Помощь в написании студенческих работ
Антистрессовый сервис

Тропонин сердца быка: особенности структуры и свойства

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Проникновения из внеклеточного пространства при возбуждении о мышцы сердца. Важная роль внеклеточного Са + для мышцы сердца в обеспечении электромеханического сопряжения показана в опытах по перфузии сердца. Удаление из перфузата Са^+ сопровождается прекращением сокращений сердца, но не меняет механической активности скелетной мышцы в течение нескольких минут и даже часов /16, 253/. Проникновение… Читать ещё >

Тропонин сердца быка: особенности структуры и свойства (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ. Ю
  • I. Общие представления о регуляции сократительной активности
  • 1. Роль мембранных структур в регуляции мышечного сокращения
  • 2. Тонкая структура сократительного аппарата
  • 3. Две системы регуляции сокращения мышцы на уровне сократительных белков. а) Миозиновый тип регуляции. б) Актиновый тип регуляции
  • II. Роль тропонин-тропомиозинового комплекса в регуляции сокращения скелетных мышц и сердца
  • 1. Структура, свойства тропомиозина
  • 2. Общая характеристика тропонина скелетных мышц и сердца. а) тропонин С. б) тропонин 1. в) тропонин Т
  • 3. Особенности взаимодействия белков тонкого филамента скелетных мышц и сердца
  • 4. Гипотетические механизмы функционирования тропонин-тропомиозинового комплекса
  • 5. Фосфорилирование как возможный механизм тонкой регуляции активности тропонин-тропомиозинового комплекса
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • МАТЕРИАЛЫ И МЕТОДЫ
  • I. Выделение белков и пептидов. Исследование взаимодействия изолированных компонентов тропонина друг с другом
  • 1. Выделение тропонина
  • 2. Разделение тропонина на компоненты. а) Ионообменная хроматография полного тропонина. б) Очистка тропонина С на «голубой"сефарозе
  • 3. Расщепление тропонина С по остаткам цистеина и выделение пептидов тропонина С
  • 4. Исследование взаимодействия С-концевого пептида тропонина С с тропонином I и тропонином Т методом электрофореза
  • 5. Исследование взаимодействия тропонина С с тропонином Т методом гель-фильтрации и электрофореза
  • II. Спектральные методы исследования
  • 1. Исследование реакционной способности БН-групп тропонина с помощью НБД-хлорида

2. Использование флуоресцентной спектроскопии для изучения катион-связывающих свойств полного тропонина, тропонина С и С-концевого пептида тропонина С сердца. а) Изучение катион-связывающих свойств полного тропонина с использованием гидрофобного зонда диметила-минонафтэйродина. б) Исследование параметров связывания двухвалентных катионов с тропонином С и его С-концевым пептидом по величине собственной белковой флуоресценции.

3. Изучение катион-связывающих свойств тропонина С и его пептидов методом кругового дихроизма.

III. Некоторые аналитические методы.

I. Использование хелаторов для поддержания постоянной концентрации двухвалентных катионов в среде.

2. Электрофорез белков и пептидов в полиакриламидном геле. а) Электрофорез в присутствии додеодлсульфата натрия. б) Исследование связывания ^Са^ с белками и пептидами

3. Определение концентрации белка и пептидов.

4. Аминокислотный состав пептидов.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИИ.

I. Вццеление тропонина и его компонентов из сердца быка. 78 П. Изучение катион-связывающих свойств тропонина сердца.

1. Использование гидрофобного зонда диметиламинонафтей-родина для обнаружения конформационных изменений тропонина, вызываемых связыванием Са4″ по (^^"-специфическим центрам.

2. Локализация и свойства катион-связывающих участков тропонина С сердца. а) Химическое расщепление тропонина С по остаткам цис-теина и выделение пептидов. б) Использование собственной белковой флуоресценции для изучения катион-связывающих свойств тропонина С и его С-концевого пептида. в) Исследование катион-связывающих свойств тропонина С и его пептидов методом кругового дихршзма. г) Изучение Са*^-связывающих свойств тропонина С и его С-концевого пептида методом электрофореза.

III. Исследование взаимодействия компонентов тропонина сердца. НО

1. Взаимодействие С-концевого пептида тропонина С с тропонином I и тропонином Т. НО

2. Сравнительное изучение взаимодействия тропонина С и тропонина Т сердца и скелетных мышц. а) Использование метода гель-фильтрации для исследования взаимодействия тропонина С и тропонина Т. Н б) Изучение взаимодействия тропонина С и тропонина Т методом электрофореза в полиакриламидном геле.

3. Роль Са^+ и SH-групп в регуляции взаимодействия компонентов тропонина сердца.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

I. Сравнение катион-связывающих свойств тропонина сердца и скелетных мышц.

1. Диметиламинонафтэйродин-флуоресцентный зонд, позволяющий исследовать Са^±специфические участки тропонина сердца и скелетных мышц.

2. Локализация и свойства катион-связывающих участков тропонина С сердца.

II. Белок-белковое взаимодействие в полном тропонине сердца.

1. Взаимодействие тропонина I и тропонина Т с С-концевым пептидом тропонина С.

2. Особенности взаимодействия тропонина С и тропонина Т сердца и скелетных мышц.

3. Участие Ca + и SH -групп в поддержании целостности тропонина сердца.

ВЫВОДЫ.

Сокращение мышцы, в основе которого лежит взаимодействие актина с миозином, регулируется ионами Са^+. В сердце и скелетных мышцах позвоночных рецепция Са + и регуляция сокращения осуществляется тропонин-тропомиозиновым комплексом. Тропонин состоит из 3-х белковых компонентов: тропонина С — компонента, связывающего тропонина I — компонента, обеспечивающего ингибирование взаимодействия актина с миозином, и тропонина Ткомпонента, взаимодействующего с тропомиозином. Первичная структура и многие свойства компонентов тропонина скелетных мышц изучены достаточно подробно. Компоненты тропонина сердца изучены в значительно меньшей степени. Так, например, в настоящее время известны первичная структура тропонина С /311/ и тропонина I /100/, однако, первичная структура тропонина Т сердца не определена. До настоящего времени дискутировался вопрос о количестве и свойствах.

— связывающих участков тропонина сердца. Нерешенным о является вопрос об участии Саспецифического участка тропонина С сердца в регуляции сокращения, а также о том, способен ли 2+ связавшийся с этим участком Са изменять структуру полного тропонина сердца.

Несмотря на значительную гомологию компонентов тропонина, выделенных из 2-х типов мышц, тонкие механизмы регуляции сокращения сердца отличаются от таковых скелетных мышц /230, 255/. Согласно современным представлениям связывание.

С, а с тропонином С вызывает конформационные изменения тропонин-тропомиозино-вого комплекса, которые каким-то образом передаются на тонкий филамент и способствуют взаимодействию актина с миозином. Необходимым условием понимания механизмов регуляции сокращения сердца является знание структуры и свойств компонентов тропонина, а также детальное описание взаимодействия отдельных компонентов тропонина друг с другом и белками сократительного аппарата в зависимости от концентрации Са^+.

Цель настоящей работы состояла в изучении Са^±связывающих свойств полного тропонина и тропонина С сердца, а также в исследовании взаимодействия компонентов тропонина сердца. В задачи о исследования входило: обнаружение Са ±специфических конформаци-онных изменений полного тропонина сердцаполучение пептидов тропонина С сердца, содержащих Сасвязывающие участки, и характеристика катион-связывающих свойств этих участков — изучение взаимодействия компонентов тропонина сердца друг с другом.

В настоящей работе предложена модификация метода выделения тропонина из сердца крупного рогатого скота. Разработанный метод позволяет получить с высоким выходом высокоочищенные препараты тропонина. Впервые получены пептиды тропонина С сердца, содержащие Са связывающие участки. Изучены катион-связывающие свойства тропонина С и его пептидов. Выделение пептидов тропонина С открывает новые возможности не только для изучения катион-свя-зывающих свойств Са ±связывающих участков тропонина С сердца, но и для более детального исследования белок-белкового взаимодействия в полном тропонине сердца. Результаты, полученные в данной работе, расширяют представления о структуре и свойствах тропонина сердца.

ОБЗОР ЛИТЕРАТУРЫ.

I. Общие представления о регуляции. сократительной активности.

Сокращение мышцы инициируется нервным импульсом, который достигает нейромышечного контакта. Потенциал действия распространяется в виде волны электрической деполяризации по поверхности сарколеммы (плазматической мембраны мышечного волокна) и, достигая системы поперечных трубочек (так называемой Т-системы), распространяется вглубь мышечного волокна. Конечным результатом распространения волны деполяризации сарколеммы и Т-системы является повышение концентрации ионов Са^+ в миоплазме.

I. Роль мембранных структур в. регуляции .мышечного сокращения. От сарколеммы и Т-системы процесс возбуждения передается на мембрану саркоплазматического ретикулума, вызывая повышение о ее проницаемости для ионов Са +, которые высвобождаются в миоо плазму /83, 91/. Повышение концентрации ионов Са + в миоплазме.

A R до 10 — 10 М /150, 271/ является сигналом для начала мышечо ного сокращения. Освободившиеся ионы вновь захватываются саркоплазматическим ретикулумом и сохраняются в нем до прихода о следующего нервного импульса. Понижение концентрации ионов.

