Помощь в написании студенческих работ
Антистрессовый сервис

Галогенофильный механизм и классический механизм присоединения-элиминирования в реакциях нуклеофильного винильного замещения с участием анионов карбонилов переходных металлов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Lee S.J., Terrazas M.S., Pippel D.J., Beak P., Mechanism of Electrophilic Chlorination: Experimental Determination of a Geometrical Requirement for Chlorine Transfer by the Endocyclic Restriction Test. J. Am. Chem. Soc., 2003,125 (24), 73 077 312. Baciocchi E., Schiroli A., Dehalogenation Reactions of Vicinal Dihalides. Part II. Substituent and Leaving-group Effects in the Reactions of l… Читать ещё >

Галогенофильный механизм и классический механизм присоединения-элиминирования в реакциях нуклеофильного винильного замещения с участием анионов карбонилов переходных металлов (реферат, курсовая, диплом, контрольная)

Содержание

  • ВЫВОДЫ

1. Исследованы реакции карбонилат-анионов ([М (СО)пЦ") с широким кругом винилгалогенидов, отличающихся как природой галогена (На1=Р, С1, Вг, 1), так и степенью активации двойной связи и пространственным строением реакционного центра. Изучен состав продуктов и кинетика реакций, показано, что реакции в большинстве случаев происходят с сохранением конфигурации двойной связи.

2. Найден необычный галогенофильный механизм нуклеофильного винильного замещения, первой стадией которого является нуклеофильная атака карбонилат-аниона по атому галогена. Образование продуктов замещения, обычных сг-винильных комплексов УтМ (СО)"Ь или гало (ацил)металлатов [Ут (СО)М (СО)4На1]" М=Ые, Мп, происходит в результате сочетания интермедиатов, винильного карбаниона и М (СО)пЬНа1. Строение гало (ацил)рената впервые охарактеризовано методом РСА.

3. Показано, что нуклеофильная атака карбонилата по атому галогена является общим явлением и выступает в качестве основной альтернативы классическому АёкЕ механизму нуклеофильного винильного замещения. Вероятность галогенофильной реакции увеличивается в ряду С1"Вг"1, большинство винилхлоридов и первичные винилбромиды реагируют по Ас1кЕ механизму. Решающую роль играет строение винилгалогенида: стабильность карбанионных интермедиатов Ас1иЕ или галогенофильной реакций и наличие пространственных препятствий для атаки нуклеофила по двойной связи. Галогенофильный механизм возможен даже в реакциях винилхлоридов с карбонилатами, также как механизм А<1мЕ возможен для винилиодидов.

4. Для сравнения изучены реакции тиолатов и карбанионов с теми же субстратами и показано, что они происходят по обычному АёкЕ механизму, что подтверждает более высокую «галогенофильность» металл-центрированных карбонилат-анионов по сравнению с С- и Б-нуклеофилами.

5. На примере реакций карбонилат-анионов впервые создана субстрат-независимая шкала нуклеофильности для реакций винильного замещения по Ас^Е механизму. Нуклеофильность карбонилатов хорошо коррелирует с их нуклеофильностью в алифатическом замещении, но изменяется в намного более широком диапазоне:

CpFe (CO)2]""[Re (CO)5]""[Mn (CO)5]">[CpW (CO)3]">[CpMo (CO)3]" *[M (C0)"L]M' ~1014 7−107 130 5 1

CpMo (CO)j]K

Расширенная шкала нуклеофильности карбонилатов справедлива и для галогенофильных реакций карбонилатов с винилгалогенидами.

6. Найдена корреляция lg (&on<) галогенофильных реакций с линейной комбинацией AEi реакции VinHal —> [Vin]" + Hal+ и АЕг реакции VinHal + [Мп (СО)5]~ —*¦ [Vin]- + Mn (CO)sHal, рассчитанных методом DFT.

7. Разработана модель, позволяющая предсказать скорость АёкЕ и галогенофильных реакций винилгалогенидов с карбонилатами, основанная на корреляции экспериментально полученных данных lg (A'0TII) с рядом параметров, рассчитанных методом DFT. Модель корректно предсказывает направление реакций винилгалогенидов с карбонилатами и позволяет построить ряд электрофильности винилгалогенидов в AcInE и галогенофильных реакциях.

1. Wursthorn K.R., Kuivila H.G., Smith G.F., Nucleophilic Aromatic Substitution by Organostannylsodiums. A Second-Order Reaction Displaying a Solvent Cage Effect. J. Am. Chem. Soc., 1978,100 (9), 2779−2789.

2. Mitchell T.N., Reimann W., 1,1-Distannyl-l-alkenes: A New Method of Formation and Some Further Reactions. Organometallies, 1986, 5, 1991;1997.

3. Dodd D., Johnson M.D., Meeks B.S., Titchmarsh D.M., Duong K.N.V., Gaudemer A., ?-Styrylcobaloximes: mechanism of formation from ?-styryl halides and mechanism of cleavage by electrophiles. J. Chem. Soc., Perkin Trans. 2,1976, (11), 1261−1267.

4. Cabaret D., Maigrot N., Welvart Z., Duong K.N.V., Gaudemer A., Atropisomeric Alkenyl Cobaloximes. Stereochemical Study of the Vinyl Halide Substitution by Transition-Metal Complexes. J. Am. Chem. Soc., 1984,106 (10), 2870−2874.

5. Tada M., Kubota M., Shinozaki H., Bromination and Mercuration of Bis-dimethylglyoximato (l-octenyl)-pyridinecobalt (III), 1-Octenyl Cobaloxime. Bull. Chem. Soc. Jpn., 1976, 49 (4), 1097−1100.

6. Mccauley K.M., Wilson S.R., Van Der Donk W.A., Dichloroacetylene is not the precursor to dichlorinated vinylcobaloxime and vinylcobalamin in cobalt catalyzed dechlorination of perchloroand trichloroethylene. Inorg. Chem., 2002,41 (22), 58 445 848.

7. Postigo A., Vaillard S.E., Rossi R.A., Mechanistic studies on the reactions of trimethylsilanide and trimethylstannylide ions with haloarenes in hexamethylphosphoramide. J. Organomet. Chem., 2002, 656, 108−115.

8. Pearson R.G., Figdore P.E., Relative Reactivities of Methyl Iodide and Methyl Tosylate with Transition-Metal Nucleophiles. J. Am. Chem. Soc., 1980,102 (5), 15 411 547.

9. Okabe M., Tada M., Stereochemical Study on the Reaction of Cobaloxime© with 2-Substituted Cyclohexil Halides. Evidence For an Electron Transfer Mechanism. Chem. Lett., 1980, 9 (7), 831−834.

10. Ashby E.C., Su W.Y., Pham T.N., Evidence for electron transfer in the reaction of (trimethylstannyl)sodium with primary alkyl halides. Organometallics, 1985, 4 (9), 1493−1501.

11. Krusic P.J., Fagan P.J., San Filippo J., Free radical participation in the reaction of metalate anions with alkyl halides. J. Am. Chem. Soc., 1977, 99 (1), 250−252.

12. Adcock W., Clark C.I., Trout N.A., Nucleophilic substitution induced by electron transfer at the bridgehead of polycyclic alkanes: Competition between polar and radical pathways. J. Org. Chem., 2001, 66 (Щ, 3362−3371.

13. Dessy R.E., Pohl R.L., King R.B., Organometallic Electrochemistry. VI. Electrochemical Scission of Metal-Metal Bonds. J. Am. Chem. Soc., 1966, 88 (22), 5121−5124.

14. Lai C.K., Feighery W.G., Zhen Y.Q., Atwood J.D., Nucleophilicities of the Metal-Carbonyl Anions Effects of Ligands, Solvent, and Countercation. Inorg. Chem., 1989, 28 (20), 3929−3930.

15. King R.B., Perspectives in Syntheses of Novel Organometallic Compounds Using Metal-Carbonyl Anions. J. Organomet. Chem., 1975,100 (1), 111−125.

