Помощь в написании студенческих работ
Антистрессовый сервис

Структура и свойства полианилина и интерполимерных комплексов на его основе

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Основными целями настоящей работы являлись: разработка химических и электрохимических методов синтеза интерполимерных комплексов полианилина с полиамидосульфокислотами различного строения с улучшенными физико-химическими характеристикамиисследование влияния химического строения полиамидосульфокислоты на процесс полимеризации полианилина, структуру и свойства образующихся интерполимерных… Читать ещё >

Структура и свойства полианилина и интерполимерных комплексов на его основе (реферат, курсовая, диплом, контрольная)

Содержание

  • Актуальность проблемы
  • Цели и задачи исследования
  • Научная новизна
  • Основные положения, выносимые на защиту
  • Практическая значимость работы
  • Личный вклад автора
  • Апробация работы
  • ГЛАВА. ПРОВОДЯЩИЕ ПОЛИМЕРЫ (ПОЛИАНИЛИН)
    • 1. 1. Основные этапы исследования проводящих полимеров и полианилина
    • 1. 2. Номенклатура полианилина в различных степенях окисления
    • 1. 3. Редокс-переходы в полианилине
    • 1. 4. Блочная структура полианилина в промежуточных степенях окисления
    • 1. 5. Электрохимические свойства полианилиновых слоев

5.2. Измерения проводимости полианилиновых слоев in situ 219.

5.3. Влияние вторичного допирования на электрическую проводимость ПАН 226.

5.4. Проводимость полианилина и структурная упорядоченность 228.

5.5.Теоретические оценки предельной проводимости полианилина 237 5.5. Экспериментальная реализация высокопроводящего состояния полианилина 239.

ВЫВОДЫ 247.

ЛИТЕРАТУРА

249.

Актуальность проблемы.

После работы (Shirakawa Н. et. al., 1977), в которой сообщалось об увеличении проводимости свободных пленок полиацетилена до 103 См/см при допировании галогенами, начался новый период развития науки о полимерных проводниках. Интерес к исследованиям проводящих полимеров во многом обусловлен возможностями их применения в различных областях науки и техники. По сравнению с другими проводящими полимерами полианилин имеет ряд преимуществ, обусловленных низкой стоимостью сырья и более высокой химической устойчивостью по отношению к воздействиям окружающей среды и т. п. В то же время большое значение имеют исследования различных свойств полианилина, отражающих его сложную внутреннюю организацию. В теоретическом и практическом плане большой интерес представляют различные способы синтеза и получения тонких слоев полианилина: матричный (темплатный) синтез, вакуумное напыление и получение тонких слоев методами самосборки. Они позволяют получать полианилин в высокодисперсном виде, растворимый в водных, водно-органических растворах, обычных органических растворителях, а также наносить тонкие слои полианилина на проводящие и непроводящие поверхности различной природы и формы. Химическая и электронная структура полиналина оказывают определяющее влияние на весь комплекс его физико-химических свойств. Наиболее удобными и информативными методами исследования структуры полианилина и ее превращений являются методы оптической спектроскопии. Ценность результатов, полученных с помощью этих методов, многократно возрастает при использовании адекватного анализа экспериментальных данных, позволяющих получать объективную информацию о количестве индивидуальных компонент, их расположении в спектре и форме индивидуальных линий. Результаты такого анализа могут быть успешно использованы для проведения дифференциальных вольтабсорбометрических измерений, которые, в отличие от обычных потенциодинамических измерений, позволяют осуществлять объективный контроль за кинетикой изменения концентрации отдельных компонентов системы при разных потенциалах и полностью исключить влияние токов заряжения. Особое внимание следует уделять гетерогенным редокс-структурам. Этим термином определяются образования, возникающие в области контакта участков с различной степенью окисления, оказывающие сильное влияние на весь комплекс их физико-химических (в частности, электрических, оптических и магнитных) свойств. Вместе с тем, до недавнего времени этой проблеме не уделялось должного внимания. Несмотря на большое число работ по проводимости полианилина ее не удавалось поднять до величины, достигнутой для полиацетилена. Это обусловлено сложностью структурной организации полианилиновых слоев и, в частности, тем обстоятельством, что величина электропроводности зависит не только от степени структурной упорядоченности полианилина, но и от характера пространственного распределения областей с различной степенью окисления на разных уровнях структурной организации. Перспективы практического использования полианилиновых слоев во многом связаны с их применением в качестве электрических проводников и проводящих покрытий, в электрохимических источниках тока, в электрохромных и электролюминесцентных устройствах отображения информации, в системах модуляции электромагнитного излучения в широком (в том числе, оптическом) спектральном диапазоне, в качестве элементов сенсоров и детекторов различного рода, каталитических агентов и т. п.

Разрабатываемая тема была включена в планы научно-исследовательских работ Института электрохимии им. А. Н. Фрумкина и Института физической химии и электрохимии им. А. Н. Фрумкина Российской Академии наук. Работа была поддержана Российским фондом фундаментальных исследований: гранты РФФИ 99−03−32 077, РФФИ 00−381 180 Бела, РФФИ 02−03−33 254, РФФИ 02−03−81 102 БелаМеждународным фондом научно-технологических исследований (МНТЦ): проект 015, проект 872, проект 2207. Цели и задачи исследования.

Основными целями настоящей работы являлись: разработка химических и электрохимических методов синтеза интерполимерных комплексов полианилина с полиамидосульфокислотами различного строения с улучшенными физико-химическими характеристикамиисследование влияния химического строения полиамидосульфокислоты на процесс полимеризации полианилина, структуру и свойства образующихся интерполимерных комплексовисследование процесса вакуумного термического напыления полианилина и изучение свойств напыленных полианилиновых слоевизучение химической и электронной структуры полианилина методами оптической спектроскопии, спектроэлектрохимическими и другими методамиисследование в полианилине промежуточных степенях окисления пространственного распределения областей с различными степенями окисления на разных уровнях структурной организации полимера и его влияния на проводимость полианилиновых слоевразработка методов увеличения проводимости полианилиновых слоев за счет регулирования степени окисления полианилина и характера ее пространственного распределения на различных уровнях структурной организациииспользование полианилиновых слоев в полимерных светодиодах, электрохромных устройствах, детекторах разнообразного назначения и т. п.

Научная новизна исследования.

Экспериментально установлено существование многоуровневой редокс-гетерогенности в промежуточных степенях окисления полианилина на молекулярном, нано-, микрои макроуровнях, связывающее формирование редокс-гетерогенных структур с нелинейным, автокаталитическим характером реакций окисления анилина и полианилина.

Исследован процесс получения тонких слоев полианилина при вакуумном термическом напылении соли и основания эмеральдина. При этом была впервые установлена блочная структура полуокисленного состояния полианилина, включающего хинониминные и аминные блоки различной длины от 4 до 16 мономерных единиц.

Установлено, что ресурсные характеристики напыленных слоев полианилина при цитировании анодного потенциала выше, чем у пленок, полученных с помощью традиционных методов вследствие ограниченной рекомбинации катион-радикалов, образующихся на первой стадии окисления, до хиноиминных структур.

Впервые показано, что методом межфазного допирования полианилина при контакте с тонкой пленкой золота достигается удельная проводимость полианилина ~ 105 См/см.

Разработана методика синтеза и синтезированы интерполимерные комплексы полианилина с полиамидосульфокислотами различного химического строения с различной степенью жесткости полимерного остова, показано влияние этих факторов на физико-химические свойства интерполимерных комплексов.

Установлено, что в пленках интерполимерных комплексов полианилина и поли-(2-акриламидо-2-метил-1-пропан-сульфоновой кислоты) состава 1:1 могут формироваться оптически активные области без использования оптически активных низкомолекулярных добавок.

Разработан метод определения вирусов гриппа, основанный на иммобилизации комплексов антиген-антитело слоями интерполимерных комплексов полианилина и поли-(2-акриламидо-2-метил-1-пропан-сульфоновой кислоты и их визуализации с помощью нематических жидких кристаллов.

Основные положения, выносимые на защиту.

Установлено существование в полианилине в промежуточных степенях окисления многоуровневых гетерогенных редокс-структур от молекулярного вплоть до макроскопического уровня, оказывающих сильное влияние на его физико-химические свойства.

Показано формирование в полуокисленном полианилине блочной редокс-струкгуры на молекулярном уровне, состоящей из аминных и хинониминных блоков с размерами отдельных блоков от 4 до 16 мономерных единиц.

С помощью метода межфазного допирования осуществлено увеличение удельной проводимости полианилинового слоя вплоть до уровня проводимости высокопроводящих металлов.

Проведен синтез интерполимерных комплексов полианилина с полиамамидосульфокислотами различного строения и исследовано влияние химической структуры поликислот на свойства формирующихся комплексов полианилина.

Экспериментально показана возможность формирования в пленках интерполимерных комплексов полианилина областей, обладающих оптической активностью без использования оптически активных добавок. Практическая значимость работы.

Методы матричного синтеза полианилина отличаются высокой скоростью процесса и высоким выходом конечного продукта. При надлежащем выборе матрицы физико-механические свойства синтезированного полианилина существенно превосходят по основным свойствам полученный стандартным способом полианилин. Метод матричного синтеза полианилина при низких концентрациях реагентов позволил получать стабильные высокодисперсные водные и водно-органические растворы интерполимерных комплексов полианинилина. С использованием тонких слоев матрично синтезированного полианилина и пленок жидких кристаллов был впервые разработан метод детектирования вирусов на примере вирусов гриппа, основанный на анализе образующихся при этом структур под микроскопом в поляризованном свете (Патент РФ 2 290 444, 2006 г.). Разработан метод вакуумного термического напыления полианилина для нанесения однородных тонких полианилиновых слоев сложной конфигурации, включающей большое число элементов разных размеров, на поверхности различной природы. Регулирование проводимости полианилиновых слоев методом межфазного допирования может быть использовано для изготовления полимерных электронных проводников с проводимостью, отвечающей уровню вырожденных полупроводников и высокопроводящих металлов, а также для создания электронных устройств нового типа. Слои интерполимерных комплексов полианилина были использованы для изготовления высокоэффективных электролюминесцентных диодов (патент РФ № 2 261 890, 2003 г.). Личный вклад автора.

Личный вклад диссертанта состоит в формулировке научных проблем и выборе основных направлений исследований, разработке методик проведения экспериментов и их аппаратурного оформления, автор также принимал непосредственное участие в проведении экспериментов, обсуждении их результатов и их оформлении в виде разного рода публикаций и докладов.

Основные результаты, представленные в диссертации, получены в соавторстве с А. В. Ванниковым, А. А. Некрасовым, О. Л. Грибковой, которым автор выражает особую благодарность. Автор также глубоко благодарен соавторам В. А. Тверскому, М. Ю. Яблокову, И. В. Яминскому,.

Г. Б. Мешкову и М. Г. Томилину за плодотворное сотрудничество.

Апробация работы.

Основные результаты были представлены в виде докладов (устных и стендовых) на российских и международных научных конференциях:

1. А.А. Nekrasov, V.F. Ivanov, O.L. Gribkova and A.V. Vannikov, «Analysis Of Electronic Structure Of Polyaniline On The Base Of Spectroelectrochemical Data», Proceedings of the 50th Meeting of the International Society of Electrochemistry, September 5−10,1999, Pavia, Italy.

2. V.F. Ivanov, O.L. Gribkova, A.A. Nekrasov, and A.V. Vannikov, «On the nature of heterogeneity in vacuum deposited polyaniline films», Abstracts of the Fall Meeting of the Materials Research Society, November 29 — December 3, 1999, Boston, USA.

3. V.F. Ivanov, O.L. Gribkova, A.A. Nekrasov, A.V. Vannikov, and V.A. Tverskoj, «Quick-response all-solid-state electrochromic device based on polyaniline and W03», Abstracts of the Fall Meeting of the Materials Research Society, November 29 — December 3,1999, Boston, USA.

4. V.F. Ivanov, O.L. Gribkova, A.A. Nekrasov, A.V. Vannikov, and V.A. Tverskoj, «Quick-response all-solidstate electrochromic device based on polyaniline and W03», Abstracts of the Fall Meeting of the Materials Research Society, November 29 — December 3,1999, Boston, USA, Abst. BB 3.2, p.487.

5. A.A. Nekrasov, V.F. Ivanov, and A.V. Vannikov, «Effect of pH on the structure of polyaniline absorption spectra analyzed by Alentsev-Fock method», Abstracts of the 3rd International Workshop on Electrochemistry of Electroactive Polymer Films, Poraj, Poland, September 9−14,2000.

6. A.A. Nekrasov, V.F. Ivanov, and A.V. Vannikov, «Comparative cyclic voltabsorbometric study of polyaniline films prepared by different methods using separated individual absorption bands», Abstracts of the 51st Annual Meeting of The International Society of Electrochemistry, September 3−8, 2000 Warsaw.

7. A.A. Nekrasov, V.F. Ivanov, O.L. Gribkova and A.V. Vannikov, «Analysis Of Electronic Structure Of Polyaniline On The Base Of Spectroelectrochemical Data», Abstracts of the 50th Meeting of the International Society of Electrochemistry, September 5−10,1999, Pavia, Italy, Symp. 3b, Abst. No. 484.

8. V.F. Ivanov, A.A. Nekrasov, K.V. Cheberyako, O.L. Gribkova, and A.V. Vannikov, «On the nature of heterogeneity in vacuum deposited polyaniline films», Abstracts of the Fall Meeting of the Materials Research Society, November 29 — December 3,1999, Boston, USA, Abst. FF 6.9, p.576.