С, а в миоплазме до.

10″ ' М вызывает расслабление мышцы /150, 83/. В отличие от скелетных мышц повышение концентрации ионов о.

Са + в миоплазме мышечных волокон сердца обеспечивает за счет.

Г) проникновения из внеклеточного пространства при возбуждении о мышцы сердца. Важная роль внеклеточного Са + для мышцы сердца в обеспечении электромеханического сопряжения показана в опытах по перфузии сердца. Удаление из перфузата Са^+ сопровождается прекращением сокращений сердца, но не меняет механической активности скелетной мышцы в течение нескольких минут и даже часов /16, 253/. Проникновение Са^+ внутрь мышечного волокна сердца происходит как электрогенным, так и электронейтральным путем в обмен на два иона /167, 168, 169, 300/. Электрогенное проникновение Са^+ внутрь мышечного волокна связано с существованием в сарколемме специальных каналов /168, 169/ и контролируется, по-видимому, фосфорилированием белков сарколеммы /87, 235, 317, 339/. Электронейтральный перенос Са^+ через сарколемму осуществляется специфическим переносчиком /167, 168, 169, 300/.

В процессе расслабления сердечной мышцы понижение концентрации ионов Са^+ в миоплазме обеспечивается активным переносом Са^+ через сарколемму во внеклеточное пространство, а также сар-коплазматическим ретикулумом /167, 179/. Однако, в волокнах сердца система саркоплазматического ретикулума развита значительно слабее, чем в волокнах скелетных мышц /7/. Имеются данные о о способности митохондрий в больших количествах поглощать Са Однако участие митохондрий в процессе расслабления сердечной О мышцы в норме незначительно, т.к. сродство этих органелл к Са + и скорость его поглощения во много раз ниже, чем у саркоплазматического ретикулума /156, 256/. Скорее всего, поглощение Са^+ митохондриями играет определенную роль в процессе расслабления о мышцы сердца при значительных повышениях концентрации Са в миоплазме, которое возможно при патологии /156, 167/. о.

Повышение концентрации ионов Са в миоплазме сопровождается зависимым от энергии АТФ взаимодействием двух основных белков мышц: актина и миозина /70, 72, 75/. Эти белки образуют тонкие и толстые филаменты, соответственно. Взаимодействие этих двух белков, проявляющееся в периодическом замыкании и размыкании поперечных мостиков между двумя типами филаментов, обеспечивает скольжение актиновых и миозиновых фаламентов друг относительно друга. Этот процесс лежит в основе мышечного сокращения /134/.

ВЫВОДЫ.

1. Модифицирован метод выделения тропонина из сердца быка. В гомогенном состоянии получены все компоненты тропонина.

2. С помощью гидрофобного зонда — диметиламинонафтэйродина п обнаружен Са «^-специфический участок тропонина сердца и зарегистрированы конформационные изменения, обусловленные связыванием Са2+ по этому участку. Изучена селективность Са2±специфи-ческих участков тропонина сердца и скелетных мышц к ионам Са2+ и Бг2+ .

3. Проведено расщепление тропонина С сердца по двум остаткам цистеина. В гомогенном состоянии вццелены Nконцевой (остатки 1−34), центральный (остатки 35−83) и С-концевой (остатки 84−161) пептиды тропонина С сердца.

4. С помощью спектральных методов (собственная белковая флуоресценция, круговой дихроизм) измерены кажущиеся константы.

О р I связывания Са и с нативным тропонином С сердца и его центральным и С-концевым пептидами. Обнаружено, что П Са2+ -связывающий участок тропонина С сердца специфически связывает Са2+, а Ш и ТУ участки способны связывать как ионы Са2+, так и ионы Мё2+ .

5. Сравнение спектров кругового дихроизма тропонина С сердца и скелетных мышц, а также С-концевых пептидов этих белков свидетельствует о сходстве вторичных структур тропонинов С, выделенных из мышц двух типов.

6. В отличие от соответствующих компонентов скелетных мышц тропонин Т и тропонин С сердца слабо взаимодействуют друг с другом, что является следствием особенностей структуры тропонина Т сердца. Обнаружено, что в С-концевой части тропонина С расположен участок, обеспечивающий взаимодействие этого компонента с тропонином I. р

7. Изучена роль С, а и ЭНгрупп во взаимодействии компонентов тропонина сердца. Обнаружено, что модификация 4-х эн р групп тропонина НБД-хлоридом в отсутствие Са приводит к отделению тропонина Т от двух других компонентов тропонина. Предложена гипотетическая модель взаимодействия компонентов тропонина сердца.

Приношу глубокую благодарность заведующему кафедрой биохимии академику Сергею Евгеньевичу Северину за постоянное внимание к данной работе и ценные советы.

Я искренне благодарна кандидату биологических наук, старшему научному сотруднику кафедры биохимии Николаю Борисовичу Гусеву за научное руководство, постоянную помощь, поддержу и доброе отношение.

— 149.

