Помощь в написании студенческих работ
Антистрессовый сервис

Значение латеральной гетерогенности PIP-аквапоринов для транспорта воды через плазмалемму растительных клеток

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

После извлечения стеринов из плазмалеммы корней и побегов скорость трансмембранного транспорта воды возрастает, тем самым, свидетельствуя о том, что стерины являются одним из факторов, определяющих кинетику этого процесса. Основной целью работы стало исследование возможного механизма регулирования кинетики транспорта воды через плазмалемму, основанного на неравномерном распределении стеринов… Читать ещё >

Значение латеральной гетерогенности PIP-аквапоринов для транспорта воды через плазмалемму растительных клеток (реферат, курсовая, диплом, контрольная)

Содержание

  • Цель и задачи исследования
  • Глава 1. Обзор литературы
    • 1. 1. Латеральная гетерогенность мембран
      • 1. 1. 1. Белковые комплексы мембран. 1.1.2. Концепция липидных доменов
      • 1. 1. 3. Липидные домены — рафты
      • 1. 1. 4. Белки липидных рафтов
      • 1. 1. 5. Липидные рафты и детергент-устойчивые мембраны
      • 1. 1. 6. Липидные рафты в плазмалемме клеток растений
    • 1. 2. Фазовое состояние мембран и стерины
      • 1. 2. 1. Стерины и их роль в растениях
      • 1. 2. 2. Фазовое состояние мембран
      • 1. 2. 3. Влияние стеринов на фазовое состояние бислоя
    • 1. 3. Липид-белковые взаимодействия в мембране
      • 1. 3. 1. Типы липид-белковых взаимодействий
      • 1. 3. 2. Влияние стеринов на белки-транспортеры
    • 1. 4. Трансмембранный транспорт воды
      • 1. 4. 1. Транспорт воды через липидную фазу мембран
      • 1. 4. 2. Аквапорин-опосредованный путь транспорта воды
  • Глава 2. Материалы и методы исследования
    • 2. 1. Выращивание этиолированных проростков гороха
    • 2. 2. Выделение плазмалеммы
    • 2. 3. Определение активности маркерных ферментов
    • 2. 4. Выделение фракции детергент-устойчивых мембран из плазмалеммы флотацией в градиенте плотности ОрИРгер
    • 2. 5. Разделение плазмалеммы на фракции разной плотности
    • 2. 6. Определение содержания белка
    • 2. 7. Денатурирующий электрофорез мембранных белков в полиакриламидном геле
    • 2. 8. Вестерн блот анализ Р1Р-аквапоринов
    • 2. 9. Оценка фазового состояния липидного бислоя
    • 2. 10. Определение содержания стеринов
    • 2. 11. Извлечение стеринов из плазмалеммы
    • 2. 12. Экстракция липидов из плазмалеммы для хроматографии
    • 2. 13. Двумерная тонкослойная хроматография липидов плазмалеммы
    • 2. 14. Оценка осмотической водной проницаемости мембран
  • Глава 3. Результаты и обсуждение
    • 3. 1. Содержание Р1Р-аквапоринов в детергент-устойчивых и детергент-солюбилизируемых мембранах
    • 3. 2. Характеристика фракций плазмалеммы разной плотности
    • 3. 3. Фазовое состояние липидного бислоя и осмотическая водная проницаемость фракций плазмалеммы разной плотности
    • 3. 4. Влияние стеринов на скорость транспорта воды через плазмалемму растительных клеток