16. King R.B., Applications of metal carbonyl anions in the synthesis of unusual organometallic compounds. Acc. Chem. Res., 1970, 3 (12), 417−427.

17. Theys R.D., Dudley M.E., Hossain M.M., Recent chemistry of the r|5-cyclopentadienyl dicarbonyl iron anion. Coord. Chem. Rev., 2009,253 (1−2), 180−234.

18. Bruce M.I., Stone F.G.A., Nucleophilic Reactions of Metal Carbonyl Anions with Fluorocarbons. Angew. Chem. Int. Ed., 1968, 7(10), 747−753.

19. Artamkina G.A., Sazonov P.K., Ivushkin V.A., Beletskaya I.P., The reaction of the CpFe (CO)2.(«) anion with pentafluorochlorobenzene: Nucleophilic aromatic substitution by halogen-metal exchange. Chem. Eur. J., 1998, 4 (7), 1169−1178.

20. Rappoport Z., Nucleophilic Vinylic Substitution. Adv. Phys. Org. Chem., 1969, 7, 1114.

21. Rappoport Z., The Rich Mechanistic World of Nucleophilic Vinylic (SnV) Substitution. Reel. Trav. Chim. Pays-Bas, 1985,104 (12), 309−349.

22. Шаинян Б. А., Реакции бимолекулярного нуклеофильного замещения у винильного центра Yen. химии, 1986, 55 (6), 942−973.

23. Modena G., Reactions of Nucleophiles with Ethylenic Substrates. Acc. Chem. Res., 1971, 4, 73−80.

24. Rappoport Z., Nucleophilic Vinylic Substitution a Single-Step or a Multistep Process. Acc. Chem. Res., 1981,14 (1), 7−15.

25. Rappoport Z., The Rapid Steps in Nucleophilic Vinylic Addition Elimination Substitution Recent Developments. Acc. Chem. Res., 1992,25 (10), 474−479.

26. Bernasconi C.F., Rappoport Z., Recent Advances in Our Mechanistic Understanding of SNV Reactions. Acc. Chem. Res., 2009, 42 (8), 993−1003.

27. Russell G.A., Dedolph D.F., Reaction of Nucleophiles with 1, l-Dinitro-2,2-diphenylethylene. J. Org. Chem., 1985, 50 (20), 3878−3881.

28. Шаинян Б. А., Верещагин A.Jl., Нуклеофильные реакции у винильного центра. XXVIII. Фторхлорэтены и фторбромэтены в реакциях с алкоголятами и арентиолатами натрия. Журн. Орг. Химии, 1993, 29 (12), 2375−2385.

29. Koroteev S.V., Ermekov D.S., Todres Z.V., Malievskii A.D., Kinetics and Mechanism of Reaction of Cis-oc, P-Dinitrostilbene With Morpholine. Russ. Chem. Bull, 1992, 41 (1), 60−64.

30. Бердников E.A., Вафина A.A., Полушина B.JI., Зарипова P.M., Танташева Ф. Н., Ильясов А. В., Перенос электрона в реакциях нуклеофильного винильного замещения с участием бромвинилсульфонов. Изв. АН СССР, сер. Хим., 1981, (12), 2785−2787.

31. Connor J. A., Riley P.I., Electron transfer in oxidative addition reactions of d6-metal complexes. J. Chem. Soc., Chem. Commun., 1976, (16), 634−635.

32. Bernasconi C.F., Schuck D.F., Ketner R.J., Eventova I., Rappoport Z., The CF3CH20' Adducts of a-Nitro-P-(2,2,2-Trifluoroethoxy)Stilbene and P-Methoxy-oc.

33. Nitrostilbene, and the MeO" Adduct of P-Methoxy-a-Nitrostilbene Kinetics of Competition Between Protonation and Acid-Catalyzed Alkoxide Ion Departure. J. Am. Chem. Soc., 1995,117 (10), 2719−2725.

34. Чамберс Р. Д., Моббс Р. Г. в книге Успехи химии фтора. 1970, Химия: Ленинград, 255−294.

35. Koch H.F., Kielbania A.J., Nucleophilic Reactions of Fluoroolefms. Evidence for a Carbanion Intermediate in Vinyl and Allyl Displacement Reactions. J. Am. Chem. Soc., 1970, 92 (3), 729−730.

36. Sauvetre R., Normant J.-F., Reactions nucleophiles sur des fluoroethylenes. Bull. Soc. Chim. Fr., 1972,28 (8), 3202−3205.

37. Silversmith E.F., Smith D., Kinetics of the Reaction between a Vinyl Fluoride and Sodium Ethoxide. J. Org. Chem., 1958,23 (3), 427−430.

38. Normant J., Sauvetre R., Villierus J., Substitutions nucleophiles d’olefines fluorees — I. Tetrahedron, 1975, 31 (7), 891−896.

39. Зейфман Ю. В., Кнунянц И. Л., Тер-Габриэлян Е.Г., Гамбарян Н. П., Химия перфторизобутилена Yen. химии, 1984, 53 (3), 431−461.

40. Rappoport Z., Ta-Shma R., Nucleophilic Attacks On Carbon-Carbon Double-Bonds. Part XIII. Vinylic substitution of l, l-Dicyano-2-p-dimethylaminophenyl-2-halogenoethylenes by Aromatic Amines in Acetonytrile. J. Chem. Soc. B, 1971, 871 881.

41. Rappoport Z., Topol A., Nucleophilic Attacks On Carbon-Carbon Double-Bonds .39. Nucleophile and Nucleofuge Effects, Catalysis, and Stereochemistry in Vinylic Substitution of Electrophilic Nitro Olefins. J. Org. Chem., 1989, 54 (25), 5967−5977.

42. Chen X., Rappoport Z., Substitution of P-halostyrenes by MeS". J. Org. Chem., 1998, 63 (16), 5684−5686.

43. Артамкина Г. А., Штерн M.M., Сазонов П. К., Белецкая И. П., Реакции нуклеофильного винильного замещения. III. Взаимодействие аниона 9-метилфлуорена с р-галоген-а, Р-дифторстиролами. Влияние ионной ассоциации. Журн. Орг. Химии, 1996, 32 (9), 1329−1333.

44. Apeloig Y., Rappoport Z., Importance of Hyperconjugation in Nucleophilic Vinylic Substitution. J. Am. Chem. Soc., 1979,101 (17), 5095−5098.

45. Kami M., Bernasconi C.F., Rappoport Z., Role of Negative Hyperconjugation and Anomeric Effects in the Stabilization of the Intermediate in SnV Reactions. J. Org. Chem., 2008, 73 (8), 2980−2994.

46. Ando K., Kitamura M., Miura K., Narasaka K., Theoretical and Experimental Study on the In-Plane SN2-Type Substitution Reaction of Haloalkenes with Inversion of Configuration at the sp2 Carbon. Org. Lett., 2004, 6 (14), 2461−2463.

47. Chiba S., Ando K., Narasaka K., Concerted Nucleophilic Substitution Reactions at Vinylic Carbons. Synlett, 2009, (16), 2549−2564.

48. Lucchini V., Modena G., Pasquato L., An Authentic Case of Inplane Nucleophilic Vinylic Substitution the Anionotropic Rearrangement of Di-fc/'i-Butylthiirenium Ions Into Thietium Ions. J. Am. Chem. Soc., 1993,115 (11), 4527−4531.

49. Okuyama Т., Lodder G., Nucleophilic vinylic substitution and vinyl cation intermediates in the reactions of vinyl iodonium salts. Adv. Phys. Org. Chem., 2002, 37, 1−56.

50. Okuyama Т., Takino Т., Sato K., Oshima K., Imamura S., Yamataka H., Asano Т., Vinylic Sn2 Reaction of 1-Decenyliodonium Salts with Halide Ions. Bull. Chem. Soc. Jpn., 1998, 71, 243−257.

51. Glukhovtsev M.N., Pross A., Radom L., Is Sn2 Substitution with Inversion of Configuration at Vinylic Carbon Feasible? J. Am. Chem. Soc., 1994,116 (13), 59 615 962.