Показать весь текст

Список литературы

  1. Н.Б., Добровольский А. Б., Северин С. Е. Тропонин скелетных мышц и фосфорилирование: участок тропонина Т, фосфорили-руемый специфической протеинкиназой. Биохимия, 1978, т.43, № 2, с.365−372.
  2. А.Б., Гусев Н. Б. Роль Са2±специфических участков связывания в индуцировании конформационных изменений структуры тропонина. Биохимия, 1978, т.43, № 9, с.1695−1703.
  3. М.М. Физико-химические основы мышечной деятельности. Тбилиси: Мецниереба, 1971, с.160−169.
  4. В.В. Исследование структуры актинеодержащих нитей методом дифракции рентгеновских лучей. В кн.: Молекулярная и клеточная биофизика. М.: Наука, 1977, с.164−172.
  5. В.В., Франк Г. М. Структурная неэквивалентность субъединиц Ф-актина и ее возможное значение в регуляции АТФазной активности и развитии напряжения в скелетных мышцах. Биофизика, т.22, № 2, 1977, с.376−387.
  6. A.A. Хроматографические материалы. М.: Химия, 1978, с. 70.7. руководство по физиологии. Физиология кровообращения. Физиология сердца. Л.: Наука, 1980, с.25−35.
  7. .Ф. Структура и функция сократительных белков. -М.: Наука, 1965, с.37−46.
  8. .Ф., Левицкий Д. И. Миозин и биологическая подвижность. -М.: Наука, 1982, с.7−22.
  9. Х2. Adelstein R.S. Myosin phosphorylation, cell motility andsmoth muscle contraction. Trends Biochem. Sci., 1978, v.3, H. I, p.27−30.
  10. Adelstein R.S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu. Rev. Biochem., 1980, v.49, p.921−956.
  11. Adelstein R.S., Gonti M.A., Hathaway D.R., Klee C.B. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic submits of adenosin 3*:5'-monophosphate-dependent protein kinase. J.Biol.Chem., 1978, v.253, И 23, p.8347−8350.
  12. T5. .fimphlett G.W., Syska H., Perry S.V. The polymorphic forms of tropomyosin and troponin in developing rabbit skeletal muscle. FBBS Lett., 1976, v.63, Я Г, p. 22−26.
  13. Armstrong C.M., Bezanilla P.M., Horowicz P. Twitches in the presence of ethylene glycol bis (p-aminoethyleethe^-HjN'-tetraacetic acid. Biochim. Biophys. Acta, 1972, v. 267, N3, p.605−608.
  14. Bagshaw C.R., Kendrick-Jones J. Characterization of homologous divalent metal ion binding sites of vertebrate and mol-luscan myosins using electron paramagnetic resonance spectroscopy. J.Mol.Biol., 1979, v.130, IT 3, p.317−336.
  15. T8. Bailin G. Phosphorylation of bovine cardiac actin complex. -Am. J.Physiol., Г979, v.236, П, P. C4I-C46.
  16. BaranyM., B&r&ny К. Phosphorylation of the myofibrillar proteins. Ann.Bev.Physiol., I98O, v.42, p.275−292.
  17. Barron J.Т., Bar&ny M., B&riny K. Phosphorylation of the 20,000 dalton light chain of myosin of intact arterial smooth muscle in rest and in contraction. J.Biol.Chem., 1979, v.254, К 12, p.4954−4956.
  18. Barylko В., Kuznicki J., Drabikowski W. Identification of2+
  19. Ca -binding subunit of myosin light chain kinase from skeletal muscle with modulator protein. FEBS Lett., 1978, v.90, N 2, p.301−304.
  20. Berson G. Ca2+, Sr2+ and Ba2+ sensitivity of tropomyosin-troponin complex from cardiac and fast skeletal muscle. In: Calcium binding proteins. (Eds. W. Drabikowski et al.), War-szawa-Amsterdam: Elsevir, 1974, p. I97−20I.
  21. Birkett D.J., Price N.C., Radda G.K., Salman A.G. The reactivity of SH groups with a fluorogenic reagent. PEBS Lett., 1970, v.6, И 4, p.346−348.
  22. Brekke C. J", Greaser M.L. Separation and characterization of the troponin components from bovine cardiac muscle. J.Biol. Chem., 1976, v.251, N 3, p.866−871.
  23. Bremel R.D., Weber A. Cooperation within actin filament in vertebrate skeletal muscle. Nature (New Biol.), 1972, v.238, И 82, p.97-Ю1.
  24. Bronson D.D., Schachat P.H. Isozymic forms of rabbit skeletal muscle tropomyosin and troponin. J. Cell Biol., 1980, v.87, N 2, part 2, 2бЗа.
  25. Bronson D.D., Schachat P.H. Heterogeneity of contractile proteins. Differences in tropomyosin in fast, mixed, and slowskeletal muscle of the rabbit. J.Biol.Chem., 1982, v.257, H 7, p.3937−3944.
  26. Burgess W.H., Jemiolo D.K., Kretsinger R.H. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim. Biophy s. Acta, 1980, v.623, H 2, p.257−270.
  27. Burtnick L.D., Kay C.M. (The calcium-binding properties of bovine cardiac troponin C. FEBS Lett., 1977, v.75, N X, p. ro5-HO.
  28. Byers D.M., Kay C.M. Hydrodynamic properties of bovine ca3>-diac troponin C. Biochemistry, 1982, v.21, M 2, p.229−233.
  29. Byers D.M., Kay C.M. Bovine cardiac troponin submits: binary complex and reconstitution of whole troponin. FEBS Lett., 1982, v.148, N X, p.12−16.
  30. Byers D.M., Kay C.M. Hydrodynamic properties of bovine cardiac troponin X and troponin T. J.Biol.Chem., 1983″ v. 258* N 5, 2951−2954.
  31. Byers D.M., McCubbin W.D., Kay C.M. Hydrodynamic properties of bovine cardiac troponin. FEBS Lett., 1979, v.104, N r" p. I06-XI0.
  32. Caspar D.L.D., Cohen C., Longley W. Tropomyosin: Crystal structure, polymorph! an and molecular interactions. J.Mol.
  33. Hoi., 1969, v.4T, N X, p.87-ГО7.
  34. Chong P.С.S., Hodges R.S. Photochemical cross-linking between. rabbit skeletal troponin and ok. -tropomyosin. J.Biol. Chem., Г982, v.257, N 15, 9152−9Г60.
  35. Chong P.O.S., Hodges H.S. Photochemical cross-linking between rabbit skeletal troponin subunits. Troponin Г troponin T interactions. — J.Biol. Chem., Г982, v.257, N 19, P. II667-II672.
  36. Chou Р.У., Fasman G.D. Prediction of protein confoimation. Biochemistry, X974, v. X3, N 2, p.222−245.
  37. Clarke P.M., Lovell S.J., Masters C.J., Winzor D.J. Beef muscle toponin: evidence for multiple forms of troponin T. -Biocbim.Biophys.Acta, 1976, v.427, N 2, p.6l7−626.
  38. Coffee C.J., Bradshaw R.A. Carp muscle calcium-binding protein. I. Characterization of the tryptic peptides and the complete amino acid sequence. J.Biol.Chem., Х973″ v.248, IT 9, p.3305−3312.
  39. Coffee C.J., Solano C. Preparation and properties of carp muscle parvalbumin fragments A (residues X-75) and В (residues 76−108). Biochim.Biophys.Acta, X976, v.453, H X, p.67−80.
  40. Cohen C., Caspar D.L.D., Johnson J.P., Nauss K., Margossian S.S., Parry D.A.D. Tropomyosin-toponin assembly. Cold Spring Harbor Symp. Quant. Biol., X972, v.37, 287−292.
  41. Cole H.A., Perry S.V. The phosphorylation of troponin X from cardiac muscle. Biochem.J., 1975, v. X49, N 3, p.525−533.
  42. Collins J.H. Homology of myosin light chains, troponin С and parvalbumins deduced from comparison of their amino acidsequences. Biochem.Biophys.Res.Commun., 1974, v. 58, N I, p.301−308.
  43. Collins J.H., Potter J.D., Horn M.J., Wilshire G., Jackman N. The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS lett., 1973, v.36, N 2, p.268−272.
  44. Collins J.H., Greaser M.L., Potter J.D., Horn M.J. Determination of the amino acid sequence of troponin C from rabbit skeletal muscle. J.Biol.Chem., T977, v.252, N X8, p.63 566 362.
  45. Commins P., Perry S.V. The subunits and biological activity of polymorphic forms of tropomyosin. J.Biol.Chem., 1973, v. I33, N 4, p.765−777.
  46. Commins P., Perry S.V. Troponin X from human skeletal and cardiac muscle. Biochem.J., 1978, v. I7X, N X, p.251−259.
  47. Conti M.A., Adelstein R.S. Phosphorylation by cyclic 3':5'-adenosine monophosphate-dependent protein kinase regulates myosin light chain kinase. Fed.Froc., 1980, v.39, N 5, p.1569−1573.
  48. Cote G., Lewis W.G., Smillie L.B. Non-polymeriz ability of platelet tropomyosin and its NH2-and C00H-terminal sequences. -PEBS Lett., 1978, v.91, E 2, p.237−24X.
  49. Cbte G.P., Lewis W.G., Pato M.D., Smillie L.B. Platelet tropomyosin: lack of binding to skeletal muscle troponin and correlation with sequence. PEBS Lett., 1978, v.94, H X, P. X3I-I35.2+
  50. Dabrowska R., Hartshorne D.J. A Ca and modulator-dependentmyosin light chain kinase from non-muscle cells. Biochem. ELophys.Res.Commun., 1978, v.85, N 4, p. X352-X359.
  51. Dabrowska R., Aromatorio D., Sherry J.M.P., Hartshorne D.J. Composition of the myosin light chain kinase from chicken gizzard.-Biochem.Biophys.Res.Commun., 1977″ v.78, N 4, Р. Г263-Г272.
  52. Dahlmann В., Reinaner H. Purification and some properties of an alkaline proteinase from rat skeletal muscle. Biochem. J., 1978, v. X7X, И 3, p.803−8X0.
  53. Dayton W.R., Schellmeyer J.V. Isolation from porcine cardiac2+muscle of a Ca -activated protease that partially degrades myofibrils.-J.Mol.Cell Cardiol., Г980, v. I"2, N 6, p.533−55X.