Согласно современным представлениям транспорт воды через биологические мембраны осуществляется по двум путям: через липидный бислой и с участием аквапоринов — белков, формирующих водные каналы в мембранах. Однако до настоящего времени нет определенного ответа на вопрос о том, каков вклад того или иного пути транспорта воды через мембрану в ее осмотическую водную проницаемость и какими факторами он контролируется (Carvajal et al., 1998; Verkman and Mitra, 2000; Hill et al., 2004). Эти исследования должны базироваться на фундаментальном свойстве мембран — неравномерном распределении компонентов в латеральной плоскости, т. е. доменной организации. Доменами" называют области мембран, отличающиеся по составу от остальной части мембраны вследствие ограничений в диффузионном обмене их компонентов (Геннис, 1997). Сравнительно недавно в плазматических мембранах эукариот обнаружены, специфические домены, смысл существования которых интенсивно изучается. Особенностью таких доменов, получивших название «рафты», является уникальный липидный состав, представленный гликосфинголипидами, фосфолипидами с преимущественно насыщенными жирными кислотами" и стеринами, количество которых значительно" выше, чем в других доменах- (Simons and Ikonen- 1997; Pike, 2003). Эти типы липидов обладают высоким сродством друг к другу, и бислой. в зоне рафтов находится в плотном высокоупорядоченном состоянии (London and Brown, 2000). Кроме липидов рафты включают белковые комплексы, для которых, по данным протеомики, характерна высокая степень обогащения компонентами, необходимыми для передачи и восприятия внешних сигналовзащиты от стрессов и патогенов, везикулярного транспорта, а также белками канального типа и транспортерами (Brown and London, 2000; Foster et al., 2003; Borner et al., 2005). Неординарность свойств рафтов вызывает большой интерес к выяснению их роли в функционировании биологических мембран, однако вопрос по-прежнему остается неясным, несмотря на значительный объем информации, полученной к настоящему времени. Поэтому для выяснения роли, а также структуры и функций рафтов, разрабатываются новые экспериментальные подходы. До сих пор метода, гарантирующего выделения чистой фракции «рафтов» не найдено. Поэтому для исследований используют детергент-резистентные мембраны (ДРМ), т. е. мембраны, устойчивые к солюбилизации неионными детергентами (Lingwood and Simons, 2007). Одним из характерных белков детергент-устойчивых фракций плазмалеммы клеток растений оказываются PIP-аквапорины (Mongrand et al., 2004; Borner et al., 2005; Morel et al., 2006; Lefebvre et al., 2007). Локализация аквапоринов в рафтах может указывать на существенную роль таких доменов в ответных реакциях клетки и растения в целом на изменение водного потенциала среды. Известно, что водная проницаемость липидного бислоя определяется его фазовым состоянием, которое в значительной степени зависит от присутствия стеринов (Lande et al., 1995; Mathai et al., 2008). Если относительное содержание стеринов в рафтах выше, чем в соседних фосфолипидных доменах, то очевидно, что бислой в области рафтов будет более плотно упакован, и скорость осмотического транспорта воды через эти участки будет снижена, а степень такого снижения будет определяться количеством и площадью рафтов в мембране. Ограничение скорости трансмембранного транспорта воды потенциально может создать для клетки проблему со временем достижения осмотического равновесия (Liu et al., 2006). Однако эта проблема может и не возникнуть, так как «внутрирафтовые» аквапорины в. результате их активации скомпенсируют снижение осмотической водной проницаемости. При этом допускается, что их концентрация в рафтах подобно стеринам выше. В рамках изложенной схемы рафтовые домены могли бы детерминировать кинетику трансмембранного транспорта воды. В литературе подобные предположения пока не высказывались, хотя некоторые полученные результаты прямо или косвенно свидетельствуют в пользу этого.

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

.

Основной целью работы стало исследование возможного механизма регулирования кинетики транспорта воды через плазмалемму, основанного на неравномерном распределении стеринов и Р1Р-аквапоринов между ее доменами.

Были поставлены следующие задачи:

1. Получить фракции детергент-резистентных мембран из плазмалеммы корней и побегов 5-дневных этиолированных проростков гороха.

2. Сравнить содержание стеринов и Р1Р-аквапоринов в изолированной плазмалемме, ее детергент-устойчивой и детергент-солюбилизируемой фракциях.

3. Разделить плазмалемму на фракции разной плотности, установить степень обогащения этих фракций стеринами и аквапоринами, а также оценить их осмотическую водную проницаемость.

4. Проверить возможность миграции Р1Р-аквапоринов из фосфолипидных доменов в детергент-резистентные мембраны при обработке плазмалеммы холодным Тритоном Х-100.

5. Исследовать, зависимость осмотической водной проницаемости и фазового состояния плазмалеммы от степени ее обогащения стеринами.

выводы.

1. Плазмалемма, изолированная из корней и побегов 5-дневных этиолированных проростков гороха с применением водной полимерной двухфазной системы, при центрифугировании в градиенте плотности Орйргер разделяется на фракции мембран, различающихся по плавучей плотности.

2. Фракции плазмалеммы с низкой плавучей плотностью обогащены стеринами и обладают более упорядоченной структурой липидного матрикса по сравнению с мембранами высокой плотности.

3. Содержание Р1Р-аквапоринов выше в стерин-обогащенных фракциях плазмалеммы, как корней, так и побегов.

4. При солюбилизации плазмалеммы корней и побегов холодным Тритоном X-100 Р1Р-аквапорины концентрируются в детергент-резистентных мембранах.

5. После извлечения стеринов из плазмалеммы корней и побегов скорость трансмембранного транспорта воды возрастает, тем самым, свидетельствуя о том, что стерины являются одним из факторов, определяющих кинетику этого процесса.

6. Фазовое состояние липидного матрикса мембран с низким содержанием стеринов резко изменяется в ответ на изменения температуры.

7. Скорость трансмембранного транспорта воды через домены, содержащие стерины, ниже по сравнению с участками мембраны, образованными фосфолипидами. Не исключено, что относительно низкая водная проводимость стерин-обогащенных доменов плазмалеммы компенсируется высоким содержанием и/или активностью Р1Р-аквапоринов в этих доменах.