9. V.F. Ivanov, O.L. Gribkova, A.A. Nekrasov, A.V. Vannikov, and V.A. Tverskoj, «Quick-response all-solidstate electrochromic device based on polyaniline and W03», Abstracts of the Fall Meeting of the Materials Research Society, November 29 — December 3,1999, Boston, USA, Abst. BB 3.2, p.487.

10. K.V. Cheberyako, V.F. Ivanov, A.A. Nekrasov, A.V. Vannikov, «Heterogeneous structure of thin polyaniline films», 2nd All-Russian Kargin Symposium «Polymer Chemistry and Physics at the Beginning of XXI century», May 29−31, 2000, Chernogolovka, Part 2, C4−71.

11. V.F. Ivanov, Formation of the heterogeneous structure on the vacuum deposited polyaniline films, International Conference on Science and.

Technology of Synthetic Metals (ISCM'2000), July 15−21, 2000, Gastein, Austria.

12. V.F. Ivanov, A.A. Nekrasov, A.V. Tverskoj, A.V. Vannikov, «Polymer all-solid electrochromic element» (extended abstract), Abstracts of the 9th International Symposium «Advanced Display Advanced Display Technologies», October 1012, 2000, Moscow, Russia, pp. 55−57.

13. V.F. Ivanov, K.V. Tcheberiako, A.N. Nekrasov and A.V. Vannikov, «Heterogeneity in polyaniline films», Abstracts of the 199th Meeting of the Electrochemical Society, March 25−29,2001, Washington, USA, Abst. 1077.

14. V.F. Ivanov, A.A. Nekrasov, K.V. Cheberjako and A.V. Vannikov, «Hierarchy of Heterostructures in the Vacuum Deposited Polyaniline Films» NATO Advanced Science Institute «Chemical Physics of Thin Film Deposition Processes for Microand Nano-Technologies», 3−14 сентября 2001 г., Каунас, Литва.

15. В. Ф. Иванов, А. А. Некрасов, А. В. Ванников, А.С. Поседько*, С.И. Лишик*, Ю.В. Трофимов* «Сенситометрические характеристики твердотельного фотоэлектрохромного элемента для электрохромного дисплея со световой адресацией», 18−21 сентября 2001 г. Конференция SID 2001, Минск.

16. A. Nekrasov, V.F. Ivanov, O.L. Gribkova, A.V. Vannikov «Voltabsorptometric study of cation-radical/quinoid transitions in polyaniline in the presence of different counter anions», Abstracts of 53rd Meeting of The International Society of Electrochemistry, September 15−20, 2002, Dusseldorf, Germany, p. 368.

17. V.F. Ivanov, A.A. Nekrasov, K.V. Tcheberiako, O.L. Gribkova, A.V. Vannikov, Polyaniline films: structural aspects Book of abstracts Spectroelectrochemistry of conducting polymers October 19−23, 2002 Hotel «Uzkoe» Moscow, Russia p. 33−34.

18. V.F. Ivanov, A.A. Nekrasov, K.V. Tcheberiako, O.L. Gribkova, A.V. Vannikov, V.A. Tverskoj, Polyaniline matrix synthesis on poly-(2-acrylamido-1-propansulfoacid) Book of abstracts Spectroelectrochemistry of conducting polymers October 19−23, 2002 Hotel «Uzkoe» Moscow, Russia p. 85−86.

19. A.A. Nekrasov, V.F. Ivanov, O.L. Gribkova, A.V. Vannikov, On the Role of Cation-Radical Dimers in the Redox Transitions in Polyaniline as Studied by Derivative Cyclic Voltabsorptometry in the Presence of Different Counter Anions Book of abstracts Spectroelectrochemistry of conducting polymers October 19−23,2002 Hotel «Uzkoe» Moscow, Russia p. 93−94.

20. V.F. Ivanov, A.A. Nekrasov, K.V. Tcheberiako, A.V. Vannikov, All-Solid Photoelectrochromic Element for The Matrix Light Addressable Display Book of abstracts Spectroelectrochemistry of conducting polymers October 19−23, 2002 Hotel «Uzkoe» Moscow, Russia p. 115−116.

21. R.Zh. Brinetskaya V.F. Ivanov K.V. Tcheberiako V.A. Tverskoj Yu.A. Fedotov, Template Synthesis of Polyaniline on Polymeric Aromatic Sulfonic Acids Book of abstracts Spectroelectrochemistry of conducting polymers October 19−23,2002 Hotel «Uzkoe» Moscow, Russia p. 117−118.

22. Чеберяко K.B., В. Ф. Иванов, A.A. Некрасов, A.B. Ванников, «Гетерогенная структура тонких слоев полианилина», Второй Каргинский.

Симпозиум «Химия и физика полимеров в начале XXI века» Часть 2-я С4−71.

23. Ivanov V.F., Gribkova O. L, Nekrasov A.A., Vannikov A.V. «Multilevel Redox Heterogeneity In Polyaniline Films: From Molecular To Macroscopic Scale», Abstracts of Spring Meeting of the European Material Research Society, 2003, Strasbourg, France, Abstract A-P1−75. Strasbourg E-MRS 2003.

24. Tomilin M.G., Ivanov V.F., LC vision: new application to conductive polymer structure investigation. Abstacts of 7th ECLC-2003, Jaca, Spain, 2003, p.162.

25. В. Ф. Иванов, А. А. Некрасов, O.A. Грибкова, А. А. Исакова, А. В. Ванников, М. Ю. Яблоков, И. В. Яминский, «Многоуровневая редокс-гетерогенность в полианилиновых слоях», Тезисы 3-ей Всероссийской Каргинской конференции «Полимеры-2004», 27 января -1 февраля 2004 г., Москва, т. 1, с. 195.

26. Грибкова О. Л., Иванов В. Ф., Исакова А. А., Некрасов А. А., Ванников А. В., Бринецкая Р. Ж., Тверской В. А., «Матричный синтез полианилина в присутствии полиамидосульфокислот различного строения», Тезисы 3-ей Всероссийской Каргинской конференции «Полимеры-2004», 27 января — 1 февраля 2004 г., Москва, т. 1, с. 62.

27. Некрасов А. А., Иванов В. Ф., Грибкова О. Л., Ванников А. В., «Образование димеров катион-радикалов в процессе электрохимического окисления-восстановления полианилина в растворах различных кислот», Тезисы 3-ей Всероссийской Каргинской конференции «Полимеры-2004», 27 января — 1 февраля 2004 г., Москва, т. 1, р. 330.

28. Яблоков М. Ю., Иванов В. Ф., Грибкова О. А., Ванников А. В., «Оптическая активность тонких слоев полиамидосульфокислот и их интерполимерных комплексов с полианилином, полученным методом матричной полимеризации», Тезисы 3-ей Всероссийской Каргинской конференции «Полимеры-2004», 27 января -1 февраля 2004 г., Москва, т. 1, р.424.

29. V.F. Ivanov, O.L. Gribkova, S.V. Novikov, A.A. Nekrasov, A.A. Isakova, M.Yu. Yablokov, A.V. Vannikov «Redox heterogeneity in polyaniline films: from molecular to macroscopic scale», Book of Abstracts of the International Conference on the Science and Technology of Synthetic Metals (ICSM'04) June 28 — July 2,2004, Wollongong, Australia, p.31.

30. O.L. Gribkova, V.F. Ivanov, A.A. Isakova, A.A. Nekrasov, A.V. Vannikov, «Interpolymer complex of polyaniline and poly-(2-acrylamido-2-methyl-1-propanesulfonic acid): spectroelectrochemical behavior», Book of Abstracts of the 55th Annual Meeting of the International Society of Electrochemistry, 19−24 September 2004 Thessaloniki, Greece, V. II, p.1033.

31. Victor Ivanov, Mikhail Yablokov, Oxana Gribkova, Aleksandra Isakova, Anatoly Vannikov. Induced optical activity of polyaniline interpolymer complexes and their use in virology and medicine. European Polymer Congress 2005, Moscow, P2.2−7.

32. Victor Ivanov, Oxana Gribkova, Aleksandra Isakova, Alekxander Nekrasov, Anatoly Vannikov, Georgiy Meshkov, Igor Yamisky. Redox heterogeneity of polyaniline at various scales: structure and properties. European Polymer Congress 2005, Moscow, 0.2.3−6.

33. Victor Ivanov, Oxana Gribkova, Alexandr Nekrasov, Alexandra Isakova, Anatoly Vannikov, Marina Guseva, Vladimir Tverskoj. Template synthesis of polyaniline on the various types polyamidosulphonic acids. European Polymer Congress 2005, Moscow P1.4−18.

34. Alexander Nekrasov, Victor Ivanov, Oxana Gribkova, Anatoly Vannikov. Investigation of the redox processes in polyaniline by cyclic voltabsorptometry. European Polymer Congress 2005, Moscow.

35. S.V. Novikov, V.F. Ivanov, and A.V. Vannikov. Simulation of the formation of conductive network in polyaniline during oxidation. Eueropean Polymer Congress 2005, Moscow.

36. О. Л. Грибкова, В. Ф. Иванов, A.A. Исакова, A.B. Ванников. Межд. конференция, посвященная 60-летию создания Института физической химии РАН. Электрохимический синтез полианилина в присутствии поли (2-акриламидо-2-метил-1-пропансульфокислоты). Физико-химические основы новейших технологий. Сб. тезисов. Том 1. Часть 2. 2005. Стр. 223.

37. А. А. Некрасов, В. Ф. Иванов, О. Л Грибкова, А. В. Ванников. Межд. конференция, посвященная 60-летию создания Института физической химии РАН. Исследование процесса электрохимического окисления-восстановления полианилина в растворах различных кислот методом циклической вольтабсорптометрии. Физико-химические основы новейших технологий. Сб. тезисов. Том 1. Часть 2. 2005. Стр. 224.

38. В. Ф. Иванов, A.A. Некрасов, О. Л. Грибкова А.А. Исакова, А.В., Межд. конференция, посвященная 60-летию создания Института физической химии РАН. Ванников. Редокс-гетерогенность полианилина на различных уровнях структурной организации. Физико-химические основы новейших технологий. Сб. тезисов. Том 1. Часть 1. 2005. Стр. 270.

39. Г. Б. Мешков, В. Ф. Иванов, И. В. Яминский, Межд. конференция, посвященная 60-летию создания Института физической химии РАН, 30 мая-4 июня, Сканирующая резистивная микроскопия проводящих полимеров Физико-химические основы новейших технологий. Сб. тезисов. Том 1. Часть 1. 2005. Стр. 335.

40. В. Ф. Иванов, М. Ю Яблоков, О. Л. Грибкова, А. А. Исакова, А. В. Ванников. Межд. конференция, посвященная 60-летию создания Института физической химии РАН. Оптическая активность интерполимерных комплексов полианилина. Физико-химические основы новейших технологий. Сб. тезисов. Том 1. Часть 1.2005. Стр. 338.

41. А.А. Nekrasov, V.F. Ivanov, O.L. Gribkova, A.A.Isakova, M.A. Guseva, V.A. Tverskoi, A.V. Vannikov, Spectroelectrochemical and morphological studies of nano-structured polyaniline films synthesized in the presence of polyamidosulfonic acids of different nature. Abstracts of the 207th Meeting of the Electrochemical Society, May 15 — May 20, 2005, Quebec City, Canada, Abst. No.1712.

42. V.T. Ivanova, R.O. Rakutina, E.I. Bourtseva, L.V. Kordyukova, V.F. Ivanov, T.A. Oskerko, A.N. Slepushkin. Influenza Viruses In Russia In Epidemic.

Season 2004;2005. Advanced Methods Of Virus Investigations. 3rd Ortomyxovirus Research Conference, July 28th-31st 2005, Queens' College, Cambridge UK. Poster 23.

43. O.L. Gribkova, V.F. Ivanov, A.A. Isakova, A.A. Nekrasov, A.V. Vannikov. Spectroelectrochemical behavior of polyaniline films synthesized in the presence of polyamidosulfonic acids of various nature. Teodor Grotthuss Electrochemistry Conference, Vilnus June 5−8,2005. Book of Abstracts, p. 1.

44. О. Л. Грибкова, A.A. Исакова, В. Ф. Иванов, A.A. Некрасов, A.B. Ванников, Матричный химический и электрохимический синтез полианилина и свойства слоев на его основе. Материалы II Международной научно-технической конференции: Полимерные композиционные материалы и покрытия. 2005,17−19 мая, Ярославль, Сб. тезисов. Стр.306−308.

45. O.L. Gribkova, V.F. Ivanov, A.A. Isakova, A.A. Nekrasov, A.V. Vannikov, Spectroelectrochemical behaviour of polyaniline films synthesized in the presence of polyamidosulfonic acids of different nature, Abstracts of the 8th International Frumkin Symposium «Kinetics of electrode processes», 18−22 October, 2005, Moscow, p.196.

46. V.F. Ivanov, M.Yu. Yablokov, O.L. Gribkova, A.A. Isakova, A.V. Vannikov, Optical activity of interpolymer complexes of polyaniline, Abstracts of the 8th International Frumkin Symposium «Kinetics of electrode processes», 18−22 October, 2005, Moscow, p.202.

47. V.F. Ivanov, O.L. Gribkova, A.A. Nekrasov, A.A. Isakova, A.V. Vannikov, Redox heterogeneity and conductivity in polyaniline films, Abstracts of the 8th International Frumkin Symposium «Kinetics of electrode processes», 18−22 October, 2005, Moscow, p.201.