  54. Dayton W.R., Reville W.J., Goll D.E., Stromer M.H. A Ca2±ac-tivated protease possibly involved myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry, X976, T. I5, N XO, p. 2X59−2167.
  55. Nature, 1979, v.278, p.7T4−7T8.
  56. Dhoot G.K., Gell P., Perry S.Y. The localization of the dif- r ferent forms of troponin r in skeletal and cardiac muscle cells. Exp. Cell Res.,. T978, V. IT7, p.375−370.
  57. Dhoot G.K., Frearson N., Perry S.V. Polymorphic forms of troponin T and troponin C and their localization in striated muscle cell types. Exp. Cell. Res., T979, v. r22, p.339−350.
  58. Diamond J. Role of cyclic nucleotides in control of smooth muscle contraction. Adv. Cyclic Nucleotide Res., T978, v. 9, p.327−339.
  59. DiSalvo J., Gruenstein E., Silver P. Ca2*" dependent phosphorylation of bovine aortic actomyosin. Proc. Soc. Exp. Biol. Med., 1978, v.158, N 3, p.4ro-4T4.
  60. Drabikowski W., Barylko B. Calcium binding by troponin. -Acta Biochim. Polonica, X97I, v. 18, N 4, 353−366.
  61. Drabikowski W., Brzeska H., Venyaminov S.Yu. Tryptical fragments of calmodulin. Ca2+ and Mg2+ induced conformational changes. J. Biol. Chem., T982, v.257, N T9, p. ir58 4−3X590.
  62. Eaton B.L. Tropomyosin binding to F-actin induced by myosin heads. Science, 1976, v.192, N 4246, p.73−75.
  63. Ebashi S. Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system. Essays Biochem., T974, v. TO, p. I-36.
  64. Ebashi S. Regulation of muscle contraction. Proc. R. Soc. Lond., 1980, v. B207, p.259−286.
  65. Ebashi S., Endo M. Calcium ion and muscle contraction. -Progr. Biophys. Mol. Biol., T968, v. I8, p. I23-r83.
  66. Ebashi S., Ebashi P., Maruyama K. A new protein factor promoting contraction of actomyosin.-Nature, r964, v.203″ p.645 646.
  67. Ebashi S., Kodama A., Ebashi P. Troponin. I. Preparation and physiological function.-J.Biochem., 1968, v.64, N 4, p.465−477.
  68. Ebashi S., Endo M., Ohtsuki I. Control of muscle contraction.- Quart. Rev. Biophys., 1969, v.2, p.351−384.
  69. Ebashi S., Wakayabashi T., Ebashi P. Troponin and its components.-J. Biochem., I97T, v.69, N 2, p.441−445.
  70. Ebashi S., Ohtsuki T., Mihashi K. Regulatory proteins of muscle with special reference to troponin. Cold. Spring Harbor Symp. Quant. Biol., 1972, v.37, p.215−223.
  71. Ebashi S., Masaki T., Tsukui R" Cardiac contractile proteins.- Adv. Cardiol., 1974, v. I2, p.59−69.
  72. Ebashi S., Ohnishi S.-X., Abe S.-3T., Maruyama K. A spin-label study on calcium -induced conformational changes of troponin components. J.Biochem., T974, v.75, N I, p.211−213.
  73. J.Biol. Chem., 1974, v.249, N 15, p.4742−4748.
  74. Elliott A., Offer G. Shape and flexibility of the myosin molecule. J.Mol. Biol., 1978, v.123, N 4, Р.505−5Г9.
  75. Endo M. Calcium release from the sarcoplasmic reticulum. -Physiol. Rev., Г977, v.57, N Г, р.7Г-Г08.
  76. England P.J. Correlation between contraction and phosphorylation of the inhibitory subunit of troponin in perfused rat heart.-FEBS Lett., Г975, v.50, К T, p.57−60.
  77. England P.J. Studies on the phosphorylation of the inhibitory subunit of troponin during modification of contraction in perfused rat he art.-Bio chem. J., Г976, v. l60, K" 2, p. 295−304.
  78. England P.J. Phosphorylation of the inhibitory subunit of troponin in perfused hearts of mice deficient in phosphory-lase kinase.-Biochem. J., 1977, v. r68, N 2, p.307−3T0.
  79. England P.J., Jeacocke S.A., Huggins J.P., Mills D., Pask H. T. Protein phosphorylation in the regulation of cardiac contraction. Biochem. Soc. Trans., 1983, v. II, Ж 2, р. Г53.
  80. Evans J.S., Levine B.A. Protein-protein interaction sites of the troponin complex. Biochem. Soc. Trans., T979, v.7, H 4, Р.70Г-702.
  81. Evans J.S., Levine B.A. Protein-protein interaction sites in the calcium modulated skeletal muscle troponin complex. J. Inorg. Biochem., Г980, v. I2, p.227−239.
  82. Flicker P.P., Phillips G.N., jr, Cohen C. Troponin and its interaction with tropomyosin. An electron microscope study. J.Mol. Biol., 1982, v. r62, N 2, p.495−501.
  83. Freedman R.B., Radda G.K. The reaction of 2,4,6-trinitroben-zensulphonic acid with amino acids, peptides and proteins. -Biochem.J., 1968, v.108, N 3, p.383−391.
  84. Fuchs F. Ion exchange properties of the calcium receptor site of rtoponin. Biochim. Biophys. Acta, I97T, v. 245, II I, p.221−229.
  85. Fuchs F. Chemical properties of the calcium receptor site of troponin as determined from binding studies. In: Calcium binding proteins. (Eds. W. Drabikowski et al.), Y/arszawa-Am-sterdam: Elsevir, 1974, p.1−27.
  86. Gergely J. Calcium-protein interactions and conformational changes in the regulation of muscle contraction. In! Proc. 3d US-USSR joint symp. on myocardial metabolism. Williamsburg, Virginia, May 9-ir, 1977, p. I33−145.
  87. Gillis J.H., O’Brien E.J. The effect of calcium ions on the structure of reconstituted muscle thin filaments. J.Mol. Biol., 1975, v.99, N 3, p.445−459.
  88. Grabarek Z., Drabikowski II., LeavisP.C., Rosenfeld S.S., Gergely J. Proteolytic fragments of troponin C. Interactions with the other troponin subunits and biological activity. -J.Biol.Chem., 1981″, v.256, IT 24, P. I3I2I-X3I27.
  89. Grand R.J.A., Wilkinson J.M. The amino acid sequence of rabbit slow-muscle troponin I. Biochem.J., 1977, v. 167, N Г, p.183−192.
  90. Г00. Grand R.J.A., Wilkinson J.M., Mole I.E. The amino acid sequence of rabbit cardiac troponin I. Biochem.J., 1976, v. 159, H 3, Р.633−64Г.
  91. Ю1. Grand R.J.A., Levin B.A., Perry S.V. Proton-magnetic resonance studies on the interaction of rabbit skeletal-muscle troponin I with troponin С and actin. Biochem.J., 1982, v. 203, К Г, p.61−68.
  92. Greaser M.L., Gergely J. Reconstitution of troponin activity from three protein components. J.Biol. Chem., Г97Г, v. 246, H 13, p.4226−4233.
  93. ЮЗ. Greaser M.L., Gergely J. Purification and properties of the components from troponin. J.Biol. Chem., 1973, v. 24Q, N 6, р.2Г25−2ГЗЗ.
  94. Г04. Gruda J., Therien H.-M., GermaHan E. The effect of calcium and magnesium ions on the secondary structure of calcium binding component of troponin.-Biochem. Biophys. Res. Commun.1973, v. 52, N 4, p.1307−1313.2+
  95. Ю5. GusevN.B., Friedrich P. Ca -induced conformational changes in the troponin complex detected by cross-linking. -Biochim. Biophys. Acta, T980, v. 626, H I, p. I06-U6.
  96. Haiech J., Derancourt J., PechSre J.-P., Demaille J.G. Magnesium and calcium binding to paralbumins: Evidence for differences between parvalbumins and an explanation of their relaxing functions. Biochemistry, 1979, v. 18, N 13, p. 2752−2758.
  97. Hanson J., lowy J. The structure of P-actin and of actin filaments isolated from muscles. J.Mol. Biol., I963, v. 6, H r, p.46−60.
  98. Hanson J., O’Brien E.J., Bennet P.M. Structure of the myosin- containing filament assembly (A-segment) separated from frog skeletal muscle. J.Mol. Biol., I97T, v. 58, N 3, p. 8 65−871'.
  99. Hanson J., Lednev V., O’Brien E.J., Bennett P.M. Structure of the actin-containing filaments in vertebrate skeletal muscle. Gold Spring Harbor Symp. Quant. Biol., T972, v. 37, p.3ir-3I8.
  100. Harshorne D.J., Dreizen P. Studies on the subunit composition of troponin. Cold Spring Harbor Symp. Quant. Biol., 1972, v. 37, p.225−234.
  101. Hartshorne D.J., Pyun H.Y. Calcium binding by the troponin complex, and the purification and properties of troponin A. Biochim. Biophys. Acta, 1971, v. 229, N 3, p.698- 711.
  102. Haselgrove J.C. X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle.-Cold Spring Harbor Symp. Quant. Biol., 1972, v. 37, p. 341−352.
  103. Hitchcock S.E. Cross-linking of troponin with dimethylimido esters. Biochemistry, 1975, v. X4, IT 23, p.5X62−5167.
  104. Hitchcock S.E. Regulation of muscle contraction: Binding of troponin and its components to actin and tropomyosin. Eur. J. Biochem., 1975, v. 52, IT 2, p.255−263.
  105. X. Hitchcock S.E. Study of the structure of troponin C by measuring the relative reactivities of lysines with acetic anhydride. J.Mol. Biol., X98X, v. 147, N I, p. I53-I73.
  106. Hitchcock-De Gregorl S.E. Study of the structure of troponin1. by measuring the relative reactivities of lysines with acetic anhydride. J.Biol.Chem., 1982, v. 257, N X3, p.7372−7380.
  107. Hitchcock S.E., Lutter L.C. Study of troponin with cleavab-le protein cross-linkers. FEBS Lett., T975, v.57, N 2, p.172−174.