52. Bach R.D., Baboul A.G., Schlegel H.B., Inversion versus retention of configuration for nucleophilic substitution at vinylic carbon. J. Am. Chem. Soc., 2001,123 (24), 5787−5793.

53. Kim C.K., Hyun K.H., Lee I., Nucleophilic substitution at unactivated vinylic carbon. Factors conducive to the energetic preference for the in-plane SN2 pathway. J. Am. Chem. Soc., 2000,122 (10), 2294−2299.

54. Ando K., Theoretical Study of the Nucleophilic 5-Endo-Trigonal Cyclization of 1,1-Difluoro-1 -alkenes. J. Org. Chem., 2004, 69 (12), 4203−4209.

55. Maffeo C.V., Marchese G., Naso F., Ronzini L., Reactions between Lithium Dimethylcuprate and Alkenyl Bromides, Chlorides, and Fluorides: Synthetic, Mechanistic, and Stereochemical Aspects. J. Chem. Soc., Perkin Trans. 1,1979, (1), 92−97.

56. Whitesides G.M., Fischer W.F., San Filippo J., Bashe R.W., House H.O., Reaction of Lithium Dialkyland Diarylcuprates with Organic Halides. J. Am. Chem. Soc., 1969, 91 (17), 4871−4882.

57. Yoshikai N., Nakamura E., Mechanism of Substitution Reaction on sp2-Carbon Center with Lithium Organocuprate. J. Am. Chem. Soc., 2004,126 {39), 12 264−12 265.

58. Cohen D., Bar R., Shaik S.S., Nucleophilic Vinylic Substitution a Theoretical-Study. J. Am. Chem. Soc., 1986,108 (2), 231−240.

59. Bach R.D., Wolber G.J., Nucleophilic Substitution at Vinylic Carbon: The Importance of the HOMO-HOMO Interaction. J. Am. Chem. Soc., 1984,106 (5), 1401−1409.

60. Rappoport Z., Nucleophilicity in Reactions At a Vinylic Carbon. Adv. Chem. Series, 1987,(215), 399−421.

61. Swain C.G., Scott C.B., Quantitative Correlation of Relative Rates. Comparison of Hydroxide Ion with Other Nucleophilic Reagents toward AlkyI Halides, Esters, Epoxides and Acyl Halides. J. Am. Chem. Soc., 1953, 75, 141−147.

62. Ritchie C.D., Nucleophilic reactivities toward cations. Acc. Chem. Res., 1972, 5, 348 354.

63. Ritchie C.D., Sawada M., Cation-anion combination reactions. 15. Rates of nucleophilic aromatic substitution reactions in water and methanol solutions. J. Am. Chem. Soc., 1977, 99 (11), 3754−3761.

64. Hoz S., Speizman D., Nucleophilic Attacks on Activated 9-Methylenefluorenes. Application of the Ritchie Equation to Low-Lying LUMO Substrates. J. Org. Chem., 1983, 48 (17), 2904−2910.

65. Richard J.P., Toteva M.M., Crugeiras J., Structure-Reactivity Relationships and Intrinsic Reaction Barriers for Nucleophile Additions to a Quinone Methide: A Strongly Resonance-Stabilized Carbocation. J. Am. Chem. Soc., 2000,122 (8), 16 641 674.

66. Zefirov N.S., Makhon’kov D.I., X-Philic Reactions. Chem. Rev., 1982, 82, 615−624.

67. Ингольд К., Теоретические основы органической химии. М.: Мир, 1973, 1054 с.

68. Glukhovtsev M.N., Pross A., Schlegel Н.В., Bach R.D., Radom L., Gas-Phase Identity Sn2 Reactions of Halide Anions and Methyl Halides with Retention of Configuration. J. Am. Chem. Soc., 1996, 118 (45), 11 258−11 264.

69. Bailey W.F., Punzalan E.R., Convenient General Method for the Preparation of Primary Alkyllithiums by Lithium-Iodine Exchange. J. Org. Chem., 1990, 55 (19), 5404−5406.

70. Bailey W.F., Patricia J. J., The Mechanism of the Lithium Halogen Interchange Reaction a Review of the Literature. J. Organomet. Chem., 1988, 352 (1−2), 1−46.

71. Bailey W.F., Patricia J.J., Nurmi T.T., Wang W., Metal-Halogen Interchange Between Tert-Butyllithium and l-Iodo-5-Hexenes Provides No Evidence For Single-Electron Transfer. Tetrahedron Lett., 1986,27 (17), 1861−1864.

72. Narasimhan N.S., Sunder N.M., Ammanamanchi R., Bonde B.D., Evidence in Favor of Lithium Halogen Exchange Being Faster than Lithium Acidic Hydrogen (Deuterium) Exchange. J. Am. Chem. Soc., 1990,112 (11), 4431−4435.

73. Bolton R., Moore C., Sandall J.P.B., Nucleophilic Displacement in Polyhalogenoaromatic Compounds .11. Kinetics of Protiodeiodination of Iodoarenes in Dimethylsulfoxide Methanol. J. Chem. Soc., Perkin Trans. 2,1982, (12), 15 931 598.

74. Grinblat J., Ben-Zion В., Hoz S., Halophilic reactions: Anomalies in bromine transfer reactions. J. Am. Chem. Soc., 2001,123 (43), 10 738−10 739.

75. Wittig G., Schollkopf U., Zum Chemismus der Halogen-Lithium-Austauschreaktion. Tetrahedron, 1958, 3, 91−93.

76. Sunthankar S.V., Gilman H., Halogen-Metal Interconversion and Metalation in the Naphthalene Series. J. Org. Chem., 1951,16 (1), 8−16.

77. Jones R.G., Gilman H., The Halogen-Metal Interconversion Reaction with Organolithium Compounds. Organic Reactions, 1951, 6, 339−366.

78. Jones R.G., Gilman H., Methods of Preparation of Organometallic Compounds. Chem. Rev., 1954, 54, 835.

79. Талалаева T.B., Кочешков K.A., Методы металлорганической химии. Литий, натрий, калий, рубидий, цезий. 1971, Наука: Москва, 215−251.

80. Fleming F.F., Zhang Z.Y., Liu W., Knochel P., Metalated nitriles: Organolithium, -magnesium, andcopper exchange of a-halonitriles. J. Org. Chem., 2005, 70 (6), 2200−2205.

81. Russell G.A., Rhee J.U., Baik W., Reactions of p-nitrobenzyl halides with dialkyl phosphite anions in dimethyl sulfoxide. Heteroat. Chem., 1998, 9 (2), 201−208.

82. Grossert J.S., Dubey P.K., Elwood Т., The reactions of some a-halo-P-ketosulfones with hard and soft nucleophiles. A preparation of sulfinate esters. Can. J. Chem., 1985, 63, 1263−1267.

83. Appel R., Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and PN Linkage. Angew. Chem., Int. Ed. Engl., 1975,14 (12), 801−811.

84. Kuivila H.G., Distefano F.V., Mechanisms of the reactions of chloromethanes with trimethylstannylsodium. Synthesis of tetrakistrimethylstannyl.methane. J. Organomet. Chem., 1976,122 (2), 171−186.

85. Abele E., Lukevics E., Reactions of carbon tetrachloride and carbon tetrabromide with anions and carbanions. A review. Org. Prep. Proced. Int., 1999, 31 (4), 359−378.

86. Reeve W., Fine L.W., Halogen-Metal Interchange Reactions of 3,3,3-Trichloro-1,2-epoxypropane and of Chloral with Organolithium Compounds and Grignard Reagents. J. Am. Chem. Soc., 1964, 86, 880−882.

87. Mach M.H., Bunnett J.F., Participation of oligochlorobenzenes in the base-catalyzed halogen dance. J. Org. Chem., 1980,45 (23), 4660−4666.

