204.
  235. R.A., Atkinson D., Hauser H., Oldani D., Green J.P. & Stubbs J.B. The structure, physical and chemical properties of the soy bean protein glycinin // Biochimica et Biophysica Acta. 1975. — 412 — P. 214−228.
  236. Coviello Т., Kajiwara K.5 Burchard W. Dentini M. & Crescenzi V. Static and dynamic light scattering from native and modified xanthans in dilute solution // Macromolecules. 1986. — 19 — P. 2826−2831.
  237. W. // New aspects of polymer characterization by dynamic light-scattering// Chimia.- 1985.-39 (1)-P. 10−18.
  238. Home D.S. Light scattering studies of colloidal stability and gelation // Dickinson E. (Ed.). New physico-chemical techniques for the characterization of complex food systems. Glasgow: Blackie, 1995. — P. 240−267.
  239. Dawson R.M.C., Elliott D.C., Elliott W.H. & Jones K.M. Data for biochemical research (3rd edition). Oxford: Oxford University Press, 1986. — 496 p.
  240. G.L. // Prigogine E. (Ed.) Insoluble monolayers at liquid gas interfaces. — New York: Wiley — Interscience, 1966. — P. 156−188.
  241. P.L. & Khechinashvili N.N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study // Journal of Molecular Biology. 1974. — 86 — P. 665−684.
  242. Release (ACS Symposium Series 763). — Oxford: Oxford University Press, 2000.-P. 260−273.
  243. Scatchard G. The attraction of proteins for small molecules and ions // Annals of the New York Academy of Sciences. 1949. — 51 — P. 660−672.
  244. I., Dickinson E. & Nelson P.V. An improved improved highperformance homogenizer for making fine emulsions on a small scale // International Journal of Food Science and Technology. 1990. — 25 — P. 39−46.
  245. Wierenga P.A., Kosters H., Egmond M.R., Voragen A.G.J. & de Jongh H.HJ. Importance of physical vs. chemical interactions in surface shear rheology // Advances in Colloid and Interface Science. 2006. — 119 — P. 131 — 139.
  246. Bos M. A, Stuart M.C. & van Vliet T. Stress- strain curves of adsorbed protein layers at the air/water interface measured with surface shear rheology // Langmuir. -2002. 18 — P. 1238- 1243.
  247. V.A., Rand R.P. & Rau D.C. Macromolecules and water: probing with osmotic stress // Methods in Enzymology. 1995. — 259 — P. 43−94.
  248. Ismond M.A.H., Murray E.D. & Arntfield S.D. The role of noncovalent forces in micelle formation by vicilin from Vicia faba. III. The effect of urea, guanidine hydrochloride and sucrose on protein interactions // Food Chemistry.-1988.-29-P. 189−198.
  249. J.W., Mapesc C.J., Davis J.G. & Garibaldi J.A. A differential scanning calorimetric study of the stability of egg white to heat denaturation // Journal of the Science of Food and Agriculture. 1975. — 26 (1) — P. 73−83.
  250. Y., Watanabe K. & Sato Y. Conformational Stability of Ovalbumin Reacted with Glucose in a Maillard Reaction // Agricultural and Biological Chemistry. -1983.-47 (8) P. 1925−1926.
  251. I.G., Semenova M.G., Slovokhotov Yu.L., Struchkov Yu.T., Braudo E.E. & Tolstoguzov V.B. Studies of the interaction of Methanol with pectin in aqueous medium // Carbohydrate Polymers. 1983. — 6 (1) — P. 1−13.
  252. Appelqvist I.A.M. & Debet M.R.M. Starch-biopolymer interactions a review // Food Reviews International. — 1997. — 13 (2) — P. 163−224.
  253. J.D., Grosclaude F. & Ribadeau-Dumas B. Primary structure of bovine caseins. A review // Milchwissenschaft. 1972. — 27 — P. 402−408.
  254. Chu B., Zhou Z., Wu G. & Farrell H. M. Laser light scattering of model casein solutions: effect of high temperature // Journal of Colloid and Interface Science.- 1995.- 170-P. 102−112.
  255. P. & Jenness R. Casein micelles // Walstra P. & Jenness R. (Eds.) Daily Chemistry and Physics. New York: John Wiley and Sons, 1984. — P. 229−253.
  256. J. & Kinsella J.E. Surface activity, film formation and emulsifying properties of milk proteins // Critical Reviews in Food Science and Nutrition. -1989.-28-P. 115−138.
  257. С., Clark A.H., Jones M.G. & Norton I.T. Behaviour of milk protein / polysaccharide systems in high sucrose // Colloids and Surfaces Interfaces B: Biointerfaces. 1999. — 12 — P. 317−329.
  258. S.M., Farrei H.M. & Barford R.A. The effects of sucrose and lactose on the sizes of casein micelles reconstituted from bovine caseins // Journal of Dairy Science. 1991. — 74 — P. 2382−2393.
  259. R.K., Bloomfield V.A., Chudgar A. & Morr C.V. Viscosity and voluminosity of bovine milk casein micelles // Journal of Dairy Science. — 1973.-56 (6)-P. 699−705.