  108. IS.tchcock-DeGregory S.E., Maris J. Tropomyosin inhibits the rate of actin polymerization. Biophys.J., 1983, v. 4T, 1. H 2, part 2, 296a.
  109. Hitchcock S.E., Huxley H.E., Szent-Gyorgyi A.G. Calcium sensitive binding of troponin to actin-tropomyosin: A two-site model for troponin action. J.Mol. Biol., 1973, v. 80, H 4, p.825−836.
  110. Hodges R.S., Sodek J., Snillie L.B., Jurasek L. Tropomyosin: .Amino acid sequence and coiled-coil structure. Cold Spring Harbor Symp. Quant. Biol., 1972, v. 37, p.299−310.
  111. Holroyde M.J., Howe E., Solaro R.J. Modification of calcium requirements for activation of cardiac myofibrillar ATPaseby cyclic MB dependent phosphorylation. Biochim. Blophys. Acta, 1979, v.586, N I, p.63−69.
  112. T30. Holroyde M.J., Robertson S.P., Johnson J.D., Solaro R.J.,
  113. Potter J.D. The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J.Biol. Chem., 1980, v. 255, N 24, p.11 688−11 693.
  114. Horwitz J., Ballard B., Mercola D. Interaction of troponin subunits. The interaction between the inhibitory and tropo-myosin-binding subunits. J.Biol. Chem., 1979, v. 254, N 2, P. 350−355.
  115. Huxley H.E. The mechanism of muscular contraction. Science, I969, v. I64, N 3886, p. I356-I366.
  116. T33. Huxley H.E. Structural changes in the actin- and myosin-con-taining filaments during contraction. Cold Spring Harbor Symp. Quant. Biol., 1972, v. 37, p.361−376.
  117. Huxley H.E. The structural basis of contraction and regulation in skeletal muscle. In: Molecular Basis of Motility. (Eds. Heilmeyer L.M.G-. et al.), Berlin, X975, p.9−25.
  118. Imai S., Takeda K. Calcium and contraction of heart and snooth muscle. Nature, 1967, v. 2T3, p. I044-ro45.
  119. Ishiwata S., Kondo H. Studies on the P-actin-tropomyosin-troponin complex:. IX. Partial reconstitution of thin filament by F-actin, tropomyosin and the tropomyosin binding component of troponin. Biochim. Biophys. Acta, 1978, v. 534, N 2, p.341−349.
  120. Isobe T., Okuyama T. The amino acid sequence of S-I00 protein (PAP I-b protein) and its relation to the calcium-binding proteins. Eur. J. Biochem., 1978, v. 89, N 2, p.379 388.
  121. Jackson P., Amphlett G.W., Perry S.V. The primary structure of troponin T and the interaction with tropomyosin. Biochem.J., 1975, v. 151, N T, p.85−87.
  122. Jacobson G.R., Schaffner M.H., Stark G.B., Vanaman T.C. Specific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues. J.Biol. Chem., 1973, v. 248, N 19, p.6583−6591.
  123. Johnson J.D., Potter J.D. Detection of two classes of Ca2±binding sites in troponin C with circular dichroism and tyrosine fluorescence. J.Biol.Chem., 1978, v. 253, N IX, 1. P.3775−3777.
  124. Johnson J.D., Collins J.H., Potter J.D. Dansylaziridine-la-beled troponin C. A fluorescent probe of Ca^-binding to the Ca2*-specific regulatory sites.-J. Biol. Chem., 1978, v.253, N 18, p.6451−6458.
  125. Johnson J.D., Charlton S.C., Potter J.D. A fluorescence stopped flow analysis of Ca exchange with troponin C. -J. Biol. Chem., 1979, v. 254, N 9, p.3497−3502.
  126. Johnson J.D., Collins J.H., Robertson S.P., Potter J.D. A fluorescent probe study of Ca2+ binding to the Ca1"-specific sites of cardiac troponin and troponin C. J. Biol. Chem., 1980, v. 255, N 20, p.9635−9640.
  127. Johnson P., Smillie L.B. Rabbit skeletal -tropomyosin chains are in register. Biochem. Biophys. Res. Commun., 1975, v.64, N 4, p.1316−1322.
  128. Katayama E. Interaction of troponin I with troponin T and its fragment. J.Biochem., T979, v.85, H 5, p. T379-T38I.ox
  129. Katayama E., Nozaki S. Ca -dependent binding of synthetic peptides corresponding to some regions of troponin I to troponin C. J.Biochem., 1982, v.91, N 4, p. r449-I452.o+
  130. T49. Katazawa T. Physiological significance of Ca uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum. J.Biochem., 1976, v. 80, N 5, p. 1129−1147.
  131. Katz A.M., Doris X., Repke C.T., Cohen B.R. Control of the2+ +activity of highly purified cardiac actomyosin by Ca, Ua- and K1″. Circulation Res., T966, v. T9, H 6, p. I062-I070.
  132. Kendrick-Jones J., Szentkiralyi E.M., Szent-Gyorgyi A.G. Regulatory light chains in myosins. J.Mol. Biol., 1976, v. 104, N 4, p.747−775.
  133. Kerrick W.G.L., Hoar P.E., Malencik D.A., Stamps L., Fisher
  134. E.H. Characterization of Ca2± and Sr2±activated tension in functionally skinned chicken fibers of noimal and dyst-rophic skeletal and noimal cardiac muscle. Pfluger. Arch. 1979, v. 381, H T, p.53−62.
  135. Kilhoffer M.-C., Gerard D., Demaille J.G. Terbium binding to octopus calmodulin provides the complete sequence of ion binding. FEBS Lett., 1980, v. 120, N I", p.99−103.
  136. T56. Kitazawa T. Physiological significance of Ca uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum. J.Biochem., 1976, v. 80, U 5, P. IX29-H47.
  137. KLotz I.M. The effects of salts and proteins on thb spectra of some dyes and indicators. Chem. Rev., 1947, v. 41, N 2, p.373−399.
  138. Kohama K. Divalent cation binding properties of slow skeletal muscle troponin in comparison with those of cardiac and fast skeletal muscle troponins. J. Biochem., 1979, v. 86, N 3, p.811−820.
  139. Koretz J.F. Effects of C-protein on synthetic myosin filament structure. Biophys. J., 1979, v. 27, H 3, p.433−446.
  140. Korn E.D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol. Rev., 1982, v. 62, E 2, p.672−737.
  141. Kranias E.G., Solaro R.J. Coordination of cardiac sarcoplasmic reticulum and myofibrillar function by protein phosphorylation. Federation Proc., 1983, v. 42, N I, p.33−38.
  142. Kretsinger R.H., Barry C.D. The predicted structure of the calcium-binding component of troponin. Biochim. Biophys.
  143. Acta, 1975, v. 405, N1, p.40−52.r63. Kretsinger R.H., Nockolds C.E. Carp muscle calcium-binding protein. IT. Structure determination and general description. J. Biol. Chem., 1973, v. 243, K" 9, p.3313−3326.
  144. Kretsinger R.H., Moews P.O., Coffee C.J., Bradshaw R.A. The coordination of calcium ions by carp muscle calcium-binding protein. In: Calcium Binding Proteins. (Eds. W. Drabikowski et si.)" Warsawa-Amsterdam, T974, p.703−720.
  145. KronmanM.J., Bratcher S.C. An experimental artifact in the use of chelating metal ion buffers. Binding of chelators to bovine dL-1 act albumin. J. Biol. Chem., X983, v. 258, H 9, p.5707−5709.
  146. X66. lanerolle P., Stull J.T. Myosin phosphorylation during contraction and relaxation of tracheal smooth muscle. J. Biol. Chem., 1980, v. 255, N 20, p.9993-r0000.
  147. T67. langer G.A. Heart: Excitation-contraction coupling. Ann. Rev. Physiol., T973, v. 35, p.35−86.
  148. T68. Langer G.A. Events at the cardiac sarcolemma: localization and movement of contractile-dependent calcium. Federation Proc., 1976, v. 35, N 6, p.1274−1278.169. langer G.A. Ionic basis of myocardial contractility. Ann. Rev. Med., 1977, v. 28, p. X>20.
  149. Leavis P.C., Kraft E.L. Calcium binding to cardiac troponin C. Arch. Biochem. Biophys., 1978, v. 186, N 2, p.4H-4X5.
  150. X73. Lebowitz E.A., Cooke R. Phosphorylation of uterine smoothmuscle myosin permits actin-activation. J. Biochem., X979, v. 85, N 6, p. X489-X494.
  151. Leger J., Bouveret P., Schwartz K., Swyndghedauw B. A comparative study of skeletal and cardiac tropomyosin. Subunits, thiol group content and biological activities. Pflugers Arch., X976, v. 362, N 3, p.27X-277.
  152. X75. Lehrer S.S. Intramolecular cross-linking of tropomyosin via disulfide bond formation- Evidence for chain register. -Proc. Nat. Acad. Sci. U.S., X975, v. 72, N 9, p.3377−338X.
  153. Levine B.A., Dalgarno D.C. The dynamic and function of calcium-binding proteins. Biochim. Biophys. Acta, 1983, v. 726, N 3, p.187−204.
  154. X79. Levitsky D.O., Benevolensky D.S., Levchenko T.S., Stairnov V.N., Chazov E.I. Calcium-binding rate and capacity of cardiac sarcoplasnic reticulum. J. Mol. Cell Cardiol., X98I, v. 13, N 9, p.785−796.
  155. T80. Lewis W. G., Sbiillie L.B. The amino acid sequence of rabbit cardiac tropomyosin. J. Biol. Chem., X980, v. 255, N 14, p. 6854−6859.
  156. X8X. Lin T.I., Cassim J.V. Circural dichroic studies on the con-foiroational behaviour of troponin and tropomyosin from bovine cardiac muscle. Biochem. J., X978, v. X75, N X, p. I37-X47.
  157. X82. Lowey S., Cohen C. Studies on the structure of myosin. J. Mol. Biol., I962, v. 4, N 4, p.293−308.