88. Li X., Jiang X., Pan H., Hu J., Fu W., Nucleophilic substitutions of perhalofuoroalkanes initiated by halophilic attacks. PureAppl. Chem., 1987, 59 (8), 1015−1020.

89. Fu W.M., Zhang X.J., Jiang X.K., Relative reactivities of halogen-substituted substrates (R-Br, R-Cl) toward the halophilic attack by a carbanion. Sci. China, Ser. В Chem., 2001,44 (4), 337−343.

90. Нифантьев Э. Е., Химия гидрофосфорильных соединений. М.: Наука, 1983, 120 127.

91. Arens J.F., Chemistry of Acetylenic Ethers, 64. Some remarks concerning the «nucleophilic substitution at an acetylenic carbon». Reel. Trav. Chim. Pays-Bas, 1963, 82, 183−188.

92. Fujii A., Miller S.I., Nucleophilic Substitution at Acetylenic Carbon Kinetics and Mechanism of Arbuzov Reaction of Substituted Phenylbromoand Phenylchloroacetylenes with Triethyl Phosphite. J. Am. Chem. Soc., 1971, 93 (15), 3694−3700.

93. Dickstein J.I., Miller S.I., Nucleophilic Substitution at an Acetylenic CarbonMechanistic and Synthetic Study of Reactions of Phosphines with Haloacetylenes. J. Org. Chem., 1972, 37(13), 2168−2175.

94. Miller S.I., Dickstein J.I., Nucleophilic-Substitution at Acetylenic Carbon Last Holdout. Acc. Chem. Res., 1976, 9 (10), 358−363.

95. Днепровский A.C., Темникова Т. И., Теоретические основы органической химии. Л.: Химия, 1991, 560 с.

96. Реутов О. А., Белецкая И. П., Бутин К. П., СН-Кислоты. М.: Наука, 1980,248 с.

97. Gilman Н., Jones R.G., Reversible Halogen-Metal Interconversion Reactions. J. Am. Chem. Soc., 1941, 63, 1441−1442.

98. Ashby E.C., Pham T.N., Single Electron-Transfer in Metal Halogen Exchange the Reaction of Organolithium Compounds With Alkyl-Halides. J. Org. Chem., 1987, 52 (7), 1291−1300.

99. Ward H.R., Lawler R.G., Cooper R.A., Chemically Induced Dynamic Nuclear Polarization Evidence for One-Electron Transfers During Some Halogen-Metal Exchange Reactions. J. Am. Chem. Soc., 1969, 91 (3), 746−748.

100. Parham W.E., Bradsher C.K., Aromatic Organolithium Reagents Bearing Electrophilic Groups. Preparation by Halogen-Lithium Exchange. Acc. Chem. Res., 1982,15, 300 305.

101. Beak P., Allen D. J., Experimental Evaluation of Transition Structure Geometry For an Aryl Bromide Alkyllithium Exchange-Reaction New Information Relevant to the Reaction-Mechanism. J. Am. Chem. Soc., 1992,114 (9), 3420−3425.

102. Lee S.H., Chang Y.M., Yoon C.M., Debromination of a-Bromoketones and vic-Dibromides Using a NaI/Na2S03 System. Bull Korean Chem. Soc., 2004, 25 (11), 1723−1725.

103. Li C.J., Harpp D.N., Bis (Triphenylstannyl)Telluride a Mild and Efficient Reductive Dehalogenation Reagent for Alpha-Haloketones. Tetrahedron Lett., 1991, 32 (12), 1545−1548.

104. Dahl O., Alkyl Di-i-Butylphosphinites Exceptionally Halogenophilic Phosphinites in Arbuzov Reactions. J. Chem. Soc., Perkin Trans. 1,1978, (9), 947−954.

105. Караван B.C., Симонов Д. А., Новиков M.C., Соотношение изоселективности в «галогенофильной» реакции а-хлордезиларилсульфонов с тиофенолятами натрия. Журн. Орг. химии, 1989,25 (5), 905−909.

106. Shen Y., Yang В., A Novel Bisacylation via Halophilic Reaction of Tri-n-butylarsine. Synthesis of Methane substituted with Four Electron-withdrawing Groups. J. Chem. Soc., Chem. Commun., 1988, 1394−1395.

107. Freeman F., Reactions of Malononitrile Derivatives. Synthesis, 1981, (12), 925−954.

108. Fishwick B.R., Rowles D.K., Stirling C.J.M., Bromonitromethane A Versatile Electrophile. J. Chem. Soc., Perkin Trans. 1,1986, 1171−1179.

109. Winkler H.J.S., Winkler H., Mechanism of Halogen-Metal Interconversion between Aryl Bromides and Aryllithium Compounds. П. Rate Studies. J. Am. Chem. Soc., 1966, 88 (5), 969−974.

110. Rogers H.R., Houk J., Preliminary Studies of the Mechanism of Metal Halogen Exchange the Kinetics of Reaction of Normal-Butyllithium With Substituted Bromobenzenes in Hexane Solution. J. Am. Chem. Soc., 1982,104 (2), 522−525.

111. Баталов А. П., Обмен радикалами в металлоорганических соединениях. XLIV. Влияние заместителей на обмен радикалами между фениллитием и бромбензолом в диэтиловом эфире. Журн. Общ. химии, 1978, 48 (7), 1607−1611.

112. Bolton R., Sandall J.P.B., Nucleophilic Displacement in Polyhalogenoaromatic Compounds. Part 2. Kinetics of Halogen Displacement from Bromopolyfluoroaromatic Compounds. J. Chem. Soc., Perkin Trans. 2, 1976, 15 451 548.

113. Горелик M.B., Эфрос Jl.С., Основы химии и технологии ароматических соединений. М.: Химия, 1992, 106.

114. Burton D.J., Preparation and synthetic utility of fluorinated phosphonium salts, bis-phosphonium salts and phosphoranium salts. J. Fluorine Chem., 1983,23 (4), 339 357.

115. Li X.-Y., Pan H.-Q., Jiang X.-K., Zhan Z.-Y., Reaktionen von Per (chlor, fluor) ethanen mit Aryloxidund Alkoxid-Ionen unter chlorophilem Angriff an C-Cl-Bindungen. Angew. Chem., 1985, 97 (10), 867−868.

116. Li X.-Y., Pan H.-Q., Jiang X.-K., N-Perhalofluoroalkylation of Secondary Amines by the Reactions of the Amines and Amides with Perhalofluoroakanes. Halophilic Attack of Nitrogen Nucleophile of C-Br Bond. Tetrahedron Lett., 1987, 28 (32), 3699−3702.

117. Li X., Pan H., Jiang X., Spontaneous Reactions of Potassium Phenoxide with Dibromoperfluoroalkanes. First Evidence for Bromophilic Attack on C-Br Bonds by Phenoxide Ion. Tetrahedron Lett., 1984,25 (43), 4937−4940.

118. Mielniczak G., Lopusinski A., Iodoform, a New Reagent in the Todd-Atherton Reaction. Synth. Commun., 2003, 33 (22), 3851−3859.

119. Bunnett J.F., Base-catalyzed halogen dance, and other reactions of aryl halides. Acc. Chem. Res., 1972, 5 (4), 139−147.

120. Steudel O.W., Ranade A.C., Gilman H., Reaction of (Triphenylsilyl)Lithium with Some Dihalobenzenes and Trihalobenzenes. J. Organomet. Chem., 1971,26 (3), 327 330.

121. Barker J.M., Coutts G.C., Huddleston P.R., A Novel Debromination in the Thiophen Series. J. Chem. Soc., Chem. Commun., 1972, 615.

122. Lukevics E., Arsenyan P., Belyakov S., Popelis J., Pudova O., Regiospecific silylation of 2,5-dibromothiophene: a reinvestigation. Tetrahedron Lett., 2001, 42, 2039;2041.

123. Baranac Stojanovic M., Markovic R., 2-Alkylidene-4-oxothiazolidine Vinyl Bromides: Versatile Precursors for C (5) Functionalization via Pyridine-Assisted Bromine Transfer Synlett, 2006, (5), 729−732.

