Помощь в написании студенческих работ
Антистрессовый сервис

Устойчивое решение обратной задачи термографии как смешанной краевой задачи для уравнения Лапласа с данными на приближенно заданной поверхности

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Определенный круг обратных задач составляют задачи восстановления структуры объектов по косвенным данным. Такие задачи возникают в тех случаях, когда внутренняя структура объекта по тем или иным причинам недоступна прямому исследованию, в то время как косвенная информация о структуре объекта может быть получена в виде порождаемых этой структурой пространственного распределения физических полей… Читать ещё >

Устойчивое решение обратной задачи термографии как смешанной краевой задачи для уравнения Лапласа с данными на приближенно заданной поверхности (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Постановка задачи
    • 1. 1. Техника тепловидения
    • 1. 2. Математическая модель
    • 1. 3. Постановка обратной задачи и ее связь с обратной задачей потенциала
    • 1. 4. Решение обратной задачи в рамках концепции аналитического продолжения гармонического стационарного температурного поля
  • Глава 2. Построение устойчивого приближенного решения обратной задачи термографии как смешанной краевой задачи для уравнения Лапласа
    • 2. 1. Задача Коши для уравнения Лапласа. Методы решения
    • 2. 2. Постановка смешанной краевой задачи для уравнения Лапласа. Схема построения точного решения в случае данных Коши на поверхности произвольного вида
    • 2. 3. Построение устойчивого решения в случае неточных данных на точно заданной границе
    • 2. 4. Приближенно заданная поверхность. Вычисление нормали
    • 2. 5. Устойчивое приближенное решение в случае неточных данных на приближенно заданной границе
    • 2. 6. Решение задачи продолжения температурного поля как смешанной краевой задачи для уравнения Лапласа
  • Глава 3. Вычислительные алгоритмы
    • 3. 1. Использование дискретных рядов Фурье для решения задачи
    • 3. 2. Дискретизация задачи и ее обоснование для точных данных
  • — функций /, д и поверхности S
    • 3. 3. Вычисление коэффициентов Фурье функции Ф
    • 3. 4. Численные алгоритмы вычисления нормали к поверхности, заданной приближенно
    • 3. 5. Дискретизация задачи при неточно заданных входных данных и поверхности
    • 3. 6. Схема численного решения задачи (2.2.4)
    • 3. 7. Вычислительные алгоритмы решения модельных задач
      • 3. 7. 1. Вычисление потенциала для решения модельной задачи продолжения потенциала
      • 3. 7. 2. Моделирование прямой задачи для формирования температурного поля
  • Глава 4. Вычислительный эксперимент
    • 4. 1. Численное решение задачи смешанной краевой задачи в случае продолжения потенциала
      • 4. 1. 1. Случай плоской границы
      • 4. 1. 2. Случай неплоской границы
    • 4. 2. Приближенно заданная поверхность. Вычисление нормали к поверхности
    • 4. 3. Решение прямой модельной задачи термографии
    • 4. 4. Численное продолжение заданного температурного поля с неточной поверхности
    • 4. 5. Обработка термографических изображений

Применение вычислительной техники к решению прикладных задач привело к формированию по существу нового инструмента научного исследования — вычислительного эксперимента, — что в свою очередь привело к формированию нового направления в научных исследованиях революция в вычислительной технике позволила перейти на качественно новый уровень сложности решаемых задач и, что не менее важно — уровень представления результатов. Вместе с тем возрастает значение квалифицированного проведения вычислительного эксперимента с обоснованным выбором модели и алгоритмов и их коррекции. Потенциал современной вычислительной техники позволяют говорить о возможности все более глубокой обработки результатов измерений в рамках все более усложняющихся физических и математических моделей. В частности, это относится к исследованиям структуры и состояния объектов по косвенной (измеряемой) информации. Проблема обработки данных с такой целыо математически как правило формулируется в виде обратных задач математической физики [38,68], которые ставятся в рамках той или иной физической модели. Характерный пример задач такого рода — обратные задачи геофизики [37,104,123,133,139] - задачи определения структуры земной коры по измеряемым физическим поля, связанным с этой структурой.