  158. X83. Lowey S., Slayter H.S., Y/eeds A.G., Baker H. Substructure of the myosin molecule. I. Subfragnents of myosin by enzymic degradation. J. Mol. Biol., 1969, v. 42, N X, p. X-29.
  159. X84. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement .with the folin phenol reagent. J.Biol. Chem., 1951', v. 193, N X, p.265−275.
  160. X85. Lux S.E., Hirr R., Shrager R.I., Gotto A.M. The influence of lipid on the conformation of human plasma high density apo-lipoproteins. J.Biol. Chem., 1972, v. 247, N 8, p.2598−2606.
  161. X86. Lymn R.W., Taylor E. V7. Mechanism of adenosine triphosphatehydrolysis by actomyosin. Biochemistry, I97X, v. 10, N 25, p.4617−4624.
  162. Mak A.S., Smillie L.B. Non-polymerizable tropomyosin: preparation, some properties and F-actin binding. Biochem., Biophys. Res. Commun., X98X, v. IOX, N I, p.208−2T4.
  163. Mak A.S., Staillie L.B. Structural interpretation of the two-site binding of troponin on the muscle thin filament. J.
  164. Mol. Biol., 1981, v. 149, N 3, p.541−550.
  165. Mak A.S., Smillie L.B., Stewart G.R. A comparison of the, amino acid sequences of rabbit skeletal muscle cL and p -tropomyosin. — J.Biol.Chem., 1980, v.255, N 8, p.3647−3655.
  166. X92. McCubbin W.D., Kay C.M. Physicochemical and biological studies on the metal-induced conformational change in troponin A. Implication of carboxyl groups in the binding of calcium ion. Biochemistry, 1973, v. 12, IT 2T, p.4228−4232.
  167. X93. McCubbin Y/.D., Mani R.S., Kay C.M. Physicochemical studies on the interaction of the calcium-binding protein (troponin C) with the inhibitory protein (troponin X) and calcium ions. Biochemistry, 1974, v. X3, 1ST X3, p.2689−2694.
  168. McLachlan A.D., Stewart M. Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure. J. Mol. Hoi., 1975, v. 98, N 2, p.293−304.
  169. McLachlan A.D., Stewart M. The X4-fold periodicity in d-tropomyosin and the interaction with actin. J. Mol. Biol., X976, v. 103, N 2, p.271−298.
  170. McLachlan A.D., Stewart M. The troponin binding region of tropomyosin. Evidence for a site near residues 197−2X7. -J. Mol. Biol., 1976, v. 106, N 4, p.1017−1022.
  171. X97. Mikawa T., Toyo-oka T., Honomura T., Ebashi S. Essentialfactor of gizzard «Troponin» fraction. A new type of regulatory protein. J.Biochem., 1977, v.81, N r, p.273−275.
  172. Mikawa T., Nbnomura Y., HLrata M., Kakiuchi S. Involvementof an acidic protein in regulation of anooth muscle contraction by the tropomyosin-leiotonin system. J. Biochem., 1978, v. 84, N 6, p.1633−1636.
  173. X99. Moews P.C., Kretsinger R.H. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J.Mol. Biol., 1975, v. 9r, N 2, p.201−228.
  174. Moir A.J.G., Perry S.V. The sites of phosphorylation of rabbit cardiac troponin I by adenosine 3'sS'-cyclic monophosph-ate-dependent protein kinase. Effect of interaction with troponin C. Biochem. J., 1977, v. I67, N 2, p.333−343.
  175. Moir A.J.S., Solaro R.J., Perry S.V. The site of phosphorylation of troponin T in the perfused rabbit heart. The effect of adrenaline. Biochem. J., T980, v. 185, N 2, p.505 -513.
  176. Montarras D., FiszmanM.Y., Gros P. Characterization of the tropomyosin present in various chick embryo muscle types and in muscle cells differentiated in vitro. J. Biol. Chem., 1981, v. 256, 18, p.4081−4086.
  177. MorLmoto K., Harrington W.F. Substructure of the thick filament of vertebrate striated muscle. J.Mol. Biol., T974"v. 83, U X, p.83−97.
  178. Murray A.C., Kay C.M. Hydrodynanic and optical properties of troponin A. Demonstration of a conformational change upon binding calcium ion.-Biochemistry, 1972, v. IX, N Г4, p.2622−26 27.
  179. Nagano K., Miyamoto S., MatsumuraM., Ohtsuki I. Possible formation of a triple-stranded coiled-coil region in tropomyosin- troponin T binding complex. J. Mol. Biol., 1980, v. 14 Г, N 2, p.217−222.
  180. Nagano K., Miyamoto S., Matsumura M., Ohtsuki Г. Prediction of triple-stranded coiled-coil region in tropomyosin-troponin T complex. J. Theor. В1о1., Г982, v.94, К 4, p.743−782.
  181. Ohtsuki Г. Localization of troponin in thin filament and tropomyosin paracrystal. J.Biochem., Г974, v. 75, N 4, p.753−765.2T3. Ohtsuki I. Molecular arrangement of troponin T in the thinfilament. J. Biochem., 1979, v. 86, N 3, p.491−497.
  182. Parry D.A.D. Analysis of the amino acid sequence of a tropomyosin- binding fragment from troponin T. J. Mol. Biol., X98r, v. 146, N 2, p.259−263.
  183. Pearlstone J.R., Smillie L.B. The binding site of rabbit skeletal cL-tropomyosin on troponin T. Can. J. Biochem., 1*977, v. 55, N TO, p. T032-I038.
  184. Pearlstone J.R., Smillie L.B. Troponin T fragments: Physical properties and binding to troponin C. Can. J. Biochem. 1978, v. 56, N 6, p.52X-527.
  185. Pearlstone J.R., Smillie L.B. The binding sites of rabbitskeletal troponin I on troponin T. Can. J. Biochem., 1980, v. 58, N 8, p.649−654.
  186. Pearlstone J.R., Smillie L.B. Identification of a second binding region on rabbit skeletal troponin T for «^-tropomyosin. FEBS Lett., r98I», v. t28, N I, p. II9-T22.
  187. Pearlstone J.R., Smillie L.B. Binding of troponin T frag2+ments to several types of tropomyosin. Sensitivity to Ca T in the presence of troponin C. J. Biol. Chem., 1982, v. 257, N 18, p.10 587−10 592.
  188. Pearlstone J.R., Smillie L.B. Reevaluation of troponin Tf troponin T binding and effects of troponin I on troponin T/04.tropomyosin binding: Ca -sensitivity and cooperativity. -Biophys. J., T983, v. 41, N 2 (part 2), I06a.
  189. Pearlstone J.R., Carpenter M.R., Johnson P., Smillie L.B. Amino acid sequence of tropomyosin-binding component of rabbit skeletal muscle troponin. Proc. Nat. Acad. Sci. U.S., T976, v. 73, N 6, p.1902−1906.
  190. Pechere J.-F., Capony J.-P., Ryden L. The primary structure of the major parvalbumin from hake muscle. Eur. J. Biochem., I97T, v. 23, N 3, p.42T-428.
  191. Pepe F.A., Drucker B. The myosin filament. VI. Myosin content. J. Mol. Biol., 1979, v. T30, N 4, p.379−393.
  192. Perry S.V. The regulation of contractile activity in muscle.
  193. Biochem. Soc. Trans., 1979, v. 7, p.593−617.
  194. Perry S.V., Cole H.A. Phosphorylation of troponin and the effect of the interactions between the components of the complex. Biochem. J., T974, v. T4I, N 3, p.733−743.
  195. Perry S.V., Cole H.A., Head J.P., Wilson P.J. Localization and mode of action of the inhibitory protein component of the troponin complex. Cold Spring Harbor Symp. Quant. Biol., 1972, v. 37, p.251"-262.
  196. Phillips G.N. jr., Fillers J.P., Cohen C. Motions of tropomyosin. Crystal as metaphor. Biophys. J., 1980, v. 32,1. N I, p.485−500.
  197. Pires E.M.V., Perry S.V. Purification and properties of myosin light-chain kinase from fast skeletal muscle. Biochem. J., 1977, v. 167, N I', p. I37-r46.
  198. Pollak G.H. Cardiac pacemaking: An obligatory role of catecholamines? Science, 1977, v. T96, N 429r p.731−738.
  199. Potter J.D. The content of troponin, tropomyosin, actin and myosin in rabbit skeletal muscle myofibrils. Arch. Biochem. Biophys., T974, v. 162, N 2, p.436−44r.
  200. Potter J.D., Gergely J. Troponin, tropomyosin and actin in2+teractions in the Ca regulation of muscle contraction. -Biochemistry, 1974, v. 13, N 13, p.2697−2703.
  201. Potter J.D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosin triphosphatase. J. Biol. Chem., 1975, v. 250, N T2, p.4628−4633.
  202. Potter J.D., Johnson J.D. The effect of Mg2+ 0n Ca2+ binding to the Ca2±specific sites of troponin. Biophys. J., T979, v. 25, N 2 (part 2), 249a.
  203. Potter J.D., Seidel J.C., Leavis P.C., Lehrer S.S., Gergelyp+
  204. J. Interaction of Ca with troponin. In: Calcium Binding Proteins. (Eds. Drabikowski W. et al.), Warszawa-Amsterdam: Elsevir, 1974, p. I29-I52.
  205. Potter J.D., Seidel J.C., Leavis P., Lehrer S.S., Gergely J. Effect of Ca2*-binding on troponin C. Changes in spin lable mobility, extrinsic fluorescence and sulfhydryl reactivity. J. Biol. Chem., 1976, v. 251, N 23, p.755T-7556.
  206. Potter J.D., Fu-Juan Hsu, Pownalls H.J. Thermodynamic of Ca2±binding to troponin C. J. Biol. Chem., 1977, v. 252, N 7, p.2452−2454.
  207. Potter J.D., Robertson S.P., Johnson J.D. Magnesium and the regulation of muscle contraction.-Federation Proc., 1981, v. 40, N 12, p.2653−2656.
  208. Pragay D.A., Gergely J. Effect of tropomyosin on the polime-rization of ATP-G-actin and ADP-G-actin. Arch. Bio chem.