48. A.A. Nekrasov, V.F. Ivanov, O.L. Gribkova, A.V. Vannikov, Comparative voltabsorptometric study of the redox behavior of polyaniline films prepared by different variants of template synthesis in the presence of polyamidosulfonic acids. Abstracts of the 8th International Frumkin Symposium «Kinetics of electrode processes», 18−22 October, 2005, Moscow, p.220.

49. V.F. Ivanov, O.L. Gribkova, A.V. Vannikov, Hyperconductivity in polyaniline?, International Conference on Synthetic Metals, Dublin, Ireland, 1−7 July, 2006.

50. O.L. Gribkova, V.F. Ivanov, A.A. Nekrasov, A.A. Isakova, A.V. Vannikov, M.A. Guseva, V.A. Tverskoj, Electrochemical and Chemical Synthesis of Polyaniline in the Presence of Polysulfonic Acids of Various Nature and Spectroelectrochemical Characterization of the Prepared Films. International Workshop on Electrochemistry of Electroactive Materials, WEEM — 2006, Saint-Petersburg Region, Repino, June 24−29 June, 2006.

51. O.L. Gribkova, V.F. Ivanov, A.A. Isakova, A.A. Nekrasov, A.V. Vannikov, G.B. Meshkov, I.V. Yaminsky, Nanoobjects of Interpolymer Complexes of Polyaniline and Polysulfonic Acid in Aqueous Solutions, International Conference of Nanoscience and Technology, Basel, Switzerland, July 30-August 4,2006,.

выводы.

1. Изучен процесс вакуумного термического напыления основания и соли эмеральдина. При этом была впервые установлена блочная структура полуокисленного состояния полианилина, включающая хинониминные и аминные блоки длиной от 4 до 16 мономерных единиц.

2. Показано, что ресурсные электрохромные характеристики напыленных слоев полианилина в водных растворах при цитировании потенциала в анодной области в несколько раз выше, чем у пленок, полученных с помощью обычных методов, вследствие ограниченной рекомбинации катион-радикалов до хиноиминных структур, неустойчивых по отношению к гидролизу.

3. Установлена возможность проведения высокоселективного электрохимического и химического синтеза полианилина на поверхности напыленного тонкого слоя полианилина. Это обеспечивают получение однородных пленок полианилина разной толщины и сложной конфигурации на подложках различной природы и расширяет возможности их использования при разработке сенсоров, датчиков, элементов электронных схем и т. п.

4. Впервые экспериментально установлено, что в промежуточных степенях окисления полианилина, полученного разными методами, существует многоуровневая редокс-гетерогенность на разных уровнях структурной организации (на молекулярном, нанои микроуровнях, а в некоторых случаях и на макроскопическом уровне), обусловленная нелинейным, автокаталитическим характером реакций окислительной полимеризации анилина и последующего окисления полианилина.

5. Обнаружено сильное влияние химической структуры полимерных сульфокислот на процессы матричной полимеризации анилина и физико-химические свойства формирующихся интерполимерных комплексов полианилина с этими кислотами. Получены интерполимерные комплексы полианилина и полимерных сульфокислот, способные образовывать стабильные высокодисперсные растворы в воде и водно-органических смесях с низкокипящими органическими растворителями. Разработаны методы получения нановолокон на основе интерполимерных комплексов.

6. Показано, что ускорение матричного синтеза полианилина по сравнению с обычным процессом в низкомолекулярной кислоте обусловлено ассоциацией молекул анилина с сульфокислотными группами поликислоты вследствие высокой локальной концентрации ионов водорода.

7. Обнаружено, что при матричном химическом синтезе полианилина в присутствии полимерных сульфокислот, благодаря нелинейному автокаталитическому характеру процесса матричной полимеризации в объеме реакционного раствора возникают макроскопических размеров концентрационные транзиенты окисленной формы полианилина.

8. На основе интерполимерных комплексов полианилина и поли-(2-акриламидо-2-метил-1-пропан-сульфоновой кислоты) разработаны полимерные слои, использованные для изготовления полимерных светодиодов на основе J-агрегатов цианиновых красителей с высокими эксплуатационными характеристиками в широком спектральном диапазоне.

9. На примере интерполимерных комплексов полианилина и поли-(2-акриламидо-2-метил-1-пропан-сульфоновой) кислоты впервые для пленок полианилина установлено возникновение оптической активности без использования оптически активных добавок.

10. Разработан метод определения вирусов гриппа, основанный на иммобилизации на поверхности полианилиновых слоев комплексов антиген-антитело и их визуализации с помощью нематических жидких кристаллов.

11. Разработан метод регулирования электрической проводимости полианилиновых слоев посредством межфазного допирования полианилина. Впервые показано, что при допировании полианилина с помощью тонкого слоя золота достигается удельная проводимость пленки интерполимерного комплекса полианилина — 105 См/см, практически совпадающая с проводимостью высокопроводящих металлов.