  260. A.S., Semenova M.G. & Belyakova L.E. Effect of sucrose on the thermodynamic properties of ovalbumin and sodium caseinate in bulk solution and at air-water interface // Colloids and Surfaces B: Biointerfaces. 1999. -12-P. 261−270.
  261. T. & Timasheff S.N. Stabilization of protein structure by sugars // Biochemistry. 1982. -21-P. 6536−6544.
  262. M. & Reiser-Cedus P. Sucrose: properties and applications. New York: Chapman & Hall, 1995. — 294 p.
  263. Flink J.M. Structure and structure transitions in dried carbohydrate materials // Peleg M. & Bagley E.B. (Eds.). Physical Properties of Foods. Westport: AVI Publishing Co., 1983.-P. 473−521.
  264. Альбертсон Пер-Оке. Разделение клеточных частиц и макромолекул. -Москва: Мир, 1974. 381 с.
  265. M.G. & Savilova L.B. The role of biopolymer structure in interactions between unlike biopolymers in aqueous medium // Food Hydrocolloids. 1998.- 12-P. 65−75.
  266. De Gennes P.G. Scaling concepts in polymer physics. — New York: Cornell University Press, 1979. P. 98−127.
  267. V.Ya. & Tolstoguzov V.B. Termodynamic incompatibility of proteins and polysaccharides in solutions // Food Hydrocolloids. 1997. -11 (2)-P. 145−158.
  268. V.I., Grinberg V.Ya. & Tolstoguzov V.B: Thermodynamic incompatibility of proteins // Food Hydrocolloids. 1997. — 11 (2) -P. 171−180.
  269. Hsu C.C. & Prausnitz J.M. Thermodynamics of polymer compatibility in ternary systems // Macromolecules. 1974. — 7 (3) — P. 320−324
  270. L. & Patterson D. Effect of the solvent on polymer incompatibility in solution // Macromolecules. 1972. — 5 (4) — P. 513−516.
  271. А. Физикохимия полимеров. Москва: Химия, 1978. — 544 с.
  272. R. & Radha A. Molecular architectures and functional properties of gellan gum and related polysaccharides. A Review // Trends in Food Science and Technology. 1995. — 6 — P. 143- 148.
  273. P.H., Willmer J. & Foster T.J. Dilute solution properties of guar and locust bean gum in sucrose solutions // Food Hydrocolloids. 1998. — 12 — P. 339−348.
  274. C., Clark A.H., Jones M.G. & Norton I.T. Thermodynamic incompatibility and microstructure of milk protein / locust bean gum / sucrose systems // Food Hydrocolloids. 1999. — 13 — P. 89−99.
  275. Wasserman L.A., Semenova M. G & Tsapkina E.N. Thermodynamic properties of the 11S globulin of Vicia Faba ovalbumin — aqueous solvent system: phase behaviour and light scattering // Food Hydrocolloids. — 1997. — 11 (3) — P. 327−337.
  276. P. & Damaschun G. // Studia Biophisica. 1986. — 116 — P. 153−173.
  277. М.Г. Термодинамическая совместимость глобулярных белков и полисахаридов в водной среде по данным светорассеяния: Дис.. канд. хим. наук. Москва. 1989. 252 с.
  278. Е. & Ogston A. An approach to the study of phase separation in ternary aqueous systems // Biochemistry Journal. 1968. — 109 — P. 569−576.
  279. I. & Defey R. Chemical Thermodynamics. London: Longmans Green and Co., 1954. -509c.
  280. Wadso I. Biothermodynamics and calorimetric methods // Pure and Applied Chemistry. 1983. — 55 — P. 515−528.
  281. P.H. & Rupley J.A. Protein-Water interactions. Heat capacity of the lysozyme-water system // Biochemistry. 1979. — 18 — P. 2654−2661.
  282. Suurkuusk J. Specific heat measurements on lysozyme, chymotrypsinogen, and ovalbumin in aqueous solution and in solid state // Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry. 1974. — 28 — P. 409−417.
  283. B. & Kishore N. Thermodynamics of the interactions of some chloro-substituted alcohols with hen egg-white lysozyme // Journal of the Chemical Society, Faraday Transactions. 1996. — P. 1905−1912.
  284. F.E., Nuessli J. & Conde-Petit B. Interaction of flavor compounds with starch in food processing // Roberts D.D. & Taylor A.J. (Eds.). Flavor Release. ACS Symposium Series 763. — Washington DC: American Chemical Society, 2000.-P. 230−245.
  285. Nuessli J., Conde-Petit В., Trommsdorff U.R. & Esher F.E. Influence of starch flavour interactions on rheological properties of low concentration starch systems // Carbohydrate Polymers. 1995. — 28 — P. 167−170.
  286. E. & Etievant P. Measurement of interactions between polysaccharides and flavour compounds by excluzion size chromatography- advantages and limits 11 Nahrung Food. 1998. — 42 (6) — P. 376−379.
  287. Кантор 4. & Шиммел П. // Биофизическая химия: в 3-х томах. Москва: Мир, 1985. — т. 3, гл. 15-С. 6−40.