124. Grady B.J., Dittmer D.C., Reaction of Perfluoroaryl Halides with Reduced Species of Sulfur Dioxide (HS02(«}, S02(2), S204(2»)). J. Fluorine Chem., 1990, 50 (2), 151−172.

125. Banks R.E., Haszeldine R.N., Phillips E., Young M., Heterocyclic Polyfluoro-compounds. Part XII. Synthesis and Some Reactions of 2,3,5,6-Tetrafluoro-4-iodopyridine. J. Chem. Soc. C, 1967, 2091;2095.

126. Tarrant P., Savory J., Iglehart E.S., Fluoroolefms. X. The Reaction of Propynyllithium with Fluoroolefms. J. Org. Chem., 1964, 29 (7), 2009;2012.

127. Tamborski C., Soloski E.J., De Pasquale R.J., Novel synthesis of perhalostyrene compounds. J. Organomet. Chem., 1968,15 (2), 494−496.

128. Shishkin V.N., Vakaeva S.S., Butin K.P., «Conjugate» Substitution of Hydrogen in the Methyl Group of Pentabromotoluene in the Presence of Strong Bases. Russ. J. Gen. Chem., 2005, 75 (8), 1243−1246.

129. Shishkin V.N., Tarasova I.V., Butin K.P., Regioselectivity of reductive debromination of substituted pentabromobenzenes with sodium teri-butoxide in DMSO. Russ. Chem. Bull., 2005, 54 (10), 2379—2383.

130. Montanari S., Paradisi C., Scorrano G., Thiol Anions in Nucleophilic Aromatic-Substitution Reactions With Activated Aryl Halides Attack On Carbon Vs Attack On Halogen. J. Org. Chem., 1993, 58 (21), 5628−5631.

131. Шаинян Б. А., Витковский В. Ю., Азаров А. Г., Нуклеофильные реакции у вииильного центра. XXIV. Реакция фторбромвинилсульфонов с алкоголятами и арентиолатами натрия. Жури. Орг. химии, 1992,28 (8), 1711−1717.

132. Bartoli G., Todesco P.E., Nucleophilic substitution. Linear free energy relations between reactivity and physical properties of leaving groups and substrates. Acc. Chem. Res., 1977,10(4), 125−132.

133. Blatt A.H., Tristram E.W., The Reduction of Picryl Chloride to 1,3,5-Trinitrobenzene. J. Am. Chem. Soc., 1952, 74, 6273−6374.

134. Cho B.R., Lee S.J., Kim Y.K., Mechanism of Debromination of l-Aryl-l, 2-dibromo-2-nitropropanes Promoted by Secondary Amines in Acetonitrile. J. Org. Chem., 1995, 60 (7), 2072;2076.

135. Braverman S., Pechenick-Azizi Т., Major D.T., Sprecher M., yS-Halo-«^-unsaturated gamma-sultones. J. Org. Chem., 2007, 72 (18), 6824−6831.

136. Baciocchi E., Schiroli A., Dehalogenation Reactions of Vicinal Dihalides. Part II. Substituent and Leaving-group Effects in the Reactions of l, 2-Dihalogeno-l, 2-diphenylethanes with Iodide, Bromide, and Chloride Ions. J. Chem. Soc. B, 1969, 554 558.

137. Yasui S., Itoh K, Ohno A., Kinetic Study on Debromination of vic-Dibromides with Trivalent Phosphorus Compounds. Heteroat. Chem., 2001,12 (4), 217−222.

138. Kuivila H.G., Choi Y.M., Elimination and Substitution in the Reactions of Vicinal Dihalides and Oxyhalides with Trimethylstannylsodium. Effects of Solvent and of Ion Aggregation on Course and Stereochemistry. J. Org. Chem., 1979, 44 (26), 47 744 781.

139. Baciocchi E., Lillocci C., Dehalogenation Reactions of Vicinal Dihalides. Part 111. Dehalogenations of l-Chloro-2-iodo-l, 2-diphenylethane induced by a Variety of Nucleophiles. The Nucleophilic Reactivity towards Iodine. J. Chem. Soc., Perkin• 1.

140. Trans. 2,1973, (1), 38−41.

141. Alunni S., Baciocchi E., Mancini V., Dehalogenation Reactions of Vicinal Dihalides. Part V. Kinetic Study of the Reactions of l, 2-Dihalogeno-l, 2-diphenylethanes with Triphenylphosphine. J. Chem. Soc., Perkin Trans. 2,1977, 140−144.

142. Mori M., Kaneta N., Isono N., Shibasaki M., Reaction of Metal Free BuaSn" Generated From Bu3SnSiMe3-R4NX With an Aryl or Vinyl Halide. Tetrahedron Lett., 1991, 32 (43), 6139−6142.

143. Smith G.F., Kuivila H.G., Simon R., Sultan L., Electron-Transfer, Halogen-Metal Exchange and Direct Processes in Formal Nucleophilic Substitutions On Alkyl-Halides By Trimethyltinsodium. J. Am. Chem. Soc., 1981,103 (4), 833−839.

144. Masters A.P., Sorensen T.S., Ziegler T., A Theoretical-Study of Ketene Forming Reactions Involving Halogen Abstraction By Metal-Carbonyl Anions. Organometallics, 1989, 8 (4), 1088−1093.

145. Black C., Lario P., Masters A.P., Sorensen T.S., Sun F., A new synthesis of in situ cyclopropanones and the observation of a thermal cyclopropanone-dienol rearrangement. Can. J. Chem., 1993, 71 (11), 1910;1918.

146. Zhang C.-G., Huang M.-B., The anionic chain process mechanism for reactions of perchlorofluoroethanes with nucleophiles in solution: a theoretical study. J. Phys. Org. Chem., 2007, 20(1), 65−71.

147. Bard R.R., Bunnett J.F., Traber R.P., Light and dark reactions of o-haloiodobenzenes with diethyl phosphite ion. J. Org. Chem., 1979, 44 (26), 4918−4924.

148. Wittig G., Pockels U., Druge H., Uber die Austauschbarkeit von aromatisch gebundenem Wasserstoff gegen Lithium mittels Phenyl-lithiums. Ber. Dtsch. Chem. Ges., 1938, 71, 1903;1912.

149. Gilman H., Jacoby A.L., Dibenzothiophene: Orientation and Derivatives. J. Org. Chem., 1938, 3 (2), 108.

150. Schulze V., Bronstrup M., Bohm V.P.W., Schwerdtfeger P., Schimeczek M., Hoffmann R.W., a-Iodoalkyl-iodine ate complexes as observable intermediates in the iodine magnesium exchange reaction. Angew. Chem., Int. Ed. Engl., 1998, 37 (6), 824 826.

151. Bohm V.P.W., Schulze V., Bronstrup M., Muller M., Hoffmann R.W., Evidence for an iodine ate complex as an observable intermediate in the iodine/magnesium exchange on a 1,1-diiodoalkane. Organometallics, 2003, 22 (14), 2925−2930.

152. Muller M., Bronstrup M., Knopff О., Schulze V., Hoffmann R.W., Energetics of iodine ate complexes, intermediates in the iodine/magnesium exchange on 1,1-diiodoalkanes. Organometallics, 2003, 22 (14), 2931−2937.

153. Knochel P., Dohle W., Gommermann N., Kneisel F.F., Kopp F., Korn Т., Sapountzis I., Vu V.A., Highly Functionalized Organomagnesium Reagents Prepared through Halogen-Metal Exchange. Angew. Chem., Int. Ed. Engl., 2003, 42, 4302−4320.

154. Eisch J.J., Henry Gilman: American pioneer in the rise of organometallic chemistry in modem science and technology. Organometallics, 2002, 21 (25), 5439−5463.

155. Applequist D., О Brien D.F., Equilibria in Halogen-Lithium Interconversions. J. Am. Chem. Soc., 1963, 85, 743−748.

156. Winkler H.J.S., Winkler H., Mechanism of Halogen-Metal Interconversion between Aryl Bromides and Aryllithium Compounds .1. Equilibria. J. Am. Chem. Soc., 1966, 88 (5), 964−969.