ЗАКЛЮЧЕНИЕ

.

Лимитирующее действие стеринов может быть обусловлено свойствами молекулы стеринов, которые имеют сродство к липидам с насыщенными жирными кислотами и, взаимодействуя с ними, могут инициировать формирование в мембране участков с высокой степенью упорядоченности бислоя. При этом в таких участках стерины вытесняют молекулы воды из полярной области липидного матрикса. Наши эксперименты по исследованию свойств упаковки и оводненности липидного бислоя двух популяций везикул при помощи лаурдана выявили преобладание доли твердофазных доменов в липидном бислое во фракции мембран с высоким содержанием стеринов (рис. 8). Кроме того, в этих же фракциях зарегистрирована низкая осмотическая проницаемость (рис. 9).

В силу отсутствия методических подходов для определения активности аквапоринов в различных доменах плазмалеммы вопрос об их способности компенсировать снижение скорости трансмембранного водного потока в пунктах локализации стеринов остался не ясным. Косвенным подтверждением такой способности аквапоринов контролировать водную проницаемость является тот факт, что основная часть пула этих белков сосредоточена в стерин-обогащенных доменах, которые и определяют интенсивность транспорта воды через плазмалемму.

Вместе с тем просматривается элемент специфичности участия стеринов в транспорте воды, суть которого пока сложно сформулировать. Одно из предположений о такой специфичности может состоять в следующем: локализация аквапоринов в окружении стеринов может обеспечивать поддержание олигомерной структуры аквапоринов в плазмалемме, а также увеличивать время жизни этих белков в мембране за счет ограниченной рециркуляции стерин-обогащенных доменов в везикулярном трафике.