  209. Biophya., 1968, v. r25, H 3, p.727−733.
  210. Prendergost F.G., Potter J.D. Solution conformation and hyd-rodynamic properties of rabbit skeletal troponin T. Biophys. J., T979, v. 25, N 2 (part 2), 250a.
  211. Radda G.K. Enzyme and membrane conformation in biochemical control. Biochem. J., X97T, v. T22, N 4, p.385−396.
  212. Ray K.P., England P.J. Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase. PEBS Lett., 1976, v. 70, N T, p .11−16.
  213. Reid R. S., Hodges R.S. Co-operativity and calcium/magnesium binding to troponin C and muscle calcium binding parvalbu-min: An hypothesis. J. Theor. Biol., X980, v. 84, H 3, p.401−444.
  214. Reid R.E., Gari^py J., Saund A.K., Hodges R.S. Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. J. Biol. Chem., T98I, v. 256, N 6, p.2742−2751.
  215. Reisler E., Lin J., MercolaM., Horwitz J. The interaction of cibacron blue F3GA with troponin and its submits. Bio-chim. Biophys. Acta, 1980, v. 623, H 2, p.243−256.
  216. Rich T.L., Langer G.A. A comparison of exitation-contraction coupling in heart and skeletal muscles. An examination of calcium-induced calcium-release. J. Mol. Cell Cardiol., 1975, v. 7, N ID, p.747−765.
  217. Robertson S.P., Johnson J.D., Potter J.D. The time-courseof Ca2+ exchange with calmodulin, troponin, parvalbumin, 2+and myosin in response to transient increases in Ca. -Biophys. J., 1981, v. 34, N 3, p.559−568.
  218. Roy R.K., Potter J.D., Sarkar S. Characterization of the04.
  219. Ca -regulatory complex of chick embryonic muscles: polymorphism of tropomyosin in adult and embryonic fibers. -Biochem. Biophys. Res. Commun., 1976, v. 70, U I, p.28−36.
  220. Ruth R.C., Kennett F.F., Owens K., Weglicki W.B. Improved technique for isolation of lysosomes from myocardium. J. Mol. Cell Cardiol., T977, v. 9, IT 12, Suppl. 50.
  221. Schaub M.C., Perry S.V. The relaxing protein system of striated muscle. Resolution of troponin complex into inhibitory and calcium ion-sensitizing factors and their relationshipto tropomyosin. Biochem. J., 1969, v. 115, N 5, p.993-T004.
  222. Schaub M.C., Perry S.V., Backer W. The regulatory protein of the myofibril. Characterization and biological activity of the calcium sensitizing factor (troponin A). Biochem. J., T972, v. 126, F I, p.237−249.
  223. Schibeci A., Martonosi A. Detection of Ca -binding prote45ins on polyacrylamide gels byCa autoradiography. Anal. Biochem., T980, v. 104, N 2, p.335−342.2+ 2+
  224. Seamon K.B., Hartshorne D.J., Bothner-By A.A. Ca and Mgdependent conformations of troponin C as determined byH 19andF nuclear magnetic resonance. Biochemistry, 1977, v. T6, N 18, p.4039−4046.
  225. Sherry J.M.F., Gorecka A., Aksoy M.O., Dabrowska R., Hartshorne D. Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry, T978, v. T7, N 2T, p.44H-44I8.
  226. Sin I.L., Fernandes R., Mercola D. Direct identification of the high and low affinity calcium binding sites of troponin C. Biochem. Biophys. Res. Commun., 1978, v.82, N 4, p.1.32−1139.
  227. Smillie L.B. Structure and function of tropomyosins from muscle and non-muscle sources. Trend. Biochem. Sci., T979, v. 4, p.151−155.2+
  228. Snail J.V., Sobieszek A. Ca -regulation of mammalian smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of the 20,000 LI light chain of myosin. Bur. J. Biochem., T977, v. 76,1. H 2, p.521−530.
  229. Sobieszek A., Snail J.V. Myosin-linked calcium regulation in vertebrate smooth muscle. J. Mol. Biol., 1*976, v. 102, N I, p.75−92.
  230. Sodek J., Hodges R.S., Staille L.B., Jurasek L. Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coilstructure. Proc. Natl. Acad. Sci. U.S., 1972, v. 69, N 12, p.3800−3804.
  231. Solaro H.J., Shiner J.S. Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+: Comparison with rabbit skeletal myofibrils. Cir. Res., 1976, v. 39, N I, p.8−14.
  232. Solaro R.J., Wise R, M., Shiner J.S., Briggs P.N. Calcium requirements for cardiac myofibrillar activation. Cir. Res., 1974, v. 34, N 4, p.525−530.
  233. Solaro R.J., Moir A.J.G., Perry S.V. Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature, T976, v. 262, N 5569, p.615−616.
  234. Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometrie assay for ?0,5 to 50 |Hg of protein. Anal. Biochem., 1978, v. 86, N I, p.142−146.
  235. Srivastava S., Muhlrad A., Wikman-Goffelt J. Influence of myosin heavy chains on the Ca2±binding properties of light chain LC2. Biochem. J., 1981, v. 193, N 3, p.925−934.
  236. Staprans I., Takahashi H., Russel M.P., Watanabe S. Skeletal and cardiac troponin and their components. J. Biochem. 1972, v. 72, N 3, p.723−735.
  237. Starr R., Offer G. The interaction of C-protein with heavy meromyosin and subfragment-2. Biochem. J., 1978, v. I7T, N 3, p.813−816.
  238. Stewart M. Tropomyosin: evidence for no stagger between chains. FEBS Lett., 1975, v. 53, N I, p.5−7.
  239. Stewart M., McLachlan A.D. Structure of magnesium paracrys-tals of -tropomyosin. J. Mol. Biol., 1976, v. 103, N 2, p.251−269.
  240. Stewart M., Roberts G.C.K. Nuclear magnetic resonance evidence for a flexible region of the C-terminus of «tropomyosin. J. Mol. Biol., 1983, v. X66, N 2, p.219−225.
  241. Stone D., Smille L.B. The amino acid sequence of rabbit skeletal -tropomyosin. The NH^-terminal half and complete sequence. J. Biol. Chem., 1978, v. 253, N 4, p.1137−1148.
  242. Strehler E.E., Carlsson E., Eppenberger H.M., Thornell L.-E. Ultrastructural localization of M-band proteins in chicken breast muscle as revealed by combined immunocytochemis-try and ultramicrotomy. J. Mol. Biol., 1983, v. 166, N 2, p.141−158.
  243. Stull J.T. Phosphorylation of contractile proteins in relation to muscle function. Adv. Cycl. Nucl. Res., 1980, v. 13, p.39−93.
  244. Stull J.T., Buss J.E. Phosphorylation of cardiac troponin by cyclic adenosin 3':5f-monophoephate-dependent protein kinase. J. Biol. Chem., T977, v. 252, N 3, p.85T-857.
  245. Stull J.T., Buss J.E. Calcium binding properties of beef cardiac troponin. J. Biol. Chem., 1978, v. 253, N T7, p.5932−5938.
  246. Sutoh K. Direct evidence for the calcium-induced change in the quaternary structure of troponin in situ. Millisecond cross-linking of troponin components by a photosensitiveheterobifunctional reagent.-Biochemistry, 1980, v. 19, N 9, p. I977-I983.
  247. Sutoh K., Matsuzaki P. Millisecond photo-cross-linking ofprotein components in vertebrate striated muscle thin filaments. Biochemistry, T980, v. 19, N 16, p.3878- 388 2.
  248. Swynghedauw B., Berson G., Delcayre G., Klotz C., Leger J.J. Lacombe G., Thiem N., Schwartz K. Evidence for species-specificity of mammalian cardiac contractile proteins. J. Mol. Cell Cardiol., 1977, v. 9, N 12, Suppl. 54.
  249. Syska H., Perry S.V., Trayer I.P. A new method of preparation of troponin I (inhibitory protein) using affinity chromatography. Evidence for three different forms of troponin1. in striated muscle. FEBS Lett., 1974, v. 40. N 2, p.253−257.
  250. Syska H., Wilkinson J.M., Grand R.J.A., Perry S.V. The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. -Biochem. J., T976, v. 153, N 2, p.375−387.
  251. Szent-Gyo'rgyi A.G. Calcium regulation of muscle contraction. Biophys. J., T975, v. 15, N 7, p.707−723.
  252. Szent-Gyorgyi A.G., Szentkiralyi E.M., Kendrick-Jones J.
  253. The light chains of scallop myosin as regulatory subunits. -J. Mol. Biol., 1973, v. 74, N 2, p. T79−203.
  254. TadaM., Ohmori P., KinoshitaN., Abe H. Cyclic AMP regulation of active calcium transport across membranes of sarcoplasmic reticulum: Role of the 22,000-dalton protein phos-pholamban. Adv. Cycl. Nucleotide Res., T978, v.9, p.355−369.
  255. Takahashi K. Topography of the myosin molecule as visualized by an improved negative staining method. J. Biochem., 1978, v. 83, K 3, p.905−908.
  256. Talbot J.A., Hodges R.S. Synthetic studies on the inhibitory region of rabbit skeletal troponin I. Relationship ofamino acid sequence to biological activity. J. Biol. Chem., 1981, v. 256, N 6, p.2798−2802.
  257. Talbot J.A., Hodges R. S. Comparative studies on the inhibitory region of selected species of troponin I. The use of synthetic peptide analogs to probe structure-function relation-ships. J. Biol. Chem., 1981, v. 256, IT 23, p. X2374−12 378.
  258. TanokuraM., Tawada Y, Onoyama Y., ITakamura S., Ohtsuki I. Primary structure of chymotryptic subfragments from rabbit skeletal troponin T. J.Biochem., I981, v.90, N I, p.263−265.