157. Реутов O.A., Белецкая И. П., Артамкина Г. А., Кашин А. Н., Реакции металлоорганических соединений как редокс-процессы. М.: Наука, 1981, 336 с.

158. Ward H.R., Chemically Induced Dynamic Nuclear Polarization (CIDNP). 1. Phenomenon, Examples, and Applications. Acc. Chem. Res., 1972, 5 (1), 18−24.

159. Ashby E.C., Single-Electron Transfer, a Major Reaction Pathway in Organic Chemistry. An Answer to Recent Criticisms. Acc. Chem. Res., 1988,21, 414−421.

160. Russell G.A., Lamson D.W., Free-Radical Intermediates in Reactions of Organolithium Reagents with Alkyl Halides. J. Am. Chem. Soc., 1969, 91 (14), 39 673 968.

161. Ward H.R., Lawler R.G., Nuclear Magnetic Resonance Emission and Enhanced Absorption in Rapid Organometallic Reactions. J. Am. Chem. Soc., 1967, 89 (21), 5518−5519.

162. Lepley A.R., Landau R.L., Free Radical Iodide-Lithium Interchange. J. Am. Chem. Soc., 1969, 91 (3), 748−749.

163. Lee K.-W., San Filippo Jr. J., Reaction of (CH3)3SnNa and Ph3MLi (M C, Si, Ge, Sn) with 6-Bromo-l-heptene: Are Intermediate 1 -Methyl-5-Hexenyl Radicals Involved? Organometallics, 1983,2, 906−908.

164. Bailey W.F., Patricia J.J., Delgobbo V.C., Jarret R.M., Okarma P.J., Cyclization of 5-hexenyllithium to (cyclopentylmethyl)lithium. J. Org. Chem., 1985, 50, 1999;2000.

165. Bailey W.F., Carson M.W., Lithium-iodine exchange mediated atom transfer cyclization: Catalytic cycloisomerization of 6-iodo-l-hexenes. J. Org. Chem., 1998, 63 (2), 361−365.

166. Jenneskens L.W., De Boer H.J.R., De Wolf W.H., Bickelhaupt F" Reactivity of 8,11-Dihalo5.metacyclophanes. J. Am. Chem. Soc., 1990,112 (24), 8941−8949.

167. Harada T., Katsuhira T., Hattori K., Oku A., Stereochemistry in Carbenoid Formation By Bromine/Lithium and Bromine/Zinc Exchange-Reactions of Gem-Dibromo Compounds. Tetrahedron, 1994, 50 (27), 7987−8002.

168. Walborsky H.M., Impastato F.J., Young A.E., Cyclopropanes. XV. The Optical Stability of l-Methyl-2,2-diphenycyclopropyllithium. J. Am. Chem. Soc., 1964, 86 (16), 3283−3288.

169. Sydnes L.K., Skare S., Reactions of 2,2-dibromocyclopropyl carboxylic acids with methyllithium. Can. J. Chem., 1984, 62, 2073;2078.

170. Reich H.J., Phillips N.H., Reich I.L., Lithium-Metalloid Exchange-Reactions Kinetic Evidence For an Intermediate in the Lithium Iodine Exchange. J. Am. Chem. Soc., 1985,107 (13), 4101−4103.

171. Johncock P., Halogen-Metal Exchange Reaction between Perfluoro-n-Heptyl Iodide and n-Butyllithium. J. Organomet. Chem., 1969, 19 (2), 257−265.

172. Farnham W.B., Calabrese J.C., Novel Hypervalent (10−1-2) Iodine Structures. J. Am. Chem. Soc., 1986,108 (9), 2449−2451.

173. Uno H., Okada S.-I., Ono T., Shiraishi Y., Suzuki H., Boron Trifluoride Assisted Perfluoroalkylation of Carbon-Nitrogen Double Bonds. J. Org. Chem., 1992, 57, 1504−1513.

174. Reich H.J., Green D.P., Phillips N.H., The Lithium-Metalloid Exchange-ReactionNmr-Studies of the Phenyllithium-Iodobenzene Exchange. J. Am. Chem. Soc., 1989, 111 (9), 3444−3445.

175. Reich H J., Green D.P., Phillips N.H., Lithium Metalloid Exchange Dynamics and Equilibrium in the Li/I and Li/Te Exchange in Tetrahydrofiiran — Iodine, Tellurium, and Mercury Ate Complexes. J. Am. Chem. Soc., 1991,113 (4), 1414−1416.

176. Reich H.J., Whipple W.L., Mechanism of the lithium-iodine exchange in an iodothiophene. Can. J. Chem., 2005, 83 (9), 1577−1587.

177. Hoffmann R.W., Muller M., Menzel K., Gschwind R., Schwerdtfeger P., Malkina O.L., Malkin V.G., Reaction of iodoform and isopropyl Grignard reagent revisited. Organometallics, 2001, 20 (25), 5310−5313.

178. Hoffmann R.W., Bronstrup M., Muller M., The second step of the halogen/metal exchange reaction. Org. Lett., 2003, 5 (3), 313−316.

179. Marvel C.S., Hager F.D., Coffman D.D., The Mechanism of the Reaction Between Lithium n-Butyl and Various Organic Halogen Compounds. J. Am. Chem. Soc., 1927, 49 (9), 2323 2328.

180. Wiberg K.B., Sklenak S., Bailey W.F., Solvation and structural effects on the stability of 10-X-2 ate-complexes: A computational study. J. Org. Chem., 2000, 65 (7), 20 142 021.

181. Jedlicka B., Crabtree R.H., Siegbahn P.E.M., Origin of solvent acceleration in organolithium metal-halogen exchange reactions. Organometallics, 1997,16 (26), 6021−6023.

182. Ando K., Theoretical study on the lithium-halogen exchange reaction of 1,1-dihaloalkenes with methyllithium and the nucleophilic substitution reaction of the resulting cc-halo alkenyllithiums. J. Org. Chem., 2006, 71 (5), 1837−1850.

183. Wiberg K.B., Sklenak S., Bailey W.F., Computational study of 10-X-2 ate complexes derived from vinyllithiums and vinyl halides. Organometallics, 2001, 20 (4), 771−774.

184. Boche G., Schimeczek M., Cioslowski J., Piskorz P., The role of ate complexes in halogen (metalloid)-metal exchange reactions: A theoretical study. Eur. J. Org. Chem., 1998, (9), 1851−1860.

185. Cioslowski J., Piskorz P., Schimeczek M., Boche G., Diversity of bonding in methyl ate anions of the firstand second-row elements. J. Am. Chem. Soc., 1998,120 (11), 2612−2615.

186. Lee S.J., Terrazas M.S., Pippel D.J., Beak P., Mechanism of Electrophilic Chlorination: Experimental Determination of a Geometrical Requirement for Chlorine Transfer by the Endocyclic Restriction Test. J. Am. Chem. Soc., 2003,125 (24), 73 077 312.

187. Seyferth D., Simon R.M., Sepelak D.J., Klein H.A., Gem-(Difluoroallyl)LithiumPreparation By Lithium Halogen Exchange and Utilization in Organo-Silicon and Organic-Synthesis. J. Am. Chem. Soc., 1983,105 (14), 4634−4639.

188. El Sheikh S., Schmalz H.G., Halogen-lithium exchange reactions under in ^//"-quench conditions: A powerful concept for organic synthesis. Curr. Opin. Drug Discovery Dev., 2004, 7 (6), 882−895.

189. Narasimham N.S., Ammanamanchi R., A novel observation on the lithiation of 2-iodo-3-hydroxymethylquinoline. J. Chem. Soc., Chem. Commun., 1985, 1368 1369.

190. Gallagher D.J., Beak P., Is Halogen Lithium Exchange Intramolecularly Competitive with Removal of an Acidic Hydrogen Reinvestigation of a Recent Claim. J. Am. Chem. Soc., 1991,113 (21), 7984−7987.