Состоятельность задачи в смысле реальной возможности ее решения, то есть в конечном счете — возможности вычисления и представления результата определяется понятием корректности [62,69,151]. Особенность обратных задач состоит в том, что они, как правило, некорректно поставлены [37, 70,75,151] в естественных классах. Вместе с тем в ряде случаев для таких задач удается найти более узкие классы — единственности и устойчивости — определяемые некоторыми условиями. Существование таких классов позволяет отнести некорректную задачу к числу условно корректных [70]. Конструктивный учет дополнительных условий в применении к решению таких задач приводит к получению регуляризирующих алгоритмов их решения [151], не выводящих решения за пределы указанных классов.

Определенный круг обратных задач составляют задачи восстановления структуры объектов по косвенным данным. Такие задачи возникают в тех случаях, когда внутренняя структура объекта по тем или иным причинам недоступна прямому исследованию, в то время как косвенная информация о структуре объекта может быть получена в виде порождаемых этой структурой пространственного распределения физических полей, собственных или полученных как отклик на внешнее воздействие, которые могут быть измерены. Среди таких задач разнообразные задачи теплообмена [3], задачи электрокардиографии [174], электроэнцефалографии [52], томографии [155] и другие. С 80-х годов внимание исследователей привлекли собственные физические поля биологических объектов [41−43,159,165,170].

В диссертационной работе в прикладном плане рассматриваются обратные задачи, возникающие в термографии [51,95].

При тепловизионных исследованиях нагретых теплопроводящих объектов, излучающих в инфракрасном диапазоне, «снимок» температурного поля с поверхности объекта как правило служит материалом для непосредственной интерпретации с целью идентификации внутренней структуры (или ее аномалий). При этом воспроизведение внутренней структуры тер-мограммой искажено как за счет ее относительной удаленности от поверхности тела, так и за счет неровностей поверхности. Коррекция изображения возможна на основе метода продолжения стационарного температурного поля с поверхности в область, близкую к структурным неоднородностям. Это продолжение осуществляется решением задачи (или аналогичной).

Аи (М) = О, Me DD0, udD = /, (0.0.1) ди дп h (U0 — f).

OD dD где Do содержит структурные неоднородности и источники. Термограмма, полученная в результате такого продолжения как след температурного поля на некоторой поверхности вблизи структуры, может рассматриваться как результат математической обработки исходной термограммы. Отметим, что всякий способ визуализации температурного поля, формирующий термограмму, является сам по себе математической обработкой значений температурного поля. Таким образом, разработанный в диссертации метод может рассматриваться как математическая обработка термограмм методом аналитического продолжения стационарного температурного поля.

Целью диссертационной работы является разработка эффективных численных методов математической обработки данных в термографии на основе аналитического продолжения гармонической функции с целыо восстановления внутренней структуры объектов по косвенным данным. Достижение цели осуществляется решением следующих задач:

1. Выбор и анализ математической модели, допускающей решение обратной задачи термографии о восстановлении внутренней структуры объекта по измеренному температурному полю на поверхности в рамках концепции аналитического продолжения как смешанной краевой задачи для уравнения Лапласа.

2. Постановка, обоснование и численное исследование задачи вычисления нормали к приближенно заданной поверхности в приложении к смешанной краевой задаче для уравнения Лапласа.

3. Построение и исследование устойчивого приближенного решения смешанной краевой задачи с данными Коши на поверхности произвольного вида, заданной приближенно.

4. Разработка эффективных численных алгоритмов решения смешанной задачи для уравнения Лапласа с данными на поверхностях общего вида методом дискретного ряда Фурье.

5. Применение разработанных алгоритмов к решению модельных и практических задач термографии методом аналитического продолжения температурного поля Научная новизна и значимость.

1. Впервые дано устойчивое решение задачи построения нормали к поверхности, заданной приближенно.

2. Разработан новый эффективный метод устойчивого численного решения некорректной смешанной краевой задачи для уравнения Лапласа с данными на поверхности общего вида, в том числе заданной приближенно.

3. Разработана новая методика математической обработки термографических данных на основе аналитического продолжения стационарных гармонических температурных полей, учитывающий форму поверхности измерений.