Показать весь текст

Список литературы

  1. Л.И., Ванников А. В., Органические полупроводники и биополимеры, «Наука», 1968.
  2. С., Яковенко В., К теории органических сверхпроводящих материалов. //Журн. эксперимент, и теор. физ., 89 (1985) вып. 6 (12) 23 182 340.
  3. А.Т., Карпович И. Л. Журнал Физической химии., О фотопроводимости окрашенных органических пленок при освещении видимым светом, 28, (1954), № 5, с. 856−864.
  4. Ф., Лайонс Л., Органические полупроводники, М., «Мир», 1970.
  5. Т.С. Диссертация на соискание ученой степени доктора физико-математических наук, 2004.
  6. Органические полупроводники, ред. Каргин В .A., М. «Наука», 1968.
  7. Физическая энциклопедия, Москва, «Большая Российская энциклопедия», 1998 г., т.5, с. 590.
  8. Физический энциклопедический словарь, «Советская энциклопедия», Москва, 1983, с. 563.
  9. Энциклопедия полимеров, Москва, «Советская энциклопедия», 1974, т. 1−3.1. Иностранная
  10. Advances in Synthetic Metals, Twenty Years of Progress in Science and Technology, ed. Bernier P., Lefrant S., Bidan G., Elsevier, 1999.
  11. Argun A.A., Aubert P.-H., Thomson B.C., Schwendeman I., Gaupp C.L., Hwang J., Punto N.J., Tanner D.B., Mac-Diarmid A.G., Reynolds J.R., Multicolored electrochromism in polymers: structures and devices. // Chem. Mater., 16 (2004), p. 4401−4412.
  12. Bayley R.A., Persaud K.C., Polymer Sensors and Actuators, Eds. Osada Y & De Rossi D.E., Springer, Berlin, (2000), p. 149−181.
  13. Bartonek M., Sariciftci N.S., Kuzmany H" Resonance Raman spectroscopy of the emeraldine insulator-to-metal phase transition. // Synth. Met., 36 (1990), N 1. p. 83- 86.
  14. Bernard M.-C., Goff A.H.-L., Bich V.T., Zeng W., Study by optical multichannel analysis of the electrochromic phenomena in polyaniline doped with camphorsulfonic acid. // Synth. Met., 81 (1996), N 2, p. 215−219.
  15. Brazovskii S., Kirova N., Optics of polymers in the light of solid state physics. // Synth. Met., 125 (2002), N 1, 129−138.
  16. Cao Y., Andreatta A., Heeger A.J., Smith P., Influence of chemical polymerization conditions on the properties of polyaniline. // Polymer, 30 (1989), p. 2305−2311.
  17. Cao Y., Smith P., Heeger A.J., Counter-Ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. II Synth. Met., 48 (1992), N1, p. 91−97.
  18. Cao Y., Smith P., Heeger A.J., Processible forms of electrically conducting polyaniline. US Patent 5 323 631 (1993).
  19. Carinhana D., De Paoli M.-A., De Castro C.S.C., De Souza G.G.B., Micrometer patterning using synchrotron radiation and the polyaniline-PVC blend. //Adv. Mater. Opt. Electron., 10 (2000) N 6, p. 241−246.
  20. Chiang C.K., Fisher C.R., Jnr, Park Y.W., Heeger A.J., Shirakawa H., Louis E.J., Grau S.C., MacDiarmid A.G., Electrical conductivity in doped polyacetylene. II Phys. Rev. Lett., 39 (1977), N17,1098−1101.
  21. Chiang C.K., Druy M.A., Gau S.C., Heeger A.J., Louis E.J., MacDiarmid A.G., Park Y.W., Shirakawa H" Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x.//J. Am. Chem. Soc., 100 (1978) 1013−1015.
  22. De Paoli M.-A., Gazotti W.A., Electrochemistry, polymers and opto-electronic devices: a combination with a future. //J. Braz. Chem. Soc., 13 (2002), N10, p. 410−424.
  23. Desilvesto J., Scheifele W., Haas O., In situ determination of gravimetric and volumetric charge densities of battery electrodes. // J. Electrochem. Soc., 139 (1992), N10, p. 2727−2736.
  24. R. H., Gymer R. W., Holmes А. В., Burroughes J. H., Marks R. N. Taliani C., Bradley D. C., Dos Santos D. A., Bredas J.L., Logdlund M., Salaneck W. R., Electroluminescence in conjugated polymers. // Nature, 397 (1999), p. 121−128.
  25. Handbook of Conducting Polymers, 2-nd Edition, ed. Skotheim T.A., Elsenbaumer R.L., Reynolds J.R., Marcell Dekker, 1998.
  26. Hagiwara Т., Yamaura M., Iwata K., Structural analysis of deprotonated polyaniline by solid-state 13C N.M.R. // Synth. Met., 26 (1988), p. 195−198.
  27. Hatano M., Kambara S., Okamoto. S., Paramagnetic and electric properties of polyacetylene.//J. Polym. Sci., 51 (1961), N 6, p. 26−29.
  28. Heeger A.J., Kivelson S., Schrieffer J.R., Su W.P., Solitons in conducting polymers. // Rev. Mod. Phys., 60 (1988), N 3, p. 781−850.
  29. Heeger A.J., Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth. Met., 125 (2001), N1, p. 23−42.
  30. Heinze J., Electronically conducting polymers. // In: Topics in Current Chemistry, Electrochemistry IV, 152 (1990), p. 1−23.
  31. Hirai Т., Kuwabata S., Yoneyama H., Electrochemical behaviour of polyaniline in weak acid solutions. // J. Chem. Soc. Faraday Trans., Pt.1., 85 (1989), N4, p. 969−976.
  32. Huang W.S., Humphrey B.D., MacDiarmid A.G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. //J. Chem. Soc. Faraday Trans., Pt.1., 82 (1986), p. 23 852 400.
  33. Ivanov V.F., Nekrasov A.A., Gribkova O.L., Vannikov A.V., Molecular scale inhomogeneity of polyaniline. // Abstracts of Fall Meeting of the Materials Research Society, MRS'97, December 1 5,1997, Boston, USA, Abstr. J3 59.
  34. Janata J., Josowicz M., Conducting polymers in electronic chemical sensors. // Nature Materials, 2 (2003), p. 19−24.
  35. Jiang R., Dong S., Song S., Spectroscopy and electrochemistry of polyaniline in non-aqueous solution. // J. Chem. Soc., Faraday Trans., Pt.1., 85 (1989), N 7, 1575−1584.
  36. Kang E.T., Neoh K.G., Tan K.L., ESCA studies of protonation in polyaniline. Polym. Journal, 21 (1989), N 11, p. 873−881.
  37. Kim Y.H., Foster C.M., Chiang J., Heeger A.J., Localized charged excitations in polyaniline: infrared photoexcitation and protonation studies Synth. Met., 29 (1989), E285−290 a.
  38. Kim Y.H., Phillips S.D., Nowak M.J., Spiegel D., Foster C.M., Yu G., Chiang J., Heeger A. J., Localization of charged excitations in polyaniline. //Synth. Met., 29 (1989), N1−3, p. 291−295 b.
  39. LaCroix J.-C., Diaz A.F., Electrooxidation of aromatics to polymer films. // Makromol. Chem. Macromol. Symp., 8 (1987), p. 17−37.
  40. V., «Automated system for combinatorial synthesis and high-throughput characterization of polymeric sensor materials», Thesis, Techn. Universitat Munchen, 2004.
  41. Liu W., Cholli A.L., Nagarajan R. f Kumar J., Tripathy S., Bruno F.F., Samuelson L., The role of template in the enzymatic synthesis of conducting polyaniline. // J. Am. Chem. Soc., 121 (1999), N 49, p. 11 345−11 355.
  42. Lu W.-K., Basak S., Elsenbaumer R., Corrosion Inhibition of Metals by Conductive Polymers. // Handbook of Conducting Polymers, p. 881−920,2-nd Edition, ed. by Skotheim T.A., Elsenbaumer R.L., Reynolds J.R., Marcell Dekker, 1998.
  43. Luo W., Wu W., New J. Chem., Electrochemical properties and electrocatalytic characteristics of soluble polyaniline. 17 (1993), p. 471−476.
  44. Lux F., Properties of electronically conductive polyaniline: a comparison between well-known literature data and some recent experimental findings. II Polymer, 35 (1994), N 14, p. 2915−2936.
  45. MacDiarmid A.G., Zhou Y., Feng J., Furst G.T., Shellow A.M., Isomers and Isomerization Processes in Polyanilines. // Polym. Prepr., 40 (1999), p. 246−251.
  46. MacDiarmid, A. G., Zheng, W. «Electrochemistry of Conjugated Polymers and Electrochemical Applications,» MRS Bulletin, 22 (1997), N 6, p. 24−30.
  47. MacDiarmid A.J., Synthetic Metals: a Novel Role for Organic Polymers. // Synth. Met., 125 (2001), N 1−2, p. 11−22.
  48. Mitschke U., Bauerle P., The electroluminescence of organic materials. // J. Mater. Chem., 10 (2000), N 7, p. 1471−1507.
  49. Morita H., J. Polym. Sci., Effects of solvent and electrolyte on the electrochromic behavior and degradation of chemically prepared polyaniline-poly (vinyl alcohol) composite films. // Part B: Polym. Phys., 32 (1994), N 2, p. 231−242.
  50. Naarmann H., Polymere organische Halbleiter. // Naturwissenschaften, 56 (1969), N6, p. 308−313.
  51. Neoh K.G., Kang E.T., Tan K.L., A comparative study on the structural changes in leucoemeraldine and emeraldine base upon doping by perchlorate. // J. Polym. Sci., Part A. Polym. Chem., 29 (1991), p. 759−766.
  52. Nigrey P.J., MacDiarmid A.G., Heeger A.J.Electrochemistry of polyacethilene, (CH)X: electrochemical doping of (CH)X films to the metallic state. //Chem. Commun., 96 (1979), p. 594−601.
  53. Okabayashi K., Goto F., Abe K., Yoshida Т., Electrochemical Studies of Polyaniline and Its Application. // Synth. Met., 18 (1987), p. 365−370.
  54. Pohl H.A. in «Polymeric semiconductors» eds. Rembaum A., Moacanin J., Jet Propulsion Laboratory, Pasadena, Calif., 1963.
  55. Pron A., Rannou P., Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. // Prog. Polym. Sci., 27 (2002), N1, p. 135−190.
  56. Reghu M., Cao Y., Moses D., Heeger A.J., Counterion-induced processibility of polyaniline: Transport at the metal-insulator boundary. // Phys. Rev. B, 47 (1993), p. 1758−1764.
  57. Rosseinsky D.R., Mortimer R.J., Electrochromic Systems and the Prospects for Devices. //Adv. Mater., 13 (2001), N 11, p. 783−794.
  58. Rudzinski W.E., Lozano L., Walker M., The Effects of pH on the polyaniline switching reaction. // J. Electrochem. Soc., 137 (1990), N 10, p. 3132−3136.
  59. Samuelson L., Liu W., Nagarajan R., Kumar J., Bruno F.F., Cholli A., Tripathy S., Nanoreactors for the Enzymatic Synthesis of Conducting Polyaniline. // Synth. Met., 119 (2001), N1−3, p. 271−272.
  60. Sariciftci N.S., Bartonek M., Kuzmany H., Neugebauer H., Neckel A., Analysis of Various Doping Mechanisms in Polyaniline by Optical, FTIR and Raman Spectroscopy. //Synth. Met., 29 (1989), N1−3, p. 193−198.
  61. Sariciftci N.S., Kuzmany H., Neugebauer H. f Neckel A., Structural and electronic transitions in polyaniline: A Fourier transform infrared spectroscopic study. //J. Chem. Phys., 92 (1990), N7, p. 4530−4539.
  62. Shimano J.Y., MacDiarmid A.G., Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity?. // Synth. Met., 123 (2001), N 2, p. 251−262.
  63. Shirakawa H., Louis E.J., MacDiarmid A.G., Chiang C.K., Heeger F.J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)X). //J. Chem. Soc., Chem. Commun., 16 (1977), p. 578−583.
  64. Stejskal J., Kratochvil P., Jenkins A.D., The formation of polyaniline and the nature of its structures. // Polymer, 37 (1996), N2, p. 367−369.
  65. Sun L., Yang S.C., Solution processable conducting polymer: polyaniline-polyelectrolyte complex. // Mat. Res. Soc. Symp. Proc., 328 (1994), p. 167−170.
  66. Sun L., Liu L.-M., Clark R., Yang S.C., Double-strand polyaniline. // Synth. Met., 84 (1997), N 1, p. 67−68.
  67. Ueda F., Mukai K., Harada I., Nakajima Т., Kawagoe Т., The quinone diimine part of polyaniline is electrochemically inactive in nonaqueous electrolyte. // Macromolecules, 23 (1990), N 23, p. 4925−4928.
  68. Vorotyntsev M.A., Rubashkin A.A., Badiali J.P., Potential distribution across the electroactive-polymer film between the metal and solution as a function of the film charging level. // Electrochim. Acta, 41 (1996), N 14, p. 2313−2320.
  69. Yang S.Ch., Li W.,. Functionalized and processible conducting polymers, US Patent 6 803 446, 2001.
  70. Yang S.M., Lin T.S., In-situ electron spin resonance and cyclic voltammetric studies of polyaniline. // Synth. Met., 29 (1989), p. 227−230.
  71. В.В., Куликов А. В., Ефимов О. Н., Комплекс анилина с хлориридат-амином как катализатор электрохимического синтеза полианилина. // Высокомолекулярные соединения, Серия А, 39 (1997), с. 216−220.
  72. А.А. Синтез полимерных нерастворимых сульфокислот (сульфокислотных ионитов), Л., «Наука» 1971.
  73. В.Ф., Гришина А. Д., Ванников А. В., Лунин А. Ф., Чернов Г. М., Моисеев С. Г., Роль ион-радикалов в процессе проводимости некоторых полинитрилов. //Электрохимия, 9 (1975), N 9, с. 1332−334, а.
  74. В.Ф., Гришина А. Д., Лунин А. Ф., Паушкин Я. М., Природа парамагнитных центров в некоторых полинитрилах. // Доклады АН СССР, 222 (1975), N1, с. 107−110, б.
  75. В.Ф., Гришина А. Д., Фотоокрашивание в системе поливиниловый спирт-двубромистый М, М-дигептилвиологен-4,4-дипиридилий. // Изв. АН СССР, Серия хим., (1976), N 6, с. 1383−1386.
  76. В.Ф., Гришина А. Д., Димеризация катион-радикалов N.N-двузамещенных производных 4,4-дипиридилия в матрице поливиниливого спирта. // Изв. АН СССР, Серия хим., (1977) N 8, с.1873−1875.
  77. Г. В., Иванов В. Ф., Тверской В. А., Праведников А. Н., Синтез и фотохромные свойства поливиологенов. // Высокомолекулярные соединения, Серия Б, 21 (1979), N 9, с. 694−698.
  78. В.Ф., Тверской В.А, Тимофеева Г. В., Праведников А. Н., Донорно-акцепторные взаимодействия в растворах полимерных виологенов. // Высокомолекулярные соед., Серия А, 27 (1985) N5, с.1066−1072.