191. Beak P., Liu C., Evidence For Bromine-Lithium Exchange in a Local High-Concentration Gradient. Tetrahedron, 1994, 50 (20), 5999−6004.

192. Beak P., Chen C.-W., Relative rates of deprotonation and of bromine-lithium exchange by organolithium reagents: interpretation of some deceptive results. Tetrahedron Lett., 1985, 26, 4979−4980.

193. Gilman H., Moore F.W., Some factors affecting halogen-metal interconversions. J. Am. Chem. Soc., 1940, 62, 1843−1846.

194. Gilman H., Langham W., Moore F.W., Some interconversion reactions of organolithium compounds. J. Am. Chem. Soc., 1940, 62,2327−2335.

195. Merrill R.E., Negishi E.-I., Tetrahydrofuran-Promoted Aryl-Alkyl Coupling Involving Organolithium Reagents. J. Org. Chem., 1974,39 (23), 3452−3453.

196. Card R.J., Trahanovsky W.S., Arene-Metal Complexes. 13. Reaction of Substituted (Beinzene)tricarbonylchromium Complexes with n-Butyllithium. J. Org. Chem., 1980, 45, 2560−2566.

197. Jean A., Lequan M., Lithium-Halogen Exchange Has Been Found in Reaction of Methyl-Alpha Naphthylphenylgermyllithium with Propargylic Bromides. J. Organomet. Chem., 1972, 42 (1), C3-C4.

198. Mori M., Isono N., Wakamatsu H., Utilization of the stannyl anionic species generated from Me3SiSnBu3 and X" in organic synthesis. Synlett, 1999, (3), 269−280.

199. Gillespie D.G., Walker B.J., Phosphides and Arsenides As Metal Halogen Exchange Reagents .1. Dehalogenation of Aliphatic Dihalides. J. Chem. Soc., Perkin Trans. 1, 1983, (8), 1689−1695.

200. Gillespie D.G., Walker B.J., Stevens D., Mcauliffe C.A., Phosphides and Arsenides As Metal Halogen Exchange Reagents .2. Reactions With Aromatic Dihalides. J. Chem. Soc., Perkin Trans. 1,1983, (8), 1697−1703.

201. Sturtz G., Charrier C., Normant H., Action de bromo-1 acetyleniques sur les phosphines dialcoyliques sodes. Preparations de р-cetophosphonates a longue chaine. Bull. Soc. Chim. Fr., 1966, 1707−1713.

202. Masters A.P., Parvez M., Sorensen T.S., Sun D.F., Organometallic products from the reaction of the isoelectronic Mn (CO)5~ and Cr (CO)4NO" metallate anions with bis-a-bromocyclopropyl ketone. Can. J. Chem., 1993, 71 (2), 233−238.

203. Несмеянов A.H., Рыбин JI.B., Рыбинская М. И., Устынюк Ю. А., р~ Кетовинилирование л-циклопентадиенилжелезодикарбонил-аниона. Журн. Общ. Химии, 1967,37 (7), 1587−1591.

204. Nesmeyanov A.N., Rybinskaya M.I., Rybin L.V., Kaganovich V.S., Petrovskii P.V., er, 7i-Binuclear complexes of transition metals coordinated to the monoolefm. J. Organomet. Chem., 1971, 31 (2), 257−267.

205. Nesmeyanov A.N., Rybin L.V., Rybinskaya M.I., Kaganovich V.S., Synthesis of binuclear complexes of transition metals Russ. Chern. Bull., 1971, 20 (2), 283−286.

206. Moore E.J., Sullivan J.M., Norton J.R., Kinetic and Thermodynamic Acidity of Hydrido Transition-Metal Complexes. 3. Thermodynamic Acidity of Common Mononuclear Carbonyl Hydrides. J. Am. Chem. Soc., 1986,108 (9), 2257−2263.

207. Lee K.Y., Kuchynka D.J., Kochi J.K., Formation of Metal Metal Bonds By Ion-Pair Annihilation Dimanganese Carbonyls From Manganate (-I) Anions and Manganese (I) Cations. Organometallics, 1987, 6(9), 1886−1897.

208. Masters A.P., Sorensen T.S., Pentacarbonylmanganese enolate and dienolate complexes. Preparative and mechanistic considerations. Can. J. Chem., 1990, 68 (3), 492−501.

209. Parker D.W., Marsi M., Gladysz J.A., Substitution mechanisms at metal carbonyl centersconversion of Ph3P (CO)4ReBr to Ph3P (CO)4ReCH3 via an anionic acyl intermediate. J. Organomet. Chem., 1980,194 (1), C1-C4.

210. Darst K.P., Lukehart C.M., Reactions of coordinated molecules: XX. An unexpected route to the preparation of hydroxycarbenoid and formylrhenium (I) halide complexes. J. Organomet. Chem., 1979,171 (1), 65−71.

211. Ivushkin V.A., Sazonov P.K., Artamkina G.A., Beletskaya I.P., Halophilic reactions of pentafluorohalobenzenes with transition-metal carbonyl anions. J. Organomet. Chem., 2000, 597 (1−2), 77−86.

212. Fox A., Malito J., Poe A., Associative substitution reactions of Re (CO)5. JChem. Soc., Chem. Commun., 1981, (20), 1052 1053.

213. Baird M.C., 17-Electron Metal-Centered Radicals. Chem. Rev., 1988, 88 (7), 12 171 227.

214. Sazonov P.K., Shtera M.M., Artamkina G.A., Beletskaya I.P., Unexpected formation of Z-PhCF=CFRe2(CO)9.Na in the reaction of [Re (CO)5]Na with.

215. Nitay M., Rosenblum M., Importance of cationic assistance in the reactions of M (r|5-C5H5)Fe (CO)2. salts with epoxides. J. Organomet. Chem., 1977,136 (2), C23-C26.

216. Rappoport Z., Topol A., Nucleophilic Attacks On Carbon-Carbon Double-Bonds .23. Substitution of p-Chloro-a-Phenylacrylonitriles. J. Chem. Soc., Perkin Trans. 2,1975, (9), 982−988.

217. Berryhill S.R., Clevenger G.L., Burdurlu F.Y., Scope and mechanism of an iron to cyclopentadienyl ligand silyl group migration in complexes of the type of CpFe (CO)2SiMe2R Organometallics, 1985, 4 (9), 1509−1515.

218. Bruce M.I., Sharrocks D.N., Stone F.G.A., Chemistry of the metal carbonyls. Part LVIII. Reactivity of the tricarbonylcyclopentadienyltungstate anion, (k-C5H5)W (CO)3r, towards fluorocarbons. J. Chem. Soc. A, 1970, 680−683.

219. Artamkina G.A., Shtern M.M., Sazonov P.K., Beletskaya I.P., Vinyl Nucleophilic Substitution. III. Reaction of 9-Methylfluorenate Anion with a-Halo-a, P-Difluorostyrenes. Influence of Ion Association. Russ. J. Org. Chem., 1996, 32 (9), 1281−1285.

220. Rappoport Z., Topol A., Nucleophilic Attacks On Carbon-Carbon Double-Bonds .22. Base Catalysis, Leaving Group Effects, and Solvent Effects in Several Nucleophilic Vinylic Substitutions By Amines. J. Chem. Soc., Perkin Trans. 2, 1975, (8), 863−874.

221. Tilset M., Parker V.D., Solution Homolytic Bond Dissociation Energies of Organotransition-Metal Hydrides. J. Am. Chem. Soc., 1989, 111 (17), 6711−6717.

222. Rossi R.A., Pierini A.B., Penenory A.B., Nucleophilic substitution reactions by electron transfer. Chem. Rev., 2003,103 (1), 71−167.

223. Patz M., Fukuzumi S., Electron transfer in organic reactions. J. Phys. Org. Chem., 1997, /0(3), 129−137.

224. Bordwell F.G., Clemens A.H., Smith D.E., Begemann J., Reactions of Carbanions with Electron Acceptors. J. Org. Chem., 1985, 50 (8), 1151−1156.