Практическая ценность.

Разработанные алгоритмы продолжения температурного поля применяются для обработки термограмм — термографических (тепловизионных) изображений или термографических данных, полученных другими измерительными средствами, с целыо повышения разрешающей способности термографических изображений и повышения их интерпретационных возможностей.

Диссертация состоит из введения, четырех глав и заключения, содержит 25 рисунков, список цитированной литературы содержит 181 наименование. Объем диссертации — 156 страниц машинописного текста.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ.

1. Построено и исследовано устойчивое численное решение задачи восстановления нормали к приближенно заданной поверхности.

2. На основе решения задачи о построении нормали к поверхности построено устойчивое решение смешанной краевой задачи для уравнения Лапласа для данных Коши на приближенно заданной поверхности. Доказана теорема сходимости приближенного решения к точному.

3. Предложены экономичные алгоритмы численного решения методом дискретного ряда Фурье задачи продолжения стационарного температурного поля как смешанной краевой задачи для уравнения Лапласа.

4. Эффективность вычислительных алгоритмов показана в вычислительном эксперименте по решению модельных задач и применением к решению практических задач термографии.

Автор выражает благодарность своему научному руководителю — доктору физико-математических наук, доценту Ланееву Евгению Борисовичу за руководство над работой, создание условий для ее проведения, постоянную поддержку и внимание. Автор признателен сотрудникам лаборатории вычислительной физики и математического моделирования и кафедры нелинейного анализа и оптимизации за помощь и поддержку.

Заключение

.

Цель диссертационной работы, заявленная как разработка эффективных численных методов математической обработки данных в термографии на основе аналитического продолжения гармонической функции с целью восстановления внутренней структуры объектов по косвенным данным, достигнута решением следующих задач:

1. В области, содержащей источники тепла, имеющие компактный носитель, принадлежащий этой области, и представляющей собой однородный теплопроводящий полубесконечный цилиндр прямоугольного сечения, ограниченный произвольной поверхностью, выбрана и проанализирована математическая модель, в рамках которой поставлена и решена обратная задача термографии о восстановлении внутренней структуры объекта по измеренному температурному полю на поверхности в рамках концепции аналитического продолжения как смешанной краевой задачи для уравнения Лапласа.

2. Поставлена и обоснована задача вычисления нормали к приближенно заданной поверхности в приложении к смешанной краевой задаче для уравнения Лапласа, проведено ее численное исследование.

3. Построено и исследовано устойчивое приближенное решение смешанной краевой задачи для уравнения Лапласа с данными Коши на поверхности произвольного вида, заданной приближенно.

4. Разработаны эффективные численные алгоритмы решения смешанной краевой задачи для уравнения Лапласа с данными на поверхностях общего вида методом дискретного тригонометрического ряда Фурье.

5. Разработанные алгоритмы применены для решения модельных и практических задач термографии методом аналитического продолжения температурного поля.

На защиту выносятся следующие.