Показать весь текст

Список литературы

  1. Я.Н., Жесткова И. М., Трофимова М. С. (2006) Редокс-модуляция осмотической водной проницаемости плазмалеммы, изолированной из корней и стеблей проростков гороха. Физиол. растений, 53, 703−710.
  2. Р. (1997) Биомембраны. Молекулярная структура и функции. М.: Мир, 624 с.
  3. Нобел^П. (1973) Физиология растительной клетки. М.: Мир, 288 с.
  4. М.С., Жесткова И. М., Андреев И. М., Свинов М. И., Бобылев Ю. С., Сорокин Е. М. (2001) Осмотическая водная проницаемость вакуолярных и плазматических мембран, изолированных из корней кукурузы. Физиология растений, 48, 341−348.
  5. Д., Эванз У. (1990) Биологические мембраны. Методы. М.: Мир, 424 с.
  6. AI-Awqati Q. (1999) One hundred years of membrane permeability: does Overton still rule? Nat. Cell Biol., 1, 201−202.
  7. Alexandersson E., Fraysse L., Sjovall-Larsen S., Gustavsson S., Fellert M., Karlsson M., Johanson U., Kjellbom P. (2005) Whole gene family expression and-drought stress regulation of aquaporins. Plant Mol. Biol., 59, 469−484.
  8. K., Chara O., Moira R. Sutka M.R., Amodeo G. (2009) Analysis of the source of heterogeneity in* the osmotic response of plant membrane vesicles. Eur. Biophys. J., 38, 175−184.
  9. R. G. (1998) The caveolae membrane system. Annu. Rev. Biochem., 67, 199−225.
  10. E.B., Draeger A. (2000) Annexins in cell membrane dynamics. Ca -regulated association of lipid microdomains. J. Cell Biol., 150, 1113−1124.
  11. E.B., Draeger A. (2006) Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem. J., 297, 407−416.
  12. J.G., Mathieu D., Loudet C., Buchoux S., Dufourc E.J. (2007) Plant sterols in «rafts»: a better way to regulate membrane thermal shocks. FASEB J., 21, 17 141 723.
  13. A., Borga P., Jonsson L. (1996) Sterol composition and synthesis in potato tuber discs in relation to glycoalkaloid synthesis. Phytochemistry, 41, 155 161.
  14. L. (1975) Effects of salinity and sodicity on plant growth. Annn. Rev. Phytopathol., 13, 295−312.
  15. Bhat R.A., Milkis M., Schmelzer E., Schulze-Lefert P., Panstruga R. (2005) Recritment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc. Natl. Acad. Sci. USA, 102, 3135−3140.
  16. R.A., Panstruga R. (2005) Lipid rafts in plants. Planta, 223, 5−19.18- Bligh E.G., Dyer W.J. (1959) A rapid method for total lipid extraction* and purification. Canad. J. Biochem. Physiol., 37, 911−917.
  17. M., Dowhan W. (1998) Phospholipid-assisted protein folding: Phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. Embo J., 17, 52 555 264.
  18. M., Dowhan W. (1999) Lipid-assisted protein folding. J. Biol. Chem., 21 A, 36 827−36 830.
  19. M., Nielsen S., Engel A., Agre P. (1999) Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem., 68, 425−458.
  20. M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem., 72, 248−254.
  21. J.A., Wilk T., Fuller S.D. (2003) Do lipid rafts mediate virus assembly and pseudotyping? J. Gen. Virol. 84, 757−68:
  22. D.P., Leonard R.T., Hodges T.KI. (1987) Isolation of the plasma . membrane: membrane markersand-generahprinciples. In: Methods in Enzymology,
  23. L., Douce R. (ed.) Academic Press, 148, pp. 542−558.
  24. D.A., London E. (2000) Structure and function" of sphingolipi- and cholesterol-rich membrane rafts. J. Biol. Chem., 275, 17 221−17 224.
  25. D.A., Rose J.K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomians during transport to the apical cell surface. .Ce//, 68,. 533−544.
  26. E., Ball A., Iloppler S., Bowman A. (2008) Invertebrate aquaporins: a review. J. Compar. Physiol., 178, 935−955.
  27. M., Cooke D.T., Clarkson D.T. (1998) The lipid bilayer and"aquaporins: parallel pathways for water movement into plant cells. Plant Growth ReguL, 25, 89−95.
  28. Chaumont F., Moshelion, M., Daniels M.J. (2005) Regulation of plant aquaporin activity. Biol. Cell, 97, 749−764.
  29. M.J., Chrispeels M.J., Yeager M. (1999). Projection structure of a plant vacuole membrane aquaporin by electron-cryo-crystallography. J. Mol. Biol., 294, 1337−1349.
  30. J.L., Rosenbusch J.P. (1990) In vitro folding and- oligomerization of a membrane protein. Transition of bacterial’porinc from random coil to native conformation. J. Biol. Chem., 265, 10 217−10 220.
  31. F., Nuhse T.S., Foster L.J., Stensballe A., Peck S.C., Jensen O.N. (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol. Cell. Proteomics, 2, 1261−1270.
  32. Epand R.M., Maekawa S., Yip C.M., Epand R.F. (2001) Protein induced formation of cholesterol-rich domains. Biochemistry, 40, 10 514−10 521.
  33. A.D., Welte W., Hoffmann E., Lindner B., Holst O., Coulton J.W., Diederichs K. (2000) A conserved structural motif for lipopolysaccaride recognition by procaryotic and eucaryotic proteins. Structure Fold. Des., 8, 585 592.