225. Vlasov V.M., Os’kina I.A., Landini D., Maia A., Aryland hetaryl-containing amide anions in reactions of aromatic nucleophilic substitution. Russ. Chem. Bull., 1995,44 (12), 2211−2215.

226. Terrier F., Mokhtari M., Goumont R., Halle J.-C., Buncel E., High Bronsted pnuc values in SnAt displacement. An indicator of the SET pathway? Org. Biomol. Chem., 2003,1 (10), 1757−1763.

227. Eberson L., Electron Transfer Reactions in Organic Chemistry. V. Examination of Postulated Electron Transfer Processes Involving Anionic and Carbanionic Nucleophiles with the Aid of the Marcus Theory. Acta Chem. Scand., 1984, 38, 439 459.

228. Pross A., The Single Electron Shift as a Fundamental Process in Organic Chemistry: The Relationship between Polar and Electron-Transfer Pathways. Acc. Chem. Res., 1983,18,212−219.

229. Saveant J.M. Electron transfer, bond breaking and bond formation, in Advances in Physical Organic Chemistry, Vol 35. 2000. p. 117−192.

230. Parr R.G., Yang W., Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 1984,106 (14), 4049−4050.

231. Fuentealba P., Perez P., Contreras R., On the condensed Fukui function. J. Chem. Phys., 2000,113 (7), 2544−2551.

232. Parr R.G., Szentply L.V., Liu S., Electrophilicity Index. J. Am. Chem. Soc., 1999,121 (9), 1922;1924.

233. Zevatskii Y.E., Samoilov D.V., Some Modern Methods for Estimation of Reactivity of Organic Compounds. Russ. J. Org. Chem., 2007, 43 (4), 483−500.

234. Chattaraj P.K., Maiti В., Sarkar U., Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. J. Phys. Chem. A, 2003,107 (25), 4973−4975.

235. Gottlieb H.E., Kotlyar V., Nudelman A., NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem., 1997, 62 (21), 7512−7515.

236. Birdwhistell R., Hackett P., Manning A.R., A simple and effective preparation of (-/-RC5H4)2M2(CO)6 complexes (M = Cr, Mo, and W). J. Organomet. Chem., 1978,157 (2), 239−241.

237. Постовой С. А., Каграманова Э. М., Зейфман Ю. В., Смешанная димеризация перфторизобутилена с фторолефинами при катализе анионом фтора Изв. АН СССР, сер. хим., 1988, (5), 1176−1180.

238. Dixon S., Elimination Reaction of Fluoroolefins with Organolithium Compounds. J. Org. Chem., 1956, 21 (4), 400−403.

239. Meier R., Bohler F., Die Einwirkung Metallorganischer Verbindungen auf Trifluorchlorathylen. Chem. Ber., 1957, 90 (10), 2344−2349.

240. Burton D.J., Krutzsch H.C., Fluoro Olefins. III. The Synthesis of p-Substituted 1-Chloroperfluoro Olefins. J. Org. Chem., 1970, 35 (7), 2125−2130.

241. Кочетков H.K., Хорлин А. Ю., Карпейский М. Ю., Журя. Общ. Хим., 1956, 26, 595.

242. Taniguchi М., Kobayashi S., Nakagawa М., Hino Т., Kishi Y., p-Halovinyl ketones: Synthesis from acetylenic ketones. Tetrahedron Lett., 1986, 27 (39), 4763−4766.

243. Ma S., Lu X., Li Z., A novel regioand stereospecific hydrohalogenation reaction of 2-propynoic acid and its derivatives J. Org. Chem., 1992, 57, 709−713.

244. Backer H.J., Beute A.E., Les Acides P-chloracryliques. Reel. Trav. Chim. Pays-Bas, 1935, 54, 167.274.275.276.277.278.279.280.281.282.283,284 285 286 287.

245. Kurtz A.N., Billups W.E., Greenlee R.B., Hamil H.F., Pace W.T., The Configuration of Chloroacrylic Acids, Amides, Esters, and Nitriles by Nuclear Magnetic Resonance Spectroscopy. J. Org. Chem., 1965, 30 (9), 3141−3147.

246. Bodroux M.F., Action de quelques ethers-sels d’acides gras monobasiques sur le derive monosode du cyanure de benzyle. Bull. Soc. Chim. Fr., 1910, 7, 848−852. Cariou M., Bull. Soc. Chim. Fr., 1969, (1), 217−222.

247. Soulen R.L., Carlson S.D., Lang F., Reaction of a phosphorus ylide with aroyl cyanides. J. Org. Chem., 1973, 38 (3), 479−480.

248. Friedrich K., Thieme H.K., Aktivierte AthyleneIV1. Synthese elektronegativ substituierter 2-Chloroalkene. Synthesis, 1973, (2), 111−112.

249. Wallenfels K., Ertel W., Friedrich K., Mechanism of hydrogen transfer with pyridinenucleotides. XXXI. Reduction of cyano-activated olefins by direct hydrogen transferfrom dihydropyridines. Liebigs Ann. Chem., 1973,10, 1663−1674.

250. Christoforou I.C., Koutentis P.A., New regiospecific isothiazole C-C couplingchemistry. Org. Biomol. Chem., 2006, 4 (20), 3681−3693.

251. Saunier Y.M., Danion-Bougot R., Danion D., Carrie R., Bulletin de la Societe.

252. Chimique de France, 1976, 1963;1966.

253. Игумнов C.M., Чаплина И. В., Замещение винильного атома фтора в линейных фторолефинах на галоген под действием солей лития. Изв. Акад. Наук СССР, Отд. Хим. Наук, 1988, (11), 2649−2650.

254. Ellis J.E., Flom E.A., Chemistry of Metal-Carbonyl Anions .3. Sodium-Potassium Alloy Efficient Reagent For Production of Metal-Carbonyl Anions. J. Organomet. Chem., 1975, 99 (2), 263−268.

255. Jolly P.W., Bruce M.I., Stone F.G.A., Chemistry of the metal carbonyls. Part XXXI. Reactions between some fluoro-olefins and carbonylmetal anions. J. Chem. Soc., 1965, 5830−5837.

256. Артамкина Г. А., Мильченко А. Ю., Белецкая И. П., Реутов О. А., Металлорганическая химия, 1988,1, 908−912.

257. Akita M., Terada M., Oyama S., Moro-Oka Y., Preparation, Structure, and Divergent Fluxional Behavior of Cationic Dinuclear Iron Acetylides Fp*2(CC-R).BF4 (R = H, Ph). Organometallics, 1990, 9 (3), 816−825.

258. Green M.L.H., Mole T., Some alkynyl derivatives of iron and molybdenum. J. Organomet. Chem., 1968,12 (2), 404−406.

259. OriginPro 7.5, OriginLab Corporation, Northampton, MA, USA, 2003.

260. SMART and SAINT, Release 5.0. Area detector control and integration software., Bruker AXS, Analitical X-Ray Instruments, Madison, Wisconsin, USA, 1998.

261. Sheldrick G.M., SHELXTL, V5.10, Bruker AXS Inc., Madison, WI-53 719, USA, 1997.

262. Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P., Development and use of quantum mechanical molecular models. 76. AMI: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985,107 (13), 3902−3909.

263. Stewart J.J.P., Optimization of parameters for semiempirical methods I. Method J. Comput. Chem., 1989,10 (2), 209−220.

264. Stewart J.J.P., Optimization of parameters for semiempirical methods II. Applications. J. Comput. Chem., 1989,10(2), 221−264.

265. HyperChem 7.5 for Windows, Hypercube Inc., Gainesville, FL, 2002.

266. Laikov D.N., Ustynyuk Y.A., PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull., 2005, 54 (3), 820−826.

267. Laikov D.N., PRIRODA, 2006.

Показать весь текст
Заполнить форму текущей работой