Показать весь текст

Список литературы

  1. А.Л., Болотова Т. В., Васин В. В. Решение обратной задачи гравиметрии о границах раздела трех сред.// Физика Земли, 1998, № 3, с.54−57.
  2. . Задача Коши для линейных уравнений с частными производными гиперболического типа. // М.: Наука, 1978, 352 с.
  3. О.М., Артюхин Е. А., Румянцев С. В. Экстремальные методы решения некорректных задач. // М.: Наука. 1988. 288 с.
  4. .А. Расчеты пространственного распределения потенциальных полей и их использование в разведочной геофизике I// Изв. АН СССР. Сер. географ, и геофиз. 1947. Т. 11. № 1. С. 79−92.
  5. .А. Расчеты пространственного распределения потенциальных полей и их использование в разведочной геофизике II// Изв. АН СССР. Сер. географ, и геофиз. 1949. Т. 3. № 3. С. 257−266.
  6. .А. Расчеты пространственного распределения потенциальных полей и их использование в разведочной геофизике III// Изв. АН СССР. Сер. географ, и геофиз. 1952. № 2. С. 22−30.
  7. .А. Расчеты пространственного распределения потенциальных полей и их использование в разведочной геофизике IY// Изв. АН СССР. Сер. географ, и геофиз. 1954. М. С. 49−64.
  8. А.Б., Гончарский А. В., Степанова Л. Д. Применение алгоритмов итерационной регуляризации для решения обратных задач гравиметрии // Изв. АН СССР. Физика Земли. 1986. № 10. С.43−50.
  9. П.И. Использование априорной информации о топологических особенностях источников поля при решении обратной задачи гравиметрии в рамках монтажного подхода.// Физика Земли, 1993, № 5, с 59−71.
  10. П.И., Балк Т. В. Совмещенная обратная задача грави- и магнитометрии./ / Физика Земли, 1996, № 2, с. 16−30.
  11. Н.С. Численные методы. М.: Наука. 1975.
  12. И.В., Мойко Н. В. Об одном итерационном методе решения обратной задачи гравиметрии для контактной поверхности.// Физика Земли, 1999, № 2. С.52−56.
  13. И.В., Бойкова А. И. Оптимальные методы восстановления потенциальных полей. 1.// Физика Земли, 2001, № 12, с.78−89.
  14. М.А., Страхов В. Н. В классе однородных многогранников, гомеоморфных шару, решение обратной задачи ньютонова потенциала единственно// ДАН СССР. 1987. Т. 292. № 6. С. 1337−1340.
  15. М.А., Страхов В. Н. О решении обратной задачи потенциала для многогранников с переменными полиномиальными плотностями // ДАН СССР. 1987. Т. 293. № 2. С. 336−339.
  16. П.Н. О решении задачи Коши для уравнения Лапласа в двухсвязной области// ДАН СССР. 1978. Т. 241, № 6. С. 1257−1260.
  17. П.Н., Гласко В. В., Криксип Ю. А. О решении одной задачи Адамара с помощью регуляризующего по А.Н.Тихонову алгоритма// ЖВМиМФ. 1979. Т. 19. № 6. С. 1463−1570.
  18. П.Н. Численное решение задачи Коши для эллиптических уравнений и систем// Вестник МГУ. Сер. 15. Вычислит, матем. и кибернетика. 1979. № 3. С. 3−10.
  19. П.Н. Разностные методы решения задачи Коши для эллиптических уравнений// ЖВМиМФ. 1981. Т. 21. № 2. С. 509−511.
  20. П.Н. О численном решении нелокальных эллиптических задач // Изв. ВУЗов. 1983. № 5. С. 13−19.
  21. П.Н., Пулатов П. А. Об одном вычислительном алгоритме решения задачи продолжения потенциала в гравиметрии// ДАН Тадж. ССР. 1983. Т. 26. № 9. С. 539−541.
  22. П.Н., Пулатов П. А. Об одном методе численного решения задачи Коши для эллиптических уравнений// Вестник МГУ. Сер. 15. Вычислит, матем. и кибернетика. 1984. № 2. С. 3−8.
  23. П.Н. Численное решение задачи продолжения потенциала в сторону возмущающих масс// Изв. АН СССР. 1983. № 7. С. 31−36.
  24. П.Н. Разностные методы решения неустойчивых эволюционных задач// Вычислительные методы в математической физике. М., 1986. С. 73−87.