  34. A. (1987) Water movement through lipid bilayers, pores, and plasma membranes. Theory and reality. New York: John Wiley & Sons, 228 p.
  35. Foster L.J., de Hoog C.L., Mann M. (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signalling factors. PNAS, 100- 5813−5818.
  36. , D., Jeno P., Mini T., Wirtz S., Muller S.A., Fraysse L., Kjellbom P., Engel A. (2001) Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. J. Biol. Chem., 276, 1707−1714.
  37. R., Schwarz H., Stierhof Y.D. Gamon K., Hindennach I., Henning U. (1986) An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export. J. Biol. Chem., 261', 11 355−11 361'.
  38. Fujiyoshi Y., Mitsuoka K., de Groot B.L., Philippsen A., Grubmuller H., Agre P., Engel A. (2002) Structure and function of water channels. Curr. Opin. Struct. Biol., 12, 509−515.
  39. Fyfe P.K., McAuley K.E., Roszak A.W., Isaacs N.W., Cogdell R.J., Jones M.R.2001) Probing the interface between membrane proteins and lipids by X-ray crystallography. TrendsBiochem. Sei., 26, 106−112.
  40. Garavito R.M., Ferguson-Miller S. (2001) Detergents as tools in membrane biochemistry. J. Biol. Chem., 276, 32 403−32 406.
  41. A.E., Alastair S.D., Hooper N.M. (2007) Sphingomyelin chain length influences the distribution of GPI-anchored'proteins in rafts in supported lipid bilayers. Mol. Membr. Biol., 24, 233−242.
  42. R.H., Zeidel M.L., Hill W.G. (2006) Lipid raft components cholesterol and sphingomyelin increase H1″ /OH- permeability of phosphatidylcholine membranes. Biochem. J., 398, 485−495.
  43. Gluck S., Al-Awqati Q. (1980) Vasopressin" increases water permeability by inducing pores. Nature, 284, 631−632.
  44. Good M.C., Zalatan J.G., Lim W.A. (2011) Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information. Science, 332, 680−686.
  45. A., Harris D.A. (1995) Glycolipid-anchored protein in neuroblastoma cells form detergent-resistant complexes without caveolin. J. Cell. Biol., 129, 619 627.
  46. Grandmougin-Ferjani A., Schuler-Muller I., Hartmann M.A. (1997), Sterol modulation^ of the plasma membrane H±ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol, 113, 163−174. N
  47. Guo D., Venkatramesh M., Nes W.D. (1995) Developmental regulation of sterol biosynthesis in Zea mays. Lipids, 30, 203:219:
  48. Guo L., Wang Z.Y., Lin H., Cui W.E., Chen J., Liu M., Chen Z.L., Qu L.J., Gu H. (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res., 16, 277−286.
  49. , C., Chaumont F. (2010) Aquaporins: a family of highly regulated multifunctional channels. Adv. Exp. Med. Biol., 679, 1−17.
  50. T.H. (2001) Do sterols reduce proton and sodium- leaks through lipid bilayers? Prog. Lipid Res., 40, 299−324.
  51. K.K., Slotte J.P. (2004) Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance enegry transfer and detergent-induced solubilization. Biochim. Biophys. Acta, 1664, 161−171.
  52. T., Scheiffele P., Verkade P., Simons K. (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol., 141, 929−942.
  53. R.M., Leaf A. (1962) Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J. Gen. Physiol., 45, 905−919.
  54. H. (2002) Triton Promotes Domain Formation in Lipid Raft Mixtures. Biophys. J., 83, 2693−2701.
  55. L.I., Sandelius A.S. (2001) The impact of different phytosterols on the molecular dynamics in the hydrophobic/hydrophilic interface phosphatidylcholine-liposomes. Physiol. Plantarum, 113, 23—32.
  56. L.I., Sellden G., Sandelius A.S. (2001) Effects of moderately enhanced levels of ozone on the acyl lipid composition and dynamical properties of plasma membranes isolated from garden pea (Pisum sativum). Physiol. Plantarum, 111, 165−171.
  57. Henzler T., Ye Q., Steudle E. (2004) Oxidative gating of water channels (aquaporins) in Char a by hydroxy 1 radicals. Plant Cell Environ., 27, 1184−1195.
  58. Hill A.E., Shachar-Hill B., Shachar-Hill Y. (2004) What are aquaporins for? J. Membr. Biol., 197, 1−32.
  59. Hill W.G., Almastri E., Ruiz W.G., Garard Apodaca, Zeidel M.L. (2005) Water and solute permeability of rat lung caveolae: high permeability explained by acyl chain unsaturation. Am. J. Physiol. Cell Physiol., 289, 33−41.
  60. A., Engel A., Kessler R., Manz H.J., Lustig A., Aebi U. (1989) Rapid isolation of OmpF porin-LPS complexes suitable for structure-function studies. Biochemistry, 28, 4187−4193.
  61. N.M., Turner A.J. (1988) Etcoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem. J., 250, 865−869.
  62. J., Buboltz J.T., Feigenson G.W. (1999) Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim. Biophys. Acta, 1417, 89−100.
  63. J., Feigenson G.W. (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J., 76, 2142−2157.
  64. J.H., Karlstrom G., Mouritsen O.G., Wennerstrom H., Zuckermann M.J. (1987) Phase equilibria in the phosphatidilcholine-cholesterol system. Biochim. Biophys. Acta., 905, 162−172.