  259. TanokuraM., Tawada Y., Ohtsuki T. Chymotriptic subfragments of troponin T from rabbit skeletal muscle. X. Determination of the primary structure. J. Biochem., 1982, v. 91, N 4, p. X257-I265.
  260. TanokuraM., Tawada Y., Qno A., Ohtsuki I. Chymotriptic sub-fragjnents of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin C. J. Biochem., 1983, v. 93, N 2, p.331−337.
  261. Tawada Y., Ohara H., Ooi T., Tawada K. Non-polymerizable tropomyosin and control of the superprecipitation of acto-myosin. J. Biochem., 1975, v. 78, N I, p.65−72.
  262. Tillisch J.H., Fund L.K., Horn P.M., langer G.A. Transient and steady-state effects of sodium and calcium on myocardial contractile response. J. Mol. Cell Cardiol., 1979, v. IX, IT 2, p.137−148.
  263. Toyo-Oka T., Masaki T., Okamoto J., Tanaka T. Calcium-activated neutral protease from bovine ventricular muscle: Isolation and some of its properties. J. Mol. Cell Cardiol.1979, v. II, N 8, p.769−786.
  264. Tsukui R., Ebashi S. Cardiac troponin. J. Biochem., 1973, v. 73, N 5, p.1119−1121.
  265. Tufty R.M., Kretsinger R.H. Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme. Science, 1975, v. 187, p.167−169.
  266. Ueno H. Binding of troponin components to tropomyosin fragments. J. Biochem., 1978, v. 84, N 4, p. X009-I0l2.
  267. Vandekerckhove J., Weber K. At least six different actins are expressed in higher mammal: An analysis based on the amino acid sequence of the amino-terminal tryptic peptide.-J. Mol. Biol., 1978, v. 126, N 4, p.783−802.
  268. Vandekerckhove J. Weber K. The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. Differentiation, 1979, v. 14, N I, p.123−133.2+
  269. Van Eerd J."P., Kawasaki Y. Ca induced conformational changes in the Ca2+ binding component of troponin. Biochem. Biophys. Res. Commun., 1972, v. 47, N 4, p.859−865.
  270. Van Eerd J.-P., Kawasaki Y. Effect of calcium (II) on the interaction between the subunits of troponin and tropomyosin. Biochemistry, 1973, v. 12, N 24, p.4972−4980.p.
  271. Van Eerd J.-P., Kawasaki Y. The effect of Ca + on the organization of the troponin-tropomyosin system. In: Calcium Binding Proteins. (Eds. Drabikowski W. et al.), Warszawa-Amsterdam, Elsevir, 1974, p. I53-I77.
  272. Van Eerd J.-P., Takahashi K. The amino acid sequence of bovine cardiac troponin C. Comparison with skeletal troponin
  273. С. Biochem. Biophys. Res. Comrnun., 1975, v.64, Н I, p.122-Г27.31Г. Van Eerd J.-P., Takahashi K. Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry, Г976, v. 15, N 5, р. Т171-ТГ80.
  274. Van Eerd J.-P., Capony J.-P., Pechere J.-P. Amino acid sequence of frog skeletal troponin C. In: Calcium Binding Proteins and Calcium Function. (Eds Wasserman R.H. et al.), N.-Y., North-Holland, 1977, p.232−238.
  275. Vesterberg 0., Mansen L., Sjosten A. Staining of proteins after isoelectric focusing in gels by new procedure. Bio-chim. Biophys. Acta, 1977, v. 491, N I, p. l6o-l66.
  276. Villar-Palasi C., Kumon A. Purification and properties of dog cardiac troponin T kinase. J. Biol. Chem., Г981, v. 256, N 14, p.7409−7415.
  277. Т., Шх1еу H.E., Amos L.A., Klug A. Three-dimensional image reconstruction of actin-tropomyosin complex and actin-tropomyosin-troponin T-troponin Г complex. J. Mol. Biol., 1975, v. 93, N 4, p.477−497.
  278. Wall C.M., Grand R.J.A., Perry S.V. Biological activitiesof the peptides obtained by digestion of troponin С and calmodulin with thrombin. Biochem. J., Г981, v. 195, N Г, p.307−316.
  279. Walsh D.A., Clippinger M.S., Sivaramakrishnan S., McCullo-ugh Т.Е. Cyclic adenosin monophosphate dependent and independent phosphorylation of sarcolemma membrane proteins in perfused rat heart. Biochemistry, Г979, v. 18, N 5, p.87I-877.
  280. Walsh M.P., Vallet В., Antric P., Demaille J.G. Purificationand characterization of bovine cardiac calmodulin-dependent myosin light chain kinase. J. Biol. Chem., T979, v. 254, N 23, p.12 136−12 144.
  281. Walsh M.P., Vallet B., Cavador J.-C., Demaille J.G. Homologous calcium-binding proteins in the activation of skeletal cardiac and smooth muscle myosin light chain kinases. J. Biol. Chem., 1980, v. 255, N 2, p.335−337.
  282. Wang C.-L.A., Tao T., Gergely J. The distance between the high affinity sites of troponin C measured by interlantha-nide ion energy transfer. J. Biol. Chem., 1982, v. 257, N 14, p.8372−8375.
  283. Watterson D.M., Sharief P., Vanaman T.C. The complete amino2+acid sequence of the Ca -dependent modulator protein (calmodulin) of bovine brain. J. Biol. Chem., 1980, v. 255, N 3, p.962−975.
  284. Weber A., Murray J.M. Molecular control mechanisms in muscle contraction. Physiol. Rev., T973, v.53, N 3, p.612−673.
  285. Weber K., Osborn M. The realibility of molecular weight determination by dodecylsulfate gel electrophoresis. J. Biol. Chem., 1969, v. 244, N 16, p.4406−4412.
  286. Weeds A.G. Light chains of myosin. Nature, T969, v. 223, N 5213, p. I362.
  287. Weeds A.G., Prank G. Structure studies on the light chains of myosin. Cold Spring Harbor Symp. Quant. Biol., T973, v. 37, p.9−14.
  288. Weeds A.G., Lowey S. Substructure of the myosin molecule. II. The light chains of myosin. J. Mol. Biol., 1971, v.61, N 3, p.701−725.
  289. Weeds A.G., McLachlan A.D. Structural homology of myosin alkali light chains, troponin C and carp calcium binding protein. Nature, 1974, v. 252, p.646−649.
  290. Weeds A.G., Wagner P., Jakes R., Kendrick-Jones J. Structure and function of myosin light chains. In: Calcium Binding Proteins and Calcium Function. (Eds. Wasserman R.H. et al.), N.-Y., North-Holland, 1977, p.222−231.
  291. Weeks R.A., Perry S.V. A region of the troponin C molecule involved in interaction with troponin I. Biochem. Soc. Trans., 1977, v. 5, N 5, p.1391−1392.
  292. Weeks R.A., Perry S.V. Characterization of a region of the primary sequence of troponin C involved in calcium-ion-dependent interaction with troponin T, Biochem. J., 1978, v. 173, N 2, p.449−457.
  293. Wilkinson J.M. The preparation and properties of the components of troponin B. Biochim. Biphys. Acta, 1974, v. 359, N 2, p.370−388.
  294. Wilkinson J.M. The amino acid sequence of troponin C from chicken skeletal muscle. PEBS Lett., 1976, v. 70, N I, p.254−256.
  295. Wilkinson J.M. The components of troponin from chicken fast skeletal muscle. A comparison of troponin T and troponin 1 from breast and leg muscle. Biochem. J., 1978, v. I69,1. N I, p.229−238.
  296. Wilkinson J.M. Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur. J. Biochem., 1980, v. 103, N I, p.179−188.
  297. Wilkinson J.M., Grand R.J.A. The amino acid sequence of troponin I from rabbit skeletal muscle. Biochem. J., 1975, v. 149, N 2, p.493−496.
  298. Wilkinson J.M., Grand R.J.A. Comparison of amino acid sequence of troponin I from different striated muscles. Nature, 1978, v. 271, p.31−35.
  299. Wilkinson J.M., Perry S.V., Cole H.A., Trayer I.P. The regulatory proteins of the myofibril. Separation and biological activity of the components of inhibitory factor preparations. Biochem. J., 1972, v. 127, N I, p.2T5−228.
  300. Wolf D.J., Poirier P.G., Brostrom C.O., Brostrom M.A. Divalent cation binding properties of bovine brain Ca2±depen-dent regulator protein. J. Biol. Chem., 1977, v. 252,1. H 12, p.4108−4117.
  301. Wollenberger A., Will H. Protein kinase-catalyzed membrane phosphorylation and its possible relationship to the role of calcium in the adrenergic regulation of cardiac contraction. Life Science, 1978, v. 22, p.1159−1178.
  302. Yagi K., Yazawa M., Kakiuchi S., OhshimaM., Uenishi K. rdentification of an activator protein for myosin light cha2+in kinase as the Ca -dependent modulator protein. J. Biol. Chem., 1978, v. 253, N 5, p. r338-I34o.
  303. Yamamoto K., Maruyama K. Interaction of troponin I and tropomyosin. J. Biochem., 1973, v. 73, N 5, p. IIII-III4.
  304. Yamamoto K., Ohtsuki I. Effect of phosphorylation of porcine cardiac troponin I by 3':5'-cyclic MP-dependent protein kinase on the actomyosin ATPase activity. J. Biochem., 1982, v. 91, N 5, p.1669−1677.
  305. Zot H.G., Potter J.D. A structural role for the Ca, Mg-sites on troponin C in the regulation of muscle contraction. Preparation and properties of troponin C depleted myofibrila. J. Biol. Chem., Г982, v. 257, N 13, р.7б78−7б83.
Заполнить форму текущей работой