  79. В.Ф., Кучеренко Ю. А., Некрасов А. А., Ванников А. В., Влияние рН водных растворов хлорной кислоты на процесс электроокрашивания полианилина. // Электрохимия, 26 (1990), N 6, с.732−735.
  80. В.Ф., Кучеренко Ю. А., Некрасов А. А., Ванников А. В., Спектральные характеристики полианилиновых пленок при периодическом изменении потенциала. // Электрохимия, 28 (1992), N 1, с. 44−46, а.
  81. В.Ф., Кучеренко Ю. А., Некрасов А. А., Ванников А. В., Влияние рН на процесс электрохимического обесцвечивания пленок полианилина. // Электрохимия, 28 (1992), N 1, с. 50−54, б.
  82. В.Ф., Кучеренко Ю. А., Ванников А. В., Влияние природы анионов на спектроэлектрохимическое поведение полианилина. // Электрохимия, 29 (1993), N 11, с. 1146−1149.
  83. В.Ф., Киселев Д, Н., Тверской В. А., Влияние света на термодинамическое равновесие в рекации комплексообразования виолигена и ферроцианид-иона. Известия Академии наук, Сер. химическая, 1995, № 1.С.92−95.
  84. А.В., Грибкова О. Л., Иванов В. Ф., Лыпенко Д. А., Мальцев Е. И., Электролюминесцентный полимерный нанокомпозитный материал, Патент РФ № 2 261 890, 2003 г.
  85. В.Ф., Грибкова О. Л., Чеберяко К. В., Некрасов А. А., Тверской В. А., Ванников А. В., Матричный синтез полианилина в присутствии поли-(2-акриламидо-2-метил-1-пропан)-сульфоновой кислоты. // Электрохимия, 40 (2004), N 3, с. 339−345.
  86. В.Ф., Иванова В. Т., Томилин М. Г., Ракутина P.O., Яблоков М. Ю., Способ определения вирусов гриппа, Патент РФ. № 2 290 444, 2006.
  87. В.Т., Стафеева О. А., Савицкий А. П., Использование твердофазного флуоресцентного иммунологического анализа для индикации вируса гриппа А, // Вопросы вирусологии 33 (1988), № 3, с.362−365.
  88. О.И. (редактор), Маринич И.Г., Соломина А. А., Грипп и другие респираторные вирусные инфекции: эпидемиология, профилактика, диагностика и терапия. Санкт-Петербург, НИИ гриппа РАМН, (2003) 244 с.
  89. Энциклопедия полимеров, «Советская энциклопедия» М., т.2 (1974) с. 483.
  90. С.П., Куличихин В. Г., Жидкокристаллическое состояние полимеров, «Химия» Moscow, (1977) 240.
  91. Фок М. В. Разделение сложных спектров на индивидуальные полосы при помощи обобщенного метода Аленцева. Труды Физического Института им. П. И. Лебедева АН СССР, Вып.1, с. 3−23.1. Иностранная
  92. Abd El-Rahman Н.А., A spectroelectrochemical study on polaron transformations in polyaniline in sulphuric and p-toluenesulphonic acids. Polymer International, 44 (1997), N4, p. 481−489.
  93. Adams P.N., Laughlin P.J., Monkman A.P., Kenwright A.M., Low temperature synthesis of high molecular weight polyaniline. // Polymer, 37 (1996), N 15, p. 3411−3417, a.
  94. Adams P.N., Laughlin P.J., Monkman A.P., Synthesis of high molecular weight polyaniline at low temperatures. // Synth. Met., 76 (1996), N1−3, p.157−160, b.
  95. Adams P.N., Abell L., Middleton A., Monkman A.P., Low temperature synthesis of high molecular weight polyaniline using dichromate oxidant. // Synth. Met., 84 (1997), N1−3, p. 61−62, a.
  96. Adams P.N., Monkman A.P., Characterization of high molecular weightpolyaniline synthesized at -40°C using a 0.25:1 mole ratio of persulfate oxidant to aniline. // Synth. Met., 87 (1997), p. 165−168, b.
  97. Bacon J., Adams R.N., Anodic oxidations of aromatic amines. III. Substituted anilines in aqueous media. // J. Am. Chem. Soc., 90 (1968), p.6596−6598.
  98. Bade K., Tsakova V., Schultze J.W., Nucleation, growth and branching of polyaniline from microelectrode experiments. // Electrochim. Acta, 37 (1992), N 12, p. 2255−2261.
  99. Barbero C., Kotz R., Nanoscale Dimensional Changes and Optical Properties of Polyaniline Measured by In Situ Spectroscopic Ellipsometry. // J. Electrochem. Soc., 141 (1994), N 4, p. 859−865.
  100. Barisci J.N., Innis P.C., Kane-Maguire L.A.P., Norris I.D., Wallace G.G., Preparation of chiral conducting polymer colloids. // Synth. Met., 84 (1997), N 13, p.181−182.
  101. Basford H.K., Jenkis H.D.B., Passmore J., Glasser L., Thermochemical radii of complex ions.// J. Chem. Educ., 76 (1999), p. 1570−1573.
  102. Beadle P.M., Nicolau Y.F., Banka EM Rannou P., Djurado D., Controlled polymerization of aniline at sub-zero temperatures. // Synth. Met., 95 (1998), N 1, p. 29−45.
  103. Breitenbach M., Heckner K.-H., Untersuchungen zur Kinetik der anodischen Oxydation von Anilin in Azetonitril an der rotierenden Platinelektrode. // J. Electroanal. Chem., 29 (1971), p. 309−314.
  104. Cao Y., Andreatta A., Heeger A.J., Smith P., Influence of chemical polymerization conditions on the properties of polyaniline. // Polymer, 30 (1989), N 12, 2305−2311.
  105. Choi Sh.-J.and Park S.-M., Electrochemical Growth of Nanosized Conducting Polymer Wires on Gold Using Molecular Templates. //Adv. Mater., 12 (2000), N 20, p.1547−1549.
  106. Deslouis C., El Moustafid Т., Tribollet В., Benyaich A., Musiani M.M., Electrochemical properties of PANI films for different counter-ions in acidic pH analyzed by impedance techniques. // Electrochim. Acta, 41 (1996), N 11−12, p.1741−1920.
  107. Diaz A.F., Logan J.A., Electroactive polyaniline films. // J. Electroanal. Chem., 111 (1980), p.111−114.
  108. Dimitriev O.P., Lavrik N.V., Protonation and charge transfer in polyaniline: an optical absorption study of the mixed solutions. // Synth. Met., 90 (1997), N 1, p. 1−4.
  109. Duke C.B., Conwell E.M., Paton A., Localized molecular excitons in polyaniline. // Chem. Phys. Lett., 131 (1986), N1−2, p. 82−86.
  110. Fong Y., Schlenoff В., Polymerization of aniline using mixed oxidizers. // Polymer, 36 (1995), N 3, p. 639−643.
  111. Genies E.M., Syed A.A., Tsintavis C., Electrochemical study of polyaniline in aqueous and organic medium. Redox and kinetic properties. // Mol. Cryst. Liq. Cryst., 121 (1985), p.181−186.
  112. Genies E.M., Tsintavis C., Redox mechanism and electrochemical behaviour or polyaniline deposits. // J. Electroanal. Chem. 195 (1985) p. 109−114.
  113. Genies E. M., Nitrogenized electronic conductive polymers, their preparation processes, electrochromic display cell and electrochemical generator using these polymers. // U. S Patent No. 4,889,659 183,1989, (Fr. Pat. analog 1985).
  114. Genies E.M., Tsintavis C., Electrochemical behaviour, chronocoulometric and kinetic study of the redox mechanism of polyaniline deposits. // J. Electroanal. Chem., 200 (1986), N 1−2,127−146.
  115. Genies E.M., Lapkowski M., Spectroelectrochemical studies of redox mechanisms in polyaniline films. Evidence of two polaron-bipolaron systems. // Synth. Met., 21 (1987), N 1, p. 117−123, a.
  116. Genies E.M., Lapkowski M., Spectroelectrochemical evidence for an intermediate in the electropolymerization of aniline. // J. Electroanal. Chem., 236 (1987), N 1−2, p.189−197, b.
  117. Genies E.M., Lapkowski M., J. Electroanal. Chem., 236 (1987), N 1−2, 199 208, c, (Electrochemical in situ epr evidence of two polaron-bipolaron states in polyaniline), c.
  118. Genies E.M., Lapkowski M., Penneau J.E., Cyclic voltammetry of polyaniline: interpretation of the middle peak. // J. Electroanal. Chem., 249 (1988), N 1−2, p.97−107, a.
  119. Genies E.M., Lapkowski M., Tsintavis C., Preparation, properties and applications of polyaniline. // New J. Chem., 12 (1988), p. 181−196, b.
  120. Genies E.M., Boyle A., Lapkowski M., Tsintavis C., Polyaniline: A historical survey. // Synth. Met., 36 (1990), N 2, p.139−182.
  121. Genoud F., Kruszka J., Nechtschein M., Santier C., Davied S., Nicolau Y., Simultaneous «in situ» conductivity and ESR measurements: evidence for spinless conducting state in polyaniline. // Synth. Met., 43 (1991), N1−2, p.2887−2890.
  122. Gospodinova N., Terlemezyan L., Mokreva P., Kossev K., On the mechanism of oxidative polymerization of aniline. // Polymer, 34 (1993), N 11, p. 24 342 437, a.
  123. Gospodinova N., Mokreva, P. Terlemezyan L., Chemical oxidative polymerization of aniline in aqueous medium without added acids. // Polymer, 34 (1993), N 11, p. 2438−2440, b.
  124. Gospodinova N., Mokreva P., Terlemezyan L., Influence of hydrolysis on the chemical polymerization of aniline. // Polymer, 35 (1994), N 14, p. 3102−3106.
  125. Gospodinova N., Mokreva, P. Terlemezyan L., Oxidative polymerization of aniline: a new area in cationic polymerization. // Polymer, 36 (1995), N 18, p. 3585−3587.
  126. Gospodinova N., Terlemezyan L., Mokreva P., Tadjer A., A new approach to the study of oxidative polymerization of aniline and transformations of polyaniline. Support by means of the Hueckel method. // Polymer, 37 (1996), N 19, p. 4431−4433.
  127. Hand R. L., Nelson R.F., Anodic oxidation pathways of N-alkylanilines. // J. Am. Chem. Soc., 96 (1974), N 3, p. 850−851.
  128. Hand R.L., Nelson R.F., The anodic decomposition pathways of ortho- and mete-substituted anilines. //J. Electrochem. Soc., 125 (1978), p.1059−1069.
  129. Huang W.S., Humphrey B.D., MacDiarmid A.G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. // J. Chem. Soc. Faraday Trans., Pt.1., 82 (1986), N 8, p. 2385−2400.
  130. Ivanov V.F., Kucherenko Yu.A., Nekrasov A.A., Vannikov A.V., Influence of pH on the spectroelectrochemical behavior of polyaniline. // Bull. Electrochem., 8 (1992), p. 278−281.
  131. Ivanov V.F., Nekrasov A.N., Gribkova O.L. Vannikov A.V., Molecular scale inhomogeneity of polyaniline. // Abstracts of Fall Meeting of the Materials Research Society, MRS'97, December 1 5,1997, Boston, USA, Abstr. J3 59.
  132. Kang Y., Lee M.H., Rhee S.B., Electrochemical properties of polyaniline doped with poly (styrenesulfonic acid). Synth. Met., 52 (1992), N 3, p. 319−328.
  133. Katani A., Izumi J., Yano J., Hiromoto Y., Sasaki K., Basic Behaviors and Properties of the Electrodeposited Polyaniline. // Bull. Chem. Soc. Jpn., 57 (1984), N8, p. 2254−2257.
  134. Kessel R., Hansen G., Schultze J.W., XP-Spectra, sputter experiments and UV-VIS-reflection spectra of polyaniline. // Ber. Bunsenges. Phys. Chem., 92 (1988), N6, p. 710−712.
  135. Kim Y.H., Foster C.M., Chiang J., Heeger A.J., Photoinduced localized charged excitations in polyaniline. // Synth. Met., 26 (1988), N 1, p. 49−59.
  136. A., Kaya M., Yano J., Yoshikawa K., Sasaki K., «Polyaniline»: Formation reaction and structure. // Synth. Met., 18 (1987), N3, 341−347.
  137. Kobayashi Т., Yoneyama H., Tamura H., Polyaniline film-coated electrodes as electrochromic display devices. // J. Electroanal. Chem., 161 (1984), N 2, p. 419−423.
  138. Kobayashi Т., Yoneyama H., Tamura H., Oxidative degradation pathway of polyaniline film electrodes. // J. Electroanal. Chem., 177 (1984), N 1−2, p. 293 297.
  139. Kogan Y.L., Davidova G.I., Knerelman E.I., Gedrovich G.V., Fokeeva L.S., Emelina L.V., Savchenko V.I., Kinetic peculiarities of chemical aniline polymerization. //Synth. Met., 41 (1991) p. 887−890.
  140. Komura T, Mori K., Yamaguchi Т., Takahashi K., Electrochemical Growth and Charge-Transport Properties of Polyaniline/Poly (styrenesulfonate) Composite Films. // Bull. Chem. Soc. Jpn., 73 (2000), N 1, p. 19−27.
  141. Kulszewicz-Bajer I., Spectroscopic properties of polyaniline protonated with poly (alkylene phosphates). // Macromolecules, 28 (1995), N2, p. 610−613.
  142. Kulszewicz-Bajer I. Wielgus I., Pron A., Rannou P., Protonation of polyaniline in hexafluoro-2-propanol. Spectroscopic Investigation. // Macromolecules, 30 (1997), N 1−3, p. 712.
  143. Kuzmany H., Sariciftci N.S., In situ spectro-electrochemical studies of polyaniline. // Synth. Met., 18 (1987), N 1−3, p.353−356.
  144. LaCroix J.-C., Diaz A.F., Electrooxidation of aromatics to polymer films. // Makromol. Chem. Macromol. Symp., 8 (1987), p.17−37.
  145. Lee K., Heeger A.J., Cao Y., Reflectance spectra of polyaniline. // Synth. Met., 72 (1995), N1, p. 25−34.
  146. Leng J.M., McCall R.P., Cromack K.R., Sun Y., Manohar S.K., MacDiarmid A.G., Epstein A.J., Photoexcited solitons and polarons in pernigraniline-base polymers. // Phys. Rev. B: Condens. Matter, В 48 (1993), p. 15 719−15 731.
  147. Letheby H., On the production of a blue substance by the electrolysis of sulphate of aniline. // J. Chem. Soc., 15 (1862), p. 161−163.
  148. Li Y., Yan В., Yang J., Cao Y., Qian R., Spectroelectrochemical studies of polyaniline. // Synth. Met., 25 (1988), N 1, p. 79−88.
  149. Li W.G., McCarthy P.A., Liu D.G., Huang J.Y., Yang S.-C., Wang H.-L., Toward understanding and optimizing the template-guided synthesis of chiral polyaniline nanocomposites. // Macromolecules, 35 (2002), N 27, p. 9975−9982.
  150. Liu W. p Kumar J., Tripathy S.K., Senecal K.J., Samuelson L., Enzymatically synthesized conducting polyaniline. // J. Am. Chem. Soc., 121 (1999), p. 71−78.
  151. Liu W., Cholli A.L., Nagarajan R.(Kumar J., Tripathy S., Bruno F.F., Samuelson L., The role of template in the enzymatic synthesis of conducting polyaniline. // J. Am. Chem. Soc., 121 (1999), N 49, p.11 345−11 355.