  65. T.P., Maller A.L., Zeuthen T., Holm L.M., Klaerke D.A., Mohsin B., Kuhlbrandt W., Schjoerring J.K. (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBSLett., 574, 31−36.
  66. M.J., Kleinfeld A.M., Hoover R.L., Klausner R.D. (1982) The concept of lipid domains in membranes. J. Cell Biol., 94, 1−6.
  67. S., Seiwert B., Schulze W.X. (2009) Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-?-cyclodextrin and quantitative proteomics. Mol. Cell. Proteomics, 8, 612−623.
  68. Krugel U., He H.-X., Gier K. Reins J., Chincinska C., Grimm B., Schulze W.X., i
  69. C. (2011) The potato sucrose transporter StSUTl interacts with a drm-associated protein disulfide isomerase. Mol. Plant, epub, 1−20.
  70. A., Suzuki K. 2005. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim. Biophys. Acta, 1746, 234−251.i
  71. U.K. (1970) Cleavage of structural proteins, during assembly of head ofbacteriophage T4. Nature, 227, 680−685.
  72. P., Goetz J.G., Dennis J.W., Nabi I.R. (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J. Cell Biol, 185, 381−385.
  73. M.B., Donovan J.M., Zeidel M.L. (1995) The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J. Gen. Physiol., 106, 67−84.
  74. Larsson C., Sommarin.M., Widell S. (1994) Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. In: Methods in Enzymology, Walter H., Johansson G. (ed.), Academic Press, 228, pp. 451−469.
  75. Lee A.G., Birdsal N.J.M., Metcalfe J.C., Toon P.A., Warren G.B. (1974) Clusters in lipid bilayers and* the interpretation- of thermal effects in- biological membranes. Biochemistry, 13, 3699−3705.
  76. Levitan I., Fang Y., Rosenhouse-Dantsker A., Romanenko V. (2010) Cholesterol and-ion channels. In: Cholesterol binding and cholesterol transport proteins, Harris J.R. (ed.), Netherlands: Springer, pp. 509−549.
  77. A., Erlanger M., Rosenthal M., Epel B.L. (2007) A plasmodesmata-associated beta-l, 3-glucanase in Arabidopsis. Plant J., 49, 669−682.
  78. B.A., Engelman D.M. (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol., 166, 211−217.
  79. D., Goni F.M., Heerklotz H. (2005) Detergent-resistant membranes should not be identified with membrane rafts. TRENDS in biochemical sciences, 30, 430−436.
  80. R., Nairn H.Y. (2009) Domains in biological membranes. Exp. Cell Res., 315,2871−2878.
  81. D., Simons K. (2007) Detergent resistance as tool in membrane research. Nature Protocols, 2, 2159−2165.
  82. D., Simons K. (2010) Lipid rafts as a membrane-organizing principle. Science, 327, 46−50.
  83. Liu P., Li R.-L., Zhang L., Wang Q.-L., Niehaus K., Baluska F., Samaj J., Lin
  84. J.-X. (2009) Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant J., 60, 303 313.
  85. Liu X., Bandyopadhyay B., Nakamoto T., Singh B., Liedtke W., Melvin J.E., Ambudkar I. (2006) A role for AQP5 in activation of TRPV4 by hypotonicity. J. Biol. Chem., 281, 15 485−15 495.
  86. E., Brown D.A. (2000) Insolubility of lipids in triton X-100: physical origin and relationships to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta, 1508, 182−195.
  87. Loque D., Ludewig U., Yuan L., von Wiren N. (2005) Tonoplast intrinsic proteins AtTIP2-l and AtTIP2−3 facilitate NH3 transport into the vacuole. Plant Physiol., 137, 671−80.
  88. J.A., Andersen O.S. (1999) Spring constants for channel-induced lipid bilayer deformations estimates using gramicidin channels. Biophys. J., 76, 889−895.
  89. J.L., Pike L.J. (2005) A simplified method for the preparation of detergent-free lipid rafts. J. Lipid Res., 46, 1061−1067.
  90. Madey E., Nowack L.M., Su L., Hong, Y., Hudak K.A., Thompson J.E. (2001) Characterization of plasma membrane domains enriched in lipid metabolites. J. Exp. Bot., 52, 669 679.
  91. Maeda Y., Tashima Y., Houjou T., Fujita M., Yoko-o T., Jigami Y., Taguchi R., Kinoshita T. (2007) Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol. Cell Biol, 18, 1497−1506.
  92. M.P., Muller I., Ramos C., Rodriguez F., Dufourc E.J., Czaplicki J., Milon A. (1999) Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis. BiophysJ., 76, 351−359.
  93. D., Barrantes F.J. (1978) Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc. Natl Acad. Sci. U.S.A., 75, 43 294 333.
  94. Mathai J.C., Tristram-Nagle S., Nagle J.F., Zeidel M.L. (2008) Structural determinants of water permeability through the lipid membrane. J. Gen. Physiol, 31, 69−76.
  95. C. (2007) Plant aquaporins: novel functions and regulation properties. FEBSLett., 581, 2227−2236.
  96. Maurel C., Verdoucq L., Luu D.-T., Santoni V. (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu. Rev. Plant Biol, 59, 595−624.
  97. McConnell H.M., Radhakrishnan A. (2003) Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta, 1610, 159−73.
  98. McConnell H.M., Vrljic M. (2003) Liquid-liquid immiscibility in membranes. Annu.Rev. Biophys. Biomol. Struct., 32, 469−92.