  288. E., Wright D.J. & Boulter D. Legumin and vicilin, storage proteins of legume seeds. Review. // Phytochemistry. 1976. — 15 — P. 3−24.
  289. JI.A. // Овощные белки и их биосинтез (под ред. Кретовича В. Л.). Москва: Наука, 1975. — С. 142−152.
  290. M.A. & Solms J. The formation of ternary inclusion complexes of starch with menthone and monostearate: a possible food model system // Lebensmittel Wissenschaft und Technologie-Food Science and Technology. — 1990.-23-P. 451−456.
  291. Le Thanh M., Thibeaudeau P., Thibaut M.A. & Voilley A. Interactions between volatile and non-volatile compounds in the presence of water // Food Chemistry. 1992. — 43 — P. 129−135.
  292. Dickinson E. Caseins in emulsions: interfacial properties and interactions // International Dairy Journal. 1999. — 9 — P. 305−312.
  293. E. & Semenova M.G. Emulsifying behaviour of protein in the presence of polysaccharide under conditions of thermodynamic incompatibility // Journal of the Chemical Society, Faraday Transactions. — 1992.-88-P. 849−854.
  294. E., Goller M.I. & Wedlock D.J. Osmotic Pressure, creaming, and rheology of emulsions containing nonionic polysaccharide //Journal of Colloid and Interface Science. 1995. — 172 — P. 192−202.
  295. Dickinson E. Flocculation and competitive adsorbtion in mixed polymer systems: relevance to casein-stabilized emulsions // Journal of the Chemical Society, Faraday Transactions. 1997. — 93 — P. 2297−2301.
  296. E., Goller M.I., & Wedlock D.J. Creaming and rheology of emulsions containing polysaccharide and non-ionic or anionic surfactants // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1993. -75 — P. 195 -201.
  297. Walstra P. Emulsion stability // Becher P. (Ed.) Encyclopedia of emulsion technology. New York: Marcel and Dekker, 1996. — 4 — P. 197- 207.
  298. Dickinson E. Structure and composition of adsorbed protein layers and the relationship to emulsion stability // Journal of the Chemical Society, Faraday Transactions. 1992. — 88 (20) — P. 2973−2983.
  299. E. & Euston S. Stability of food emulsions containing both protein and polysaccharide // Dickinson E. (Ed.) Food Polymers, Gels and Colloids. -Cambridge: Royal Society of Chemistry, 1991. P. 132−146.
  300. Tadros Th.F. Fundamental principles of emulsion rheology and their applications // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1994. — 91 — P. 39−55.
  301. E., Whyman R.H. & Dalgleish D.G. Colloidal properties oil-in-water food emulsions stabilized separately by asi-casein, p-casein and k-casein // Dickinson E. (Ed.). Food Emulsions and Foams. London: Royal Society of Chemistry, 1987.-P. 40−51.
  302. E. & Galazka V.B. Emulsion stabilization by ionic and covalent complexes of p-lactoglobulin with polysaccharides // Food Hydrocolloids. -1991.-5-P. 281−296.
  303. Dickinson E., Ma J. & Povey M.J.W. Creaming of concentrated oil-in-water emulsions containing xanthan // Food Hydrocolloids. 1994. — 8 — P. 481−497.
  304. R.M., Brunner J.R., Ebner K.E., Farrell H.M., Josephson R.V., Morr C.V. & Swaisgood H.E. Nomenclature of the proteins of cow’s milk: fourth version // Journal of Dairy Science. 1976. — 59 — P. 795−815.
  305. E., Semenova M.G., & Antipova A.S. Salt stability of casein emulsions // Food Hydrocolloids. 1998. — 12 — P. 227−235.
  306. E. & Galazka V.B. Emulsion stabilization by protein-polysaccharide complexes // Phillips G.O., Wedlock D.J. & Williams P.A. (Eds.) Gums and stabilizers for food industry. Oxford: IRL Press, 1996. — 6 — P. 351−362.
  307. Xiang Yu & Somasundaran P. Role of polymer conformation in interparticle -bridging dominated flocculation // Journal of Colloid and Interfacial Science. -177-P. 283−287.1. БЛАГОДАРНОСТИ
  308. Огромная благодарность всем сотрудникам лаборатории Функциональных свойств биополимеров и, в особенности,
  309. Беляковой Ларисе Ефимовне Анохиной Марии Сергеевне
  310. Поликарпову Юрию Николаевичу и Цапкиной Елене Николаевнеза творческую и тёплую обстановку в коллективе, их дружеское отношение и добрую поддержку во всём.
  311. Глубокая признательность Учёному секретарю ИБХФ РАН, к.х.н. Долгой Марине Михайловне и зав. лаб. Флэйворхимии ИБХФ РАН, д.х.н. Мишариной Тамаре Арсеньевне за доброе участие во всём, что было связано с подготовкой данной работы.
  312. Искренняя благодарность сотрудникам группы пищевых коллоидов университета г. Лидс (Англия) Dickinson Е. и Murray В. за предоставленную возможность получить новые знания и опыт, работая в соавторстве с ними, и за их доброе отношение.
Заполнить форму текущей работой