  25. П.Н. Разностные методы решения некоторых некорректных задач// Изв. ВУЗов. Математика. 1984. № 8. С. 3−9.
  26. П.Н., Пулатов П. А. Численное решение задачи продолжения потенциальных полей.// Математическое моделирование, 2002, том 14, № 4, с.91−104.
  27. В.В., Пруткин И. Л., Тимерханова Л. Ю. О восстановлении трехмерного рельефа геологической границы по гравитационным данным.// Изв. АН СССР. Сер. Физика Земли, 1996, № 9, с.1−5.
  28. B.C. Уравнения математической физики. М.: Наука. 1976. 528 с.
  29. Г. М. Функция Карлемана и ее применение к решению некоторых задач геофизики// Изв. АН СССР. Сер. Геофизич. 1962. № 11. С. 1579−1590.
  30. Г. М. Интегральные преобразования и распределение особенностей логарифмического потенциала// Изв. АН СССР. Сер. Физика Земли. 1965. № 1. С. 76−89.
  31. Г. М., Сиротин М. И. Об определении особенностей аналитического продолжения потенциальных полей// Изв. АН СССР. Сер. Физика Земли. 1965. № 12. С. 21−30.
  32. Г. М., Шестаков А. Ф. Метод гасящих функций и его применение для определения особых точек геофизических полей, удовлетворяющим трехмерным уравнениям Лапласа и Гельмшольца.// Изв. АН СССР. Физика Земли. 1982. № 3. С.62−75.
  33. В.Б., Кравцов В. В., Кравцова Г. Н. Об одной обратной задаче гравиметрии// Вестник МГУ. Сер. 3. Физика, астрономия. 1970. № 2. С. 174−179.
  34. В.В., Володин Б. А., Мудрецова Е. А., Нефедова Н. Ю. О решении обратной задачи гравиметрии для контактной поверхности на основе метода регуляризации// Изв. АН СССР. Сер. Физика Земли. 1973. № 2. С. 30−41.
  35. В.В., Остромогилъский А. Х., Филатов В. Г. О восстановлении глубины и формы контактной поверхности на основе регуляризации// ЖВМиМФ. 1970. Т. 10. № 5. С. 1292−1297.
  36. В.Б., Гущин Г. В., Гущина Л. Г., Мудрецова Е. А. Об использовании данных бурений при восстановлении формы контакта с помощью метода регуляризации// ЖВМиМФ. 1974. Т. 14. № 5. С. 12 721 280.
  37. В.Б., Литвипенко O.K., Мудрецова Е. А., Страхов В. Н., Федынский В. В. Метод регуляризации А.Н.Тихонова в современной разведочной геофизике// Изв. АН СССР. Сер. Физика Земли. 1977. т. С. 24−39.
  38. В.Б. Обратные задачи математической физики. Изд-во МГУ, 1984. 112 С.
  39. В.Б., Кондорская Е. Е. О некоторых стабилизирующих по А.Н.Тихонову функционалах для многомерных некорректных задач// ЖВМиМФ. 1983. Т. 23. № 2. С. 301−306.
  40. Г. М., Крылов В. И. Обобщенная формула Саг1емап'а и приложение ее к аналитическому продолжению функций// Матем. сборник. 1933. Т. 40. № 2. С. 144−149.
  41. Ю.В., Годик Э. Э., Петров А. В., Таратории A.M. О возможностях дистанционной функциональной диагностики биологических объектов по их собственному инфракрасному излучению// ДАН СССР. 1984. Т. 277. № 6. С. 1486−1491.
  42. Ю.В., Годик Э. Э., Демеитиеико В. В., Пасечник В. И., Рубцов А. А. О возможностях акустической термографии биологических об’ектов// ДАН СССР. 1985. Т. 238. №. С. 1495−1499.
  43. Ю.В., Годик Э. Э., Дементиенко В. В., Калашников Н. Э., Кра-сюк Н.Я., Кузнецов И. В. Радиотепловое динамическое картирование биологических объектов// ДАН СССР. 1988. Т.299. № 5. С.1259−1262.
  44. В.Л. Методы установления в прикладных обратных задачах потенциала. М.: Наука. 1996. 248 с.
  45. В.М. Численный метод аналитического продолжения двумерных потенциальных полей I// Изв. АН СССР. Сер. Геофизич. 1964. № 9. С. 1376−1388.
  46. В.М. Численный метод аналитического продолжения двумерных потенциальных полей II// Изв. АН СССР. Сер. Геофизич. 1964. № 11. С. 1654−1673.