  99. Meder D, Simons K. (2006) Lipid rafts, caveolae, and membrane traffic. In: Lipid Rafts and Caveolae: From Membrane Biophysics to Cell Biology. Fielding C.J. (ed.) Wiley-VCI-I Verlag GmbH & Co. KGaA, Weinheim, FRG., pp. 1−24.
  100. A., Fujiwara M., Furuto A., Fukao Y., Yamashita T., Kamo M., Kawamura Y., Uemura M. (2009) Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant Cell Physiol., 50, 341−359.
  101. Mongrand S., Morel J, Laroche J., Claverol S., Carde J.-P., Hartmann M.-A., Bonneu M-, Simon-Plas F., Lessire R., Bessoule J.-J. (2004) Lipid rafts in higher plant cells. J. Biol. Chem., 279, 36 277−36 286.
  102. MongrandS., Stanislas T., Bayer E.MiF., Lherminier J., Simon-Plas F. (2010) Membrane rafts in plant cells. Trend Plant Sci., 15- 656−663.
  103. S., Parton R.G., Vogel F., Behike J., Henske A., Kurzchalia T.V. (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerises in vivo and-,/" vitro. Moll Biol. Cell, 1995, 6, 911−927.
  104. Morel J., Claverol S., Mongrand S., Furt F., Fromentin Ji, Bessoule J. J, Blein J.P., Simon-Plas F. (2006) Proteomics of plant detergent-resistant membranes. Mol. Cell. Proteomics, 5, 1396−1411.
  105. Morenilla-Palao C., Pertusa M., Meseguer V., Cabedo H., Viana F. (2009) Lipid raft segregation modulates TRPM8 channel activity. J. Biol. Chem., 284, 9215−9224.
  106. I.C., Parton R.G. (2005) Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic, 6, 725−740.
  107. R. (2002) Comparative physiology of salt and water stress. Plant Cell Environ., 25, 239−250.
  108. K., Mitsuoka K., Hirai T., Walz T., Agre P., Heymann J.B., Engel A., Fujiyoshi Y. (2000) Structural determinants of water permeation through aquaporin-1. Nature, 407, 599−605.
  109. R., Yalpani N., Johal G.S., Simmons C.R. (2000) Prohibitins, stomatins and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation and death. J. Biol. Chem., 275, 29 579−29 586.
  110. Nemeth-Cahalan K.L., Kalman K., Froger A., Hall J.E. (2007) Zinc modulation of water permeability reveals that Aquaporin 0 functions as a cooperative tetramer. J. Gen. Physiol., 130, 457−464.
  111. K., Rawicz W., Needham D., Evans E. (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys. J., 79, 321−327.
  112. Orbach E, Finkelstein A. (1980) The nonelectrolyte permeability of planar lipid bilayer membranes. J. Gen: Physiol., 75, 427−36.
  113. Orlean P., MenonA.K. (2007) GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res., 48, 993−1011.
  114. Parasassi T., Giusti AM, Raimondi M, Gratton E. (1995) Abrupt modifications of the phospholipid bilayer properties at critical cholesterol concentrations. Biophys. J., 68, 1895−1902.
  115. Parasassi T, Krasnowska EK, Bagatolli L, Gratton E. (1998) Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc., 8, 365−737.
  116. Parasassi T., Stasio G.D., d’Ubaldo A., Gratton E. (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys. J., 57, 11 791 186.
  117. V. Pescan T., Westermann M., Oelmiiller R. (2000) Identification of. low-density Triton X-100-insoliible plasma^ membrane microdomains in higher plants. Eur. J. Biochem., 267, 6989−6995.
  118. , R.J., Wright E.M. (1974) Non-electrolyte probes of membrane structure in ADI-I-treated toad urinary bladder. Nature, 247, 222−224.
  119. Pike E. J: (2003) Lipid^rafts: bringing order to chaos- J. Lipid Res., 44, 655−667.
  120. L.J. (2006) Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res., 41, 1597−1598.
  121. L.J. (2009) The challenge of lipid rafts. J. Lipid Res., 50, 323−328.
  122. Preston G.M., Carroll T.P., Guggino W. B-, Agre P. (1992) Appearance of water channels in Xenopus oocytes expressing red cell CIIIP28 protein. Science, 256, 385−387.
  123. P.J. (2010) A lipid matrix model of membrane raft structure. Prog. Lipid Res., 49, 390−406.148: Quinn P.J., WolfC. (2009) The liquid-ordered phase, in membranes. Biochim. Biophys. Acta, 1788, 33−46.
  124. Rawicz W., Smith B.A., Mcintosh T. J-, Simon S.A., Evans E. (2008) Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids. Biophys. J., 94 4725−4736.
  125. RodaHiS-K., Skretting G, Garred O, Vilhardt F-, vamDeurssBi, Sandvig K. (1999) Extraction of cholesterol with methyl-P-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Ce//, 10, 961−974.
  126. M.B. Thompson T.E. (1990) Modulation of phospholipid acyl chain order by cholesterol: A solid-state: H nuclear magnetic resonance study. Biochemistry, 29, s 211 -217.
  127. M., Scherer P.E., Tang Z., Kubler E., Song K.S., Sanders M.C., Lisanti M.P. (1995) Oligomeric structure of caveolin: implications for caveolae membrane organization PNAS, 92, 9407−9411.
  128. M., Chang C.H., Stevens F.J. (1992) The functions of tryptophan residues in membrane proteins. Protein Eng., 5,213−214.