  152. Liu W., Anagnostopoulos A., Bruno F.F., Senecal K., Kumar J., Tripathy S., Samuelson L., Biologically derived water soluble conducting polyaniline. // Synth. Met., 101 (1999), N 1−3, p. 738−741.
  153. Long S.M., Brenneman K. R, Saprigin A., Kohlman R.S., Epstein A.J., Angelopoulos M., Buchwalter S.L., Rossi A., Zheng W., MacDiarmid A.G., Aggregation and interchain «self doping in emeraldine base. // Synth. Met., 84 (1997), N1−3, p. 809−810.
  154. Long Y., Zhang L., Ma Y., Chen Zh., Wang N.(Zhang Z.(Wan M., Electrical Conductivity of an Individual Polyaniline Nanotube Synthesized by a Self-Assembly Method. // Macromol. Rapid Comm., 24 (2003), N 16, p. 938−942.
  155. Lu X., Yu Y., Chena L., Mao H., Wang L., Zhang W., Wei Y., Poly (acrylic acid)-guided synthesis of helical polyaniline microwires. // Polymer, 46 (2005), p. 5329−5333.
  156. Lux F., Properties of electronically conductive polyaniline: a comparison between well-known literature data and some recent experimental findings. // Polymer, 35 (1994), N 14, p. 2915−2936.
  157. MacDiarmid A.G., Chiang J.-C., Halpern M., Huang W.-S., Mu S.-L., Nanaxakkara L.D., Wu S.W., Yaniger S.I., „Polyaniline“: interconversion of metallic and insulating forms. // Mol. Cryst. Liq. Cryst., 121 (1985), p. 173−180.
  158. Majidi M.R., Kane-Maguire L.A.P., Wallace G.G., Chemical generation of optically active polyaniline via the doping of emeraldine base with (+) — or (-)-camphorsulfonic acid. // Polymer, 36 (1995). N 18, p. 3597−3601.
  159. McCall R.P., Ginder J.M., Leng J.M., Ye H.J., Manohar S.K., Masters J.G., Asturias G.E., MacDiarmid, A.G., Epstein A.J., Spectroscopy and defect states in polyaniline. // Phys. Rev. B: Condens. Matter, 41 (1990), N 8, p. 5202−5213.
  160. McCarthy P.A., J. Huang J., Yang S.-C., Wang H.-L., Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites. // Langmuir, 18 (2002), N 1, p. 259−263.
  161. Min Y., Xia Y., MacDiarmid A.G., Epstein A.J., Vapor phase „secondary doping“ of polyaniline.//Synth. Met., 69 (1995), N 1, p. 159−161.
  162. Miras M.S., Barbero C., Kotz R., Haas O., Electroactive polyaniline film from proton free nonaqueous solution. // J. Electrochem. Soc., 138 (1991), N1, p. 335−336.
  163. Mohilner D.M., Adams R.N., Argersinger W.J. Jr., Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acidsolution at a platinum electrode. // J. Am. Chem. Soc., 84 (1962), N 19, p. 36 183 622.
  164. Monkman A.P., Adams P., Structural characterisation of polyaniline free standing films. // Synth. Met., 41 (1991), N 1−3, p. 891−893.
  165. Morales G.M., Uusa M., Miras M.C., Barbero C., Effects of high hydrochloric acid concentration on aniline chemical polymerization, // Polymer, 38 (1997), N20, p. 5247−5250.
  166. Morbidity and Mortality Weekly Report (MMWR) Outbreaks of Avian Influenza A (H5N1) in Asia and Interim recommendations for evaluation and Reporting of suspected cases United States 53 (2004), p. 97.
  167. Morita M., Miyazaki S, Ishikawa M, Matsuda Y, Tajima H, Adachi K, Anan F, Layered polyaniline composites with cation-exchanging properties for positive electrodes of rechargeable lithium batteries. // J. Electrochem. Soc. 142 (1995), N 1, p. L3-L5.
  168. R. W. Murray, „Chemically Modified Electrodes“. // In: Electroanalytical Chemistry, A.J. Bard, ed., Marcel Dekker Inc., NY, 13 (1984), p. 191−235.
  169. Motheo A.J., Santos J.R. Jr., Venancio E.C., Mattoso L.H.C., Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films. II Polymer, 39 (1998), N 26, p. 6977−6982.
  170. Nagarajan В., Tripathy S., Kumar J., Bruno F.F., Samuelson L., An enzymatically synthesized conducting molecular complex of polyaniline and poly (vinylphosphonic acid. // Macromolecules, 33 (2000), N 26, p. 9542−9547.
  171. Nekrasov A.A., Ivanov V.F., Vannikov A.V., Analysis of the structure of polyaniline absorption spectra based on spectroelectrochemical data. // J. Electroanal. Chem., 482 (2000), N 1, p. 11−17.
  172. Nekrasov A. A, Ivanov V.F., Vannikov A.V., A comparative voltabsorptometric study of polyaniline films prepared by different methods. // Electrochim. Acta, 46 (2001), N20−21, p. 3301−3307, a.
  173. Nekrasov A.A., Ivanov V.F., Vannikov A.V., Effect of pH on the structure of absorption spectra of highly protonated polyaniline analyzed by the Alentsev-Fock method, // Electrochim. Acta, 46 (2001) p. 4051−4056, b.
  174. Neudeck A., Petr A., Dunsch L., The redox mechanism of polyaniline studied by simultaneous ESR-UV-Vis spectroelectrochemistry. // Synth. Met., 107 (1999), N3, p. 143−158.
  175. Osaka Т., Nakajima Т., Naoi К., Owens B.B., Electroactive polyaniline film deposited from nonaqueous organic media, // J. Electrochem. Soc., 137 (1990), N7, p. 2139−2142.
  176. Osterholm J.E., Cao Y., Klavetter F.L., Smith P., Emulsion polymerization of aniline. // Synth. Met., 55−57 (1993), p. 1034−1039.
  177. Osterholm J.E., Cao Y., Klavetter F.L., Smith P., Emulsion polymerization of aniline. II Polymer, 35 (1994), N 13, p. 2902−2906.
  178. Pomfret S.J., Rebourt E., Monkman A.P., Electroabsorption measurements of the emeraldine base form of polyaniline.// Synth. Met., 76 (1996), N 1−3, p. 1922.
  179. Pron A., Genould F., Menardo C., Nechtschein M., The effect of the oxidation conditions on the chemical polymerization of polyaniline. // Synth. Met., 24 (1988), N3, p. 193−201.
  180. Pron A.,' Rannou P. Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. // Progress in Polymer Science 32 (2002), N 4. p. 419−508.
  181. Qiu H.J., Wan M.X., Nanostructures of Polyaniline Doped with a Novel Dopant. II Mater. Phys. Mech., 4 (2001), p. 125−128.
  182. Raghunathan A., Natarajan T.S., Rangarajan G., Dhawan S.K., Trivedi D.C., Charge transport and optical and magnetic properties of polyaniline synthesized with use of organic acids. // Phys. Rev. B: Condens. Matter, 47 (1993), N 20, p. 13 189−13 196.
  183. Rishpon J., Redondo A., Derouin C., Gottesfeld S., Simultaneous ellipsometric and microgravimetric measurements during the electrochemical growth of polyaniline. // J. Electroanal. Chem., 294 (1990), p. 73−85.
  184. Samuelson L., Liu W., Nagarajan R., Kumar J., Bruno F.F., Cholli A., Tripathy S., Nanoreactors for the Enzymatic Synthesis of Conducting Polyaniline. II Synth. Met., 119 (2001), N 1−3, p. 271−272.
  185. Sakharov I.Yu., Enzymatic Synthesis Of Chiral And Conducting Polyaniline. //ICSM 2006 Dublin, Poster 46 TU.
  186. Sariciftci N.S., Smilowitz L., Cao Y., Heeger A.J., Absorption spectroscopy of nonlinear excitations in polyaniline. // J. Chem. Phys., 98 (1993), N. 4, p. 26 642 669.
  187. Sasaki К., Kaya M., Yano J., Kitani A., Kunai A., Growth mechanism in the electropolymerization of aniline and p-aminodiphenylamine. // J. Electroanal. Chem., 215 (1986), N 1−2, p. 401−407.
  188. Shim Y.-B., Park S.-M., Electrochemistry of conductive polymers VII. Autocatalytic rate constant for polyaniline growth. // Synth. Met., 29 (1989), N1, p. 169−174.
  189. Shimano J. Y., MacDiarmid A. G., Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity?. //Synthetic Metals, 123 (2001), N2, p. 251−262.
  190. Smie A., Heinze J., Reversible dimerization of diphenylpolyene radical cations: an alternative to the bipolaron model. Angew. Chem. Int. Ed. Engl., 36 (1997), N4, p. 363−367.
  191. Song J., Cheng Q., Zhu S., Stevens R.C., „Smart“ Materials for Biosensing Devices: Cell-Mimicking Supramolecular Assemblies and Colorimetric Detection of Pathogenic Agents Biomedical Microdevices. // 4 (2002), N 3, p. 213−221.
  192. Stafstrom S., Bredas J. L, Epstein A.J., Woo H.S., Tanner D.B., Huang W.S., MacDiarmid A.G., Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. // Phys. Rev. Lett., 59 (1987), N 13, p. 1464−1467.
  193. Stafstrom S., Sjogren В., Bredas J.L., An INDO/S-CI study of the photoinduced absorption spectrum of polyemeraldine. // Synth. Met., 29 (1989) E 219−223.
  194. Stejskal J., Kratovchil P, Radhakrishnan N., Polyaniline dispersions 2. UV— Vis absorption spectra. // Synth. Met., 61 (1993), p. 225−231.
  195. Stiwell D.E., Park S.M., Electrochemistry of conductive polymers. // J. Electrochem. Soc., 135 (1988), N 10, p. 2497−2501.
  196. Stiwell D.E., Park S.-M., In situ spectroelectrochemical studies of polyaniline films. //J. Electrochem. Soc., 136 (1989), N2, p. 427−433.
  197. Sun L., Yang S.C., Solution processable conducting polymer: polyaniline-polyelectrolyte complex. // Mat. Res. Soc. Symp. Proc., 328 (1994), p.167.
  198. Sun L., Yang S.C., Liu L.-M., Conducting polymer with improved long-time stability: polyaniline-polyelectrolyte complex, // Mat. Res. Soc. Symp. Proc., 328 (1994) p. 209.
  199. Sun L., Liu L.-M., Clark R., Yang S.C., Double-strand polyaniline. // Synth. Met., 84 (1997), p. 67−69.
  200. Takehara Z., Kanamura K., Yonezawa S., Preparation of polyaniline by electropolymerization in nonaqueous solvent containing anilinium salt J. Electrochem. Soc., 136 (1989), N 9, 2767−2768.
  201. Thyssen A., Hosheld A., Kessel R., Meyer A., Shultze J.W., Anodic polymerisation of aniline and methylsubstituted derivatives: ortho and para coupling. // Synth. Met., 29 (1989), N 1−3, p. 357−360.
  202. Schultze J.W., Thyssen A. The kinetics of electropolymerization. // Synth. Met., 43 (1991), N 1−2, p. 2825−2830.
  203. Travers J.P., Chroboczek J., Devreux F., Genoud F., Nechtschein M., Syed A., Genies E.M., Tsintavis C., Transport and magnetic resonance studies of polyaniline. // Mol. Cryst. Liq. Cryst., 121 (1985), p. 195−197.
  204. Tsakova V., Milchev A., Schultze J.W., Growth of polyaniline films under pulse potentiostatic conditions. // J. Electroanal. Chem., 346 (1993), N 1−2, p. 85−97.
  205. US Patent Application N 20 050 040 048, Electropolymerization method for preparing nano-tube type conducting polymer using porous template, method for preparing electrochromic device, and electrochromic device prepared therefrom.
  206. Volkov A., Tourillon G., Lacaze P.C., Dubois J.E., Electrochemical polymerization of aromatic amines IR, XPS and PMT study of thin film formation on a Pt electrode. // J. Electroanal. Chem., 115 (1980), N 2. p. 279−291.
  207. Vorotyntsev M.A., Heinze J., Abstracts of 50th Meeting of The International Society of Electrochemistry, September 5−10, 1999. Pavia, Italy, 1999, Symp. 3b, Abst. No. 819.
  208. Wang В., Tang J., Wang F., The effect of anions of supporting electrolyte on the electrochemical polymerization of aniline and the properties of polyaniline. // Synth. Met., 13 (1986), N 4, p. 329−334.
  209. Watanabe A., Mori K., Iwasaki Y., Nakamura Y., Niizuma S., Electrochromism of polyaniline film prepared by electrochemical polymerization. // Macromolecules, 20 (1987), p. 1793−1796.
  210. Wei Y., Tang X., Sun Y., Focke W.W., A study of the mechanism of aniline polymerization. //J. Polym. Sci. Part A: Polym. Chem., 27 (1989), N 7, p. 23 852 396.
  211. Xia H.B., Chan H.S.O, Xiao C., Cheng D., Self-assembled oriented conducting polyaniline nanotubes, // Nanotechnology, 15 (2004), N 12, p. 18 071 811.
  212. Yang Y., Wan M., Chiral nanotubes of polyaniline synthesized by a template-free method. //J. Mater. Chem., 12 (2002), p. 897−901.
  213. Zhang D., Hwang J., Yang S., Polyaniline: Kinetics of electrochemical doping studied by time resolved absorption spectroscopy. // Synth. Met., 29 (1989), N 1, E251-E256.
  214. Zheng W., Min Y., MacDiarmid A.G., Angelopoulos M., Liao Y.-H., Epstein A.J., Effect of organic vapors on the molecular conformation of non-doped polyaniline. // Synth. Met., 84 (1997), N 1, p. 63−64.
  215. Zotti G., Cattani S., Comisso N., Cyclic potential sweep electropolymerization of aniline the role of anions in the polymerization mechanism. // J. Electroanal. Chem. 239 (1988), N 1, p. 387−396.
  216. А.А., Бах Н.А., Меркулов Е. И., Ванников А. В., Щербакова И. М., Черкашин М. И., Измерение дрейфовой подвижности носителей заряда впленках модифицированного полифенилацетилена. Изв. АН СССР. Сер.хим. (1969), № 10, 2345.
  217. О.Л., Некрасов А. А., Иванов В. Ф., Ванников А. В., Определение молекулярной массы термически напыленного полианилина, Высокомол. соедин, 1997, т. 39, № 5, с. 872−875.
  218. В.Ф., Грибкова О. Л., Ванников А. В., Спектральные и электрохимические свойства напыленного полианилина.// Электрохимия, 30(1994), с. 378−381.
  219. В.Ф., Гонтарь И. В., Некрасов А. А., Грибкова О. Л., Ванников А. В., Изменения степени окисления азотсодержащих фрагментов полианилина при его термическом напылении на ситалловые подложки. // Журн. физ. хим., 71 (1997),№ 1, с.133−135.