  129. T., Paschke K.A., Laessing U., Lottspeich F., Stuermer C.A. (1997) Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion’cells during axon regeneration. Development, 124, 577−587.
  130. A.M., Curnow P., Booth P.J. (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta, 1666, 105−117.
  131. H. (2003) The role of sterols in plant growth and development. Prog. Lipid Res., 42, 163−175.
  132. S., Honso M., Ekroos K., Shevchenko A., Simons K. (2003) Resistance of cell membranes to different detergents. PNAS, 100, 5795−5800.
  133. Silvius J.R., del Giudice D., Lafleur M. (1996) Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry, 35, 15 198−15 208.
  134. K., Gerl M.J. (2010) Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell. Biol., 11, 688−699.
  135. K., Ikonen E. (1997) Functional rafts in cell membranes. Nature, 387, 569 572.
  136. K., Toomre D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 1, 31−39.
  137. Simons K., Vaz W.L.C. (2004) Model systems, lipid rafts and cell membranes. AnnuRev. Biophys. Biol. Struct., 33, 269−295.
  138. C., Thomas C., Findlay K., Bayer E., Maule A.J. (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell, 21, 581−594, 66.
  139. S.J., Nicolson G.L. (1972) The fluid mosaic model of the structure of cell membranes. Science, 175, 720−731.
  140. Smart E.J., Ying Y., Mineo C., Anderson R.G.W. (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA, 92, 10 104−10 108.
  141. K.S., Shegwen L., Okamoto T., Quilliamo L.A., Sargiacomo M., Lisanti M.P. (1996) Copurification and direct interaction of Ras with caveolin, an integral membrane protein of Caveolae microdomains. J. Biol. Chem., 271, 9690−9697.
  142. Sonnino S., Prinetti A1. (2010) Lipids and membrane lateral organization. Front. Phys., 1, 1−9'
  143. G., Pypaert M., Sessa W.C. (2001) Distinction between signaling mechanisms in* lipid rafts vs. caveolae. Proc. Natl. Acad. Sci. USA, 98, 1 407 214 077.
  144. Stroh A., Anderka O., Pfeiffer K, Finel M., Ludwig B., Schagger H. (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J. Biol. Chem., 279, 5000−5007.
  145. C.M., Smart E.J. (2008) Caveolae structure and- function. J. Cell Mol. Medicine, 12, 796−809.
  146. T., Cascio M. (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem. Biophys., 38, 161−190.
  147. Tornroth-Horsefield S., Wang Y., Hedfalk K., Johanson U., Karlsson M., Tajkhorshid E., Neutze R., Kjellbom P. (2006) Structural mechanism of plant aquaporin gating. Nature, 439, 688−694.
  148. Tournaire-Roux C., Sutka M., Javot H., Gout E., Gerbeau P., Luu D.-T., Bligny R., Maurel C. (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins Nature, 425, 393−397
  149. Van Wilder, V., Miecielica U., Degand H.', Derua R., Waelkens E., Chaumont F. (2008) Maize plasma membrane aquaporins belonging to the PIPI and PIP2 subgroups are in vivo phosphorylated. Plant Cell Physiol., 49, 1364−1377
  150. Vera-Estrella R., Barkla B.J., Bohnert H.J., Pantoja O- (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol., 135, 2318−2329.
  151. Verkman-A.S., Mitra A.K. (2000) Structure and" function of aquaporin water channels. Am. J. Physiol. Renal. Physiol., 278, F13−28.
  152. M.R., Davis J.H. (1990) Phase equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures: 2H-nuclear magnetic resonance and differential scanning calorimetry. Biochemistry, 29, 451−464.
  153. Wudick M.M., Luu D.-T., MaurelC. (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol., 184- 289−302.
  154. Wunderlich F., Kreutz W., Mahler P., Ronai A., Heppler (1978) Thermotropic fluid- ordered «discontinuous» phase separation’in microsomal’lipids of tetrahymena. An X-ray diffraction study. Biochemistry, 17, 2005−2010.
  155. F., Ronai A., Speth V., Seelig J., Blume A. (1975) Thermotropic lipid clustering in tetrahymena membranes. Biochemistry, 14, 3730−3775.
  156. Xu X., Bittman R., Duportail G., Heissler D., Yilcheze C., London E. (2001) Efferct of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J. Biol. Chem., 276, 33 540−33 546.
  157. E. (1955) The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol., 1, 445−458.
  158. Yau W.M., Wimley W.C., Gawrisch K., White S.H. (1998) The preference of tryptophan for membrane interfaces. Biochemistry, 37, 14 713−14 718.
  159. Yu J., Fischman D.A., Steck T.L. (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct., 1, 233−248.
  160. R. (2005) Phylogeny and evolution of the major intrinsic protein family. Biol. Cell, 97, 397−414.
  161. M.L., Ambudkar S.V., Smith B.L., Agre P. (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry, 31, 7436−7440.
  162. R., Levitan I. (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, miscoceptions and control strategies. Biochim. Biophys. Acta, 1768, 1311−1324.1. БЛАГОДАРНОСТИ
Заполнить форму текущей работой