  220. A.M., Толстопятов Е. М., Получение тонких пленок распылением полимеров в вакууме. // Минск: Наука и техника, 1989.1. Иностранная
  221. Angelopoulos М., Asturias G.E., Ermer S.P., Ray A., Scherr Е.М., MacDiarmid A.G., Akhtar M., Kiss Z., Epstein A.J., Polyaniline: solutions, films and oxidation state.// Mol. Cryst. Liq. Cryst., 160 (1988), p. 151−163.
  222. Boyle A., Penneau J.F., Genies E., Reckel C., The effect of heating on polyaniline powders studied by real-time synchrotron radiation diffraction, mass spectrometry and thermal analysis.// J. Polym. Sci. Part B: Polym. Phys., 30 (1992). p. 265−267.
  223. Bredas J. L., Chance R. R., Baughman R. H., Silbey R., Ab Initio Effective Hamiltonian Study of the Electronic Properties of Conjugated Polymers. // Journal of Chemical Physics, 76(1982), p. 3673−3679.
  224. Cornelison D.M., Dillingham T.R., Bullock E., Benally N.T., Townsend S.W., In-situ scanning tunneling microscopy on vapor deposited polyaniline thin films. // Surface Sci., 343 (1995), N 1−2, p. 87−94.
  225. Demaret X., Cristallo G., Snauwaert F., Riga J., Verbist J., XPS study of polyaniline treated in pH decreasing solutions: Charges distribution along polymer chains. //Synth. Met., 55 (1993), N 2−3, p. 1051−1056.
  226. Diaz A.F., Logan J.A., Electroactive polyaniline films. II J. Electroanal. Chem., 111 (1980), p. 111−114.
  227. Duic L., Mandic Z., Kovac S., Polymer-dimer distribution in the electrochemical synthesis of polyaniline. // Electrochim. Acta, 40 (1995), N 11, p. 1681 -1688.
  228. A. J. Epstein and A. G. MacDiarmid, Structure, Order, and the Metallic State in Polyaniline and Its Derivatives, Synthetic Metals 41(1991), p. 601−606.
  229. Fong Y., Schlenoff В., Polymerization of aniline using mixed oxidizers. // Polymer, 36 (1995), N 3, p. 639−643.
  230. Genies E.M., Lapkowski M., Penneau J.E., Cyclic voltammetry of polyaniline: interpretation of the middle peak. // J. Electroanal. Chem., 249 (1988), N 1−2, p. 97−107.
  231. Genies E.M., Boyle A., Lapkowski M., Tsintavis C., Polyaniline: A historical survey. // Synth. Met., 36 (1990), N 2, p.139−182.
  232. Genoud F., Kruszka J., Nechtschein M., Santier C., Davied S., Nicolau Y., Simultaneous „in situ“ conductivity and ESR measurements: evidence for spinless conducting state in polyaniline. // Synth. Met., 43 (1991), N1−2, p.2887−2890.
  233. Ivanov V.F., Gribkova O.L., Nekrasov A.A. and Vannikov A.V., Comparative spectroelectrochemical investigation of vacuum evaporated and electrochemically synthesized electrochromic polyaniline films. // J. Electroanal. Chem., 372 (1994), p. 57−62.
  234. Ivanov V.F., Nekrasov A.A., Gribkova O.L., Vannikov A.V., Spectroelectrochemical, EPR and conductivity investigations of thin films of vacuum deposited polyaniline. // Electrochim. Acta, 41 (1996), p. 1811−1815.
  235. Ivanov V.F., Gribkova O.L.,. Nekrasov A. A, and Vannikov A.V., Filament-like structure formation in vacuum thermally evaporated thin films of polyaniline during oxidation in nitric acid. // Mendeleev Commn., (1998), No. 1, p. 4−6.
  236. Ivanov V.F., Nekrasov A.A., Tverskoj A.V., Vannikov A.V., Polymer all-solid electrochromic element, Abstracts of the 9-th International Symposium „Advanced Display Technologies“, October 10−12, 2000, Moscow, p. 55−57.
  237. V.F.Ivanov, K.V. Tcheberiako, A.A. Nekrasov, A.V. Vannikov, Sensitometric characteristics off the all-solid photoelectrochromic pixel for light-addressable display. II 10-th Symp. „Adv. Disp. Technol.“ Proceedings, Minsk 2001, Sept. 1821, p. 194−196.
  238. Jozefowicz M.E., Laversanne R., Javadi H.H.S., Epstein A.J., Pouget J.P., Tang X., MacDiarmid A.G., Multiple lattice phases and polaron-lattice—spinlessdefect competition in polyaniline. // Phys. Rev. B, 39 (1989), N 17, p. 129 581 261.
  239. Kang E.T., Neoh K.G., Tan K.L., Protonation and deprotonation of polyaniline films and powders revisited. // Synth. Met., 68 (1995), N 2, p. 141−144.
  240. Lux F., Properties of electronically conductive polyaniline: a comparison between well-known literature data and some recent experimental findings. // Polymer, 35 (1994), N 14, p. 2915−2936.
  241. Min Y» Xia Y., MacDiarmid A.G., Epstein A.J., Abstracts of Intern. Conf. Sci. Tech. Synth. Met., July 24−29,1994, Seoul, Korea, 1994, p. 287.
  242. Mizoguchi K., Nechstein M., Travers J.-P., Menardo C., Spin dynamics in the conducting polymer, polyaniline. // Phys. Rev. Lett., 63 (1989), N 1, p. 66−69.
  243. Mizoguchi, K.- Kume, K, Metallic temperature dependence of microscopic electrical conductivity in HCL-doped polyaniline studied by ESR. International Conference on Science and Technology of Synthetic Metals, 1994. ICSM-94 2429 Jul 1994, p.103.
  244. Nekrasov A.A., Ivanov V.F., Gribkova O.L. and Vannikov A.V., Fractionating vacuum thermal deposition of polyaniline films. Effect of post-deposition acid-base treatment. //Synth. Met., 65 (1994), N1, p.71−75.
  245. Plank R.V., Wei Y., DiNardo N.J., Vohs J.M., Characterization of highly conducting, ultra-thin polyaniline films produced by evaporative deposition. // Chem. Phys. Lett., 263 (1996), N 1−2, p. 33−38.
  246. Plank R.V., DiNardo N.J., Vohs J.M., Chemical and electronic properties of vapor-deposited polyaniline films on metal substrates. // Synth. Met., 89 (1997), N 1, p. 1−9, a.
  247. Plank R.V., DiNardo N.J., Vohs J.M., Growth and characterization of vapor-deposited polyaniline on Cu (110). // Phys. Rev. B, Condens. Matter, B55 (1997), N 16, R10241-R10244, b.
  248. Pouget J.P., Jozefowicz M.E., Epstein A.J., Tang X., MacDiarmid A.G., X-ray structure of polyaniline. // Macromolecules, 24 (1991), N 3, p. 779−789.
  249. Sariciftci, N.S., Heeger, A.J., Cao, Y., Paramagnetic-susceptibility of highly conducting polyaniline disordered metal with weak electron-electron interactions (fFermi glass)." Physical Review В 49, p. 5988 — 5992,1994.
  250. Shacklette L.W., Wolf J.F., Gould S., Baughman R.H., Structure and properties of polyaniline as modeled by single-crystal oligomers. // J. Chem. Phys., 88 (1988), N 6, p. 3955−3961.
  251. Stiwell D.E., Park S.-M., In situ spectroelectrochemical studies of polyaniline films. //J. Electrochem. Soc., 136 (1989), N2, p. 427−433.
  252. Traore M.K., Stevenson W.T.K., McCormick B.J., Dorey R.C., Wen Sh., Meyers D., Thermal analysis of polyaniline Part I. Thermal degradation of HCI-doped emeraldine base. // Synth. Met., 40 (1991), N 2, p. 137−153.
  253. Uvdal K., Logdlund M., Dannetun P., Bertilsson L., Stafstrom S., Salaneck W.R., MacDiarmid A.G., Ray A., Scherr E.M., Hjertberg Т., Epstein A.J., Vapor deposited polyaniline. // Synth Met., 29 (1989) N1−3, E451-E456.
  254. Wagner C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg J.E., Handbook of XR-Photoelectron Spectroscopy, Perkin-Elmer Corp., 1979.
  255. Wei Y., Hsueh K.F., Thermal analysis of chemically synthesized polyaniline and effects of thermal aging on conductivity. // J. Polym. Sci. Part A: Polym. Chem., 27 (1989), p. 4351−4363.
  256. Yamamoto Т., Wakayama H., Fukuda Т., Kanbara Т., Electrochemical and electric properties of vacuum-deposited poly (arylene)s: electrochemical activity, diode, and electroluminescence, // J. Phys. Chem., 96 (1992), N 22, p. 86 778 679.
  257. Yue J., Epstein A.J., XPS study of self-doped conducting polyaniline and parent systems. // Macromolecules, 24 (1991), N 15, p. 4441−4445.
  258. Г., Фазовые переходы и критические явления, М., Мир, 1973.1. Иностранная
  259. Aoki К., Teragishi Y., Abstracts of The Joint International Meeting of The Electrochemical Society and The International Society of Electrochemistry, August 31 September 5 1997, Paris, France, 1447 (1997).
  260. Beau В., Travers J.P., Genoud F., Rannou P., NMR study of aging effects in polyaniline CSA. // Synth. Met., 101 (1999), N 1−3, p. 778−779.
  261. Bredas J.L., Chance R.R., Silbey R., Comparative theoretical study of the doping of conjugated polymers: Polarons in polyacetylene and polyparaphenylene. // Phys. Rev. B, 26 (1982), N 10, p. 5843−5854.
  262. Djurado D., Nicolau Y.F., Rannou P., Luzny W., Samuelsen E.J., Terech P., Bee M., Sauvajol J.L., An overall view of the structure of an heterogeneous medium: the conducting polyaniline. // Synth. Met., 101 (1999), N 1−3, p. 764−767.
  263. Du G., Avlyanov J., Wu C.Y., Reimer K.G., Benatar A., MacDiarmid A.G., Epstein A.J., Inhomogeneous charge transport in conducting polyaniline. // Synth. Met., 85 (1997), N 1−3, p. 13 391 340.
  264. Epstein A.J., MacDiarmid A.G., Structure, order and the metallic state in polyaniline and its derivatives. // Synth. Met., 41 (1991), N 1−3, p 601−607.
  265. Field R.J., In: Oscillations and Traveling Waves in Chemical Systems, Ed. by R.J. Field and M. Buger, John Wiley and Sons, New York, (1985), p. 75−116.
  266. Genies E.M., Lapkowski M., Spectroelectrochemical evidence for an intermediate in the electropolymerization of aniline. // J. Electroanal. Chem., 236 (1987), N 1−2, p.189−197,
  267. Genoud F., Kruszka J., Nechtschein M., Santier C., Davied S., Nicolau Y., Simultaneous «in situ» conductivity and ESR measurements: evidence for spinless conducting state in polyaniline. // Synth. Met., 43 (1991), N1−2, p.2887−2890.
  268. Ivanov V.F., Gribkova O.L., Nekrasov A.A. and Vannikov A.V., Comparative spectroelectrochemical investigation of vacuum evaporated and electrochemically synthesized electrochromic polyaniline films. // J. Electroanal. Chem., 372 (1994), p. 57−62.
  269. Ivanov V.F., Nekrasov A.A., Gribkova O.L., Vannikov A.V., Spectroelectrochemical, EPR and conductivity investigations of thin films of vacuum deposited polyaniline. // Electrochim. Acta, 41 (1996), p. 1811−1815.
  270. Ivanov V. F, Gribkova O.L., Nekrasov A. A, Vannikov A.V., Filament-like structure formation in vacuum thermally evaporated thin films of polyaniline during oxidation in nitric acid, Mendeleev Commun., 8 (1998), N 1, p. 4−6.
  271. Ivanov V.F., Cheberjako K.V., Nekrasov A.A., Vannikov A.V., Formation of the heterogeneous structure of the vacuum deposited polyaniline films. // Synthetic Metals v. 119 (2001), №. 1−3 p. 375−376.
  272. Ivanov V. F,. Gribkova O. L,. Nekrasov A. A, Vannikov A.V., Meshkov G.B., Yaminsky I.V., Multilevel Redox Heterogeneity In Polyaniline Films: From Molecular To Macroscopic Scale. // Mater. Sci. Eng. C, 2003, v.23, p. 953−957.
  273. Ivanov V.F., Gribkova O.L.,. Novikov S. V, Nekrasov A.A., Isakova A.A.,. Vannikov A. V,. Meshkov G. B, Yaminsky I.V. Redox heterogeneity in polyaniline films: from molecular to macroscopic scale. // Synth. Met. 2005, v. 152, p. 153 156.
  274. Kohlman R.S., Tanner D.B., lhas G.G., Min Y.G., MacDiarmid A.G., Epstein A.J., Inhomogeneous Insulator-Metal Transition in Conducting Polymers. // Syntt. Met., 84 (1997), N 1, p. 709−714.
  275. Min Y., Xia Y., MacDiarmid A.G., Epstein A.J., Abstracts of Intern. Conf. Sci. Tech. Synth. Met., July 24−29,1994, Seoul, Korea, 1994, p. 287.
  276. Mizoguchi K., Nechtschein M., Travers J.-P., Spin dynamics and conductivity in polyaniline: Temperature dependence. // Synth. Met., 41 (1991), N1, p. 113 117.
  277. Mizoguchi K., Kume K., Metallic temperature dependence of microscopic electrical conductivity in HCI-doped polyaniline studied by ESR. //Synth. Met., 69 (1995), N1−3, p. 241−245.
  278. Nekrasov A.A., Ivanov V.F., Gribkova O.L. and Vannikov A.V., Fractionating vacuum thermal deposition of polyaniline films. Effect of post-deposition acid-base treatment. //Synth. Met., 65 (1994), N 1, p.71−75.
  279. Saricifti N.S., Heeger A.J., Cao Y., Paramagnetic susceptibility of highly conducting polyaniline: Disordered metal with weak electron-electron interactions (Fermi glass). // Phys. Rev. B, 49 (1994), N 9, p. 5988−5992.
  280. Sariciftci N.S., Kolbert A.C., Cao Y., Heeger A.J., Pines A., Magnetic resonance evidence for metallic state in highly conducting polyaniline. // Synth. Met., 69 (1995), N1−3, p. 243−244.
  281. Shimano J.Y., MacDiarmid A.G., Phase segregation in polyaniline: a dynamic block copolymer.//Synth. Met., 119 (2001), N 1−3, p. 365−369.
  282. Stiwell D.E., Park S.-M., In situ spectroelectrochemical studies of polyaniline films.//J. Electrochem. Soc., 136 (1989), N2, p.427−433.
  283. Turing A., The chemical basis of morphogenesis. // Phil. Trans. Roy. Soc. London. Ser. В., 237 (1952), N 641, p. 37−72.
  284. Zheng W., Min Y., MacDiarmid A.G., Angelopoulos M., Liao Y.-H., Epstein A.J., Effect of organic vapors on the molecular conformation of non-doped polyaniline. // Synth. Met., 84 (1997), N 1, p. 63−64.
  285. Zuo F., Angelopoulos M., MacDiarmid A.G., Epstein A.J., Transport studies of protonated emeraldine polymer: A granular polymeric metal system Phys. Rev. B, 36 (1987), N 6, p. 3475−3478.
  286. И.С., Михайлова Е.З, М. «Энергоатомиздат», Физические величины. Справочник. 1991. с. 568.
  287. А. И. Квантово-электронная теория аморфных проводников, М., 1963.
  288. И.В., Аморфные металлические материалы. // Соросовский Образовательный Журнал, (1997), N 4, с. 73−78.
  289. В.Ф., Грибкова О. Л., Чеберяко К. В., Некрасов А. А., Тверской В. А., Ванников А. В., Матричный синтез полианилина в присутствии поли-(2-акриламидо-2-метил-1-пропан)-сульфоновой кислоты. // Электрохимия, 40 (2004), N 3, с. 339−345.
  290. В.Ф., Грибкова О. Л., Некрасов А. А., Исакова А. А., Ванников А. В., Электрохимический синтез полианилина в присутствии поли(2-акриламидо-2-метил-1-пропансульфокислоты, Исследовано в России, 2004, N 7, с.1576−1584.
  291. Мешков Г. Б, Иванов В. Ф., Яминский И. В., Сканирующая резистивная микроскопия. // Высокомолекулярные соединения, Серия Б, 47 (2005) № 10, с. 2060−2064.
  292. М.Г., Иванов В. Ф., Чеберяко К. В., Ванников А. В. Использование нематиков для изучения неоднородности проводимости полимерных структур. // Оптический Журнал, 2004, т. 71, № 11, с. 95−96.
  293. М.Р., Орлов С. Б., Школьников Е. И. и др., Электрохимия полимеров. М.: Наука, 1990, с. 238−249.
  294. М.Ю., Иванов В. Ф., Чеберяко К. В., Грибкова О. Л., Некрасов А. А., Ванников А. В., Томилин М. Г. Процесс самоорганизации и анализ морфологии вакуумно-напыленных пленок полианилина. II Электрохимия, 2004, т. 40, № 3, с. 393−395.1. Иностранная
  295. Abell L., Adams P.N., Monkman А.Р., Electrical conductivity enhancement of predoped polyaniline by stretch orientation. II Polymer, 37 (1996) N 26, p. 59 275 931.
  296. L. Abell, S. J. Pomfret, E. R. Holland, P. N. Adams, and A. P. Monkman, in Proc. Soc. of Plastic Engineers Ann. Technical Conf. (ANTEC 1996) (The Society of Plastic Engineers, Brookville, CT), (1996), p. 1417.
  297. Abell L., Pomfret S.J., Adams P.N., Middleton A.C., Monkman A.P., Studies of stretched predoped polyaniline films. // Synth. Met. 84 (1997), N 1−3, p. 803−804.
  298. Andersen P.W., Yuval G., Magnetism, Ed. by Suhl H., N.Y., Acad. Press., 1973, Vol. 5, p. 217.
  299. Adams P.N., Pomfret S.J., Monkman A.P., Conductivity measurements of novel, oriented polyaniline films. // Synth. Met., 101 (1999), N 1−3, p. 776−777.
  300. Bartlett P.N., Wang J.H., Electroactivity, stability and application in an enzyme switch at pH 7 of poly (aniline)-poly (styrenesulfonate) composite films. // J. Chem. Soc. Faraday Trans., 92 (1996), p. 4137−4143.
  301. Cai L.-T., Yao S.-B., Zhou S.-M., Improved conductivity and electrical properties of polyaniline in the presence of rare-earth cations and magnetic field. // Synth. Met., 88 (1997), N 3. p. 205−208, a.
  302. Cai L.-T., Yao S.-B., Zhou S.-M., Surfactant effects on the polyaniline film. // Synth. Met., 88 (1997), N 3, p. 209−212, b.
  303. Cai L.-T., Yao S.-B., Zhou S.-M., Effects of the magnetic field on the polyaniline film studied by in situ conductivity measurements and X-ray diffraction. II J. Electroanal. Chem., 421 (1997), N 1−2, p. 45−48, c.
  304. Chiang J.-C., MacDiarmid A.G., Polyaniline': Protonic acid doping of the emeraldine form to the metallic regime. II Synth. Met., 13 (1986), N1−3, p. 193 205.
  305. H.Csahok E., Vieil E., Inzelt G., In situ dc conductivity study of the redox transformations and relaxation of polyaniline films. // J. Electroanal. Chem., 482 (2000), N2, p. 168−177.
  306. Djurado D., Nicolau Y.F., Dalsegg I., Samuelsen E.J., X-ray scattering study of CSA protonated polyaniline films and powders. // Synth. Met., 84 (1997), N 1−3, p. 121−122.
  307. Epstein A.J., MacDiarmid A.G., Structure, order and the metallic state in polyaniline and its derivatives. // Synth. Met., 41 (1991), N1−3, p. 601−605.
  308. Focke W.W., Wnek G.E., Wei Y., Influence of oxidation state, pH, and counterion on the conductivity of polyaniline J. Phys. Chem., 91 (1987), N 22, p. 5813−5818.
  309. Focke W.W., Wnek G.E., Conduction mechanisms in polyaniline (emeraldine salt). // J. Electroanal. Chem., 256 (1988), N 2, p. 343−352.
  310. Genies E.M., Boyle A., Lapkowski M., Tsintavis C., Polyaniline: A historical survey. //Synth. Met., 36 (1990), N 2, p.139−182.
  311. Genoud F., Kruszka J., Nechtschein M., Santier C., Davied S., Nicolau Y., Simultaneous «in situ» conductivity and ESR measurements: evidence for spinless conducting state in polyaniline. // Synth. Met., 43 (1991), N1−2, p.2887−2890.
  312. Glarum S.H., Marshall J. H., Electron derealization in poly (aniline. II J. Phys. Chem., 92 (1988), N 14, p. 4210−4217.
  313. Gordon R.G., Criteria for choosing transparent conductors. // MRS Bull., 25 (2000), p. 52−57.
  314. Grosse P., Free Electrons in Solids, Mir, Moscow, 1982.
  315. Heeger A.J., Nobel Lecture, Nobel Lectures in Chemistry 1996−2000, Ed. By I. Grethe, 476 pp. Stockholm, 2003.
  316. Heeger A.J., Semiconducting and metallic polymers: the fourth generation of polymeric materials. II Synth. Met., 125 (2001), N 1, p. 23−42.
  317. Ivanov V.F., Gribkova O.L., Nekrasov A. A, and Vannikov A.V., Filament-like structure formation in vacuum thermally evaporated thin films of polyaniline during oxidation in nitric acid. II Mendeleev Commn., (1998), No. 1, p. 4−6.
  318. Ivanov V. F,. Gribkova O. L,. Nekrasov A. A, Vannikov A.V., Meshkov G.B., Yaminsky I.V., Multilevel Redox Heterogeneity In Polyaniline Films: From Molecular To Macroscopic Scale. II Mater. Sci. Eng. C, 2003, v.23, p. 953−957.
  319. Ivanov V.F., Gribkova O.L., Novikov S.V., Nekrasov A.A., Isakova A.A., Vannikov A.V., Meshkov G.B.,. Yaminsky I.V. Redox heterogeneity in polyaniline films: from molecular to macroscopic scale. II Synth. Met. 2005, v. 152, p. 153 156.
  320. Javadi H.H.S., Angelopoulos M., MacDiarmid A.G., Epstein A.J., Conduction mechanism of polyaniline: Effect of moisture. Synth. Met., 26 (1988), N 1, p. 18.
  321. Joo J., Oh E., Min G., MacDiarmid A.G., Epstein A.J., Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes. //Synth. Met., 69 (1995), N 1−3, p. 251−257.
  322. Josefowicz M.E., Laversanne R., Javadi H.H.S., Pouget A.P., Tang X., MacDiarmid A.G., Multiple lattice phases and polaron-lattice—spinless-defect competition in polyaniline. // Phys. Rev. B, 39 (1989), N 17, p. 12 958−12 961.
  323. Kahol P.K., Dyakonov A.J., McCormick B.J., An electron-spin-resonance study of polymer interactions with moisture in polyaniline and its derivatives. // Synth. Met., 89 (1997), N1, p. 17−28, a.
  324. Kahol P.K., Dyakonov A.J., McCormick B.J., An electron-spin-resonance study of polyaniline and its derivatives: polymer interactions with moisture. // Synth. Met., 84 (1997), N 1−3, p. 691−694, b.
  325. Kivelson S., Heeger A.J., Intrinsic conductivity of conducting polymers. // Synth. Met., 22 (1988), N1−3, p. 371−384.
  326. Kohlman R.S., Zibold A., Tanner D.B., lhas C.G., Ishiguro Т., Min Y.G., MacDiarmid A.G., Epstein A.J., Limits for metallic conductivity in conducting polymers. II Phys. Rev. Lett., 78 (1997), N 20, p. 3915−3918.
  327. V.I., 2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymers, // Synth. Met., 108 (2000), N 3, p. 173 222.
  328. Kruszka J., Nechtschein S., Santier C., Simultaneous in situ conductivity and ESR measurements of electroactive polymers in electrochemical cell. II Rev. Sci. Instrum., 62 (1991), N 3, p. 695−699.
  329. Li. G., Zheng P., Wang N.L., Chen Z.J., Li J.C., Wan M.X., Optical study on doped polyaniline composite films, arXiv: cond-mat/404 629 VI 27 Apr2004.
  330. Lippe J., Holze R., Electrochemical in-situ conductivity and polaron concentration measurements at selected conducting polymers. // Synth. Met., 41−43 (1991), p. 2927−2930, a.
  331. Lippe J., Holze R., In situ spectroelectrochemical investigation of the solvent effect on polyaniline and polypyrrole. // Mol. Cryst. Liq. Cryst., 208 (1991), p. 99 104, b.
  332. Lundberg В., Salaneck W.R., Lundstrom I., Pressure, temperature and field dependence of hopping conduction in polyaniline. // Synth. Met., 21 (1987), N1, p. 143−147.
  333. MacDiarmid A.G., Chiang J.-C., Halpern M., Huang W.-S., Mu S.-L., Nanaxakkara L.D., Wu S.W., Yaniger S.I., «Polyaniline»: interconversion of metallic and insulating forms. // Mol. Cryst. Liq. Cryst., 121 (1985), N2, p. 173 180.
  334. MacDiarmid A.G., Chiang J.C., Richter A.F., Epstein A.J., Polyaniline: a new concept in conducting polymers. // Synth. Met., 18 (1987), N1−3, p. 285−290.
  335. MacDiarmid A.G., Polyaniline and polypyrrole: Where are we headed?. // Synth. Met., 84 (1997), N 1−3, p. 27−34.
  336. MacDiarmid A.G., Synthetic metals: a novel role for organic polymers. // Synth. Met., 125 (2001), N 1−2, p. 11−22.
  337. Monkman A.P., Bloor D., Stevens G.C., Stevens J.C.H., Wilson P., Electronic structure and charge transport mechanisms in polyaniline. // Synth. Met., 29 (1989), N 1−3, p. E277-E284.
  338. Adams P.N., Pomfret S.J., Monkman A.P., Conductivity measurements of novel, oriented polyaniline films. // Synth. Met., 101 (1999), N 1−3, p. 776−777.
  339. Mott N.F., Davis T.A., Electronic Processes in Noncrystalline Materials (Oxford University Press, Oxford, 1979).
  340. R.W., «Chemically Modified Electrodes» In: Electroanalytical Chemistry, Bard A.J., ed., Marcel Dekkerlnc., NY, 13 (1984), p. 191.
  341. Paul E.W., Ricco A.J., Wrighton M.S., Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. // J. Phys. Chem., 89 (1985), N 8, p. 1441−1447.
  342. Pinto N.J., Shah P.D., McCormick B.J., Kahol P.K., Dependence of the conducting state of polyaniline films on moisture. // Solid State Commun., 97 (1996), N 11, p. 931−934.
  343. Pouget J.P., Oblakowski Z., Nogami Y., Albouy P.A., Laridjani M., Oh E.J., Min Y., MacDiarmid A.G., Tsukamoto J., Ishiguiro Т., Epstein A.J., Recent structural investigations of metallic polymers. Synth. Met., 65 (1994), N 2−3, p. 131−140.
  344. Posdorfer J. R., Werner В., Wessling В., Heun S., Becker H., Influence of conductivity and work function of polyaniline-based HIL on PLED device performance. //Proceedings of SPIE, 5214 (2004), p. 188−196.
  345. Prigodin V.N., Epstein A.J., Nature of insulator-metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers. // Synth. Met., 125 (2001), N 1, p. 43−53.
  346. Prigodin V.N., Epstein A.J., Quantum hopping in metallic polymers. II Physica B: Condens. Matter, 338 (2003), N 1−4, p. 310−317.
  347. Probst M., Holze R., Time- and temperature-dependent changes of the in situ conductivity of polyaniline and polyindoline. // Electrochim. Acta, 40 (1995), N 2, p. 213−219.
  348. Singh R., Arora V., Tandon R.P., Chandra S., Kumar N., Mansingh A., Transport and structural properties of polyaniline doped with monovalent and multivalent ions. // Polymer, 38 (1997), N 19, p. 4897−4902.
  349. Stauffer D., Aharoni A., Introduction to the Percolation Theory, Taylor & Francis, London, 1991.
  350. Turing A., The chemical basis of morphogenesis. // Phil. Trans. Roy. Soc. London. Ser. В., 237 (1952), N 641, p. 37−72.
  351. Yang S.M., Lin T.S., In situ electron spin resonance and cyclic voltammetric studies of polyaniline. // Synth. Met., 29 (1989), N 1−3, p. 227−229.
  352. Zeng X.-R., Ко T.-M., Structure conductivity relationships of iodine-doped polyaniline. // J. Polym. Sci. Part B: Polym. Phys., 35 (1997), N 13, p. 19 932 001.
  353. Zeng X.-R., Ко T.-M., Structures and properties of chemically reduced polyanilines. // Polymer, 39 (1998), N 5, p. 1187−1195.
  354. Zuo F., Angelopoules M., MacDiarmid A.G., Epstein A.J., Transport studies of protonated emeraldine polymer: A granular polymeric metal system. // Phys. Rev. B, 36, (1987), N 6, p. 3475−3478.
  355. Wang Z.H., Javadi H.H.S., Ray A., MacDiarmid A.G., Epstein A.P., Electron localization in polyaniline derivatives. // Phys. Rev. B, 42 (1990), N 8, p. 54 115 414.
  356. Wang Z.H., Ray A., MacDiarmid A.G., Epstein A.P., Electron localization and charge transport in poly (o-toluidine): A model polyaniline derivative. // Phys. Rev. B, 43 (1991), p. 4373−4384.
  357. Wang Z.H., Li C., Scherr E.M., MacDiarmid A.G., Epstein A.P., Three dimensionality of «metallic» states in conducting polymers: Polyaniline. // Phys. Rev. Lett., 66 (1991), N 13, p. 1745−1748, a.
  358. Wang Z.H., Scherr E.M., MacDiarmid A.G., Epstein A.P., Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional «metallic» states. // Phys. Rev, B, 45 (1992), N 8, p. 4190−4202, b.
  359. Wei X.-L., Epstein A.J., Simulations of the In situ cyclic voltammetry dependent EPR spectra and DC conductivity. // Synth. Met., 84 (1997), N 1−3. p. 791−792.
Заполнить форму текущей работой