  47. В.М. Об изучении строения двумерных слоистых сред по комплексу наземной и скважинной гравиметрии// Изв. АН СССР. Сер. Физика Земли. 1981. № 9. С. 44−50.
  48. М.С. Развитие теории аналитического продолжения в криволинейных областях// Изв. АН СССР. Сер. Физика Земли. 1971. № 5. С. 114−121.
  49. М. С. Аналог интеграла Коши в теории геофизических полей. М.: Наука. 1984.
  50. А.А. Решение обратной задачи теории потенциала// ДАН СССР. 1941. Т. 32. № 8. С. 546−547.
  51. В.В., Выховская А. Г. Клиническая термография. М., 1976. 168 с.
  52. Е.В., Коптелов Ю. М. О решении одной задачи математической обработки электроэнцефалографических данных// ДАН СССР. 1987. Т. 292. № 3. С. 576−581.
  53. В.К. Обратная задача потенциала для тела, близкого к данному// Изв. АН СССР. Сер. матем. 1956. Т. 20. № 6. С. 793−818.
  54. В. К. Интегральное уравнение обратной задачи логарифмического потенциала// ДАН СССР. 1955. Т. 105. № 3. С. 409−411.
  55. В.К. О распределении особенностей потенциала// УМН. 1956. № 5. С. 67−70.
  56. В.К. Об устойчивости обратной задачи логарифмического потенциала// Изв. ВУЗов. Математика. 1958. № 4. С. 96−99.
  57. В.К. Теорема единственности обратной задачи логарифмического потенциала для звездных множеств// Изв. ВУЗов. Математика. 1958. ЖЗ. С. 99−106.
  58. В.К. О разрешимости обратной задачи логарифмического потенциала в конечном виде// ДАН СССР. 1956. Т. 106. №. С. 598−599.
  59. В.К. Интегральные уравнения первого рода и приближенное решение обратной задачи потенциала// ДАН СССР. 1962. Т. 142. № 5. С. 998−1000.
  60. В.К. О некорректно поставленных задачах// Матем. сборник. 1963. Т. 61. № 2. С. 211−223.
  61. В. К. Задача Коши для уравнения лапласа в бесконечной полосе// Дифференц. уравн. 1965. Т. 1. № 1. С. 131−136.
  62. В.К., Васин В. В., Танана В. П. теория линейных некорректных задач и ее приложения. М., 1978. 206 с.
  63. В.М. О единственности решения контактной обратной задачи теории потенциала//Дифференц. уравнения. 1972. Т. 8. № 1. С. 30−40.
  64. В.М. О единственности решения обратной задачи теории потенциала// ДАН СССР. 1979. Т. 245. № 5. С. 1045−1047.
  65. Л.Э. Теоремы единственности и устойчивости обратной задачи ньютоновского потенциала для звездных множеств // Изв. ВУЗов. Математика. 1963. № 1. С. 85−93.
  66. Н.И. Численные методы. М., 1978. 512 с.
  67. А.Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука. 1972. 496 с.
  68. А.Б. Обратные задачи для математических моделей физических процессов. М: Изд-во МИФИ, 1991.
  69. М.М. О некоторых некорректных задачах математической физики. // Новосибирск: СО АН СССР, 1962, 92 с.
  70. М.М., Савельев Л. Я. Теория операторов и некорректные задачи. Новосибирск: Изд-во Института математики, 1999, 702 с.
  71. М.М. О задаче коши для уравнения Лапласа// ДАН СССР. 1955. Т. 102. № 2. С. 205−206.
  72. М.М. О задаче коши для уравнения Лапласа// Изв. АН СССР. Сер. Матем. 1956. Т. 20. № 6. С. 819−842.
  73. М.М. О задаче Коши для линейных эллиптических уравнений второго порядка// ДАН СССР. 1957. Т. 112. № 2. С. 195−197.
  74. М.М., Васильев В. Г. О постановке некоторых некорректных задач математической физики// СМЖ. 1966. Т. 7. № 3. С. 559−576.
  75. М.М., Романов В. Г., Шишатский С. П. Некорректные задачи математической физики и анализа. М.:Наука, 1980. 288 с.
  76. Е.М. О свойствах решений эллиптических уравнений// ДАН СССР. 1956. Т. 107. № 5. С. 640−643.
  77. Е.М. Некоторые вопросы качественной теории эллиптических уравнений второго порядка (случай многих независимых переменных// УМН. 1963. Т.18. т. С.3−62.
  78. Г. С. Оптика. М.:Наука. 1976. 928 с.
  79. Е.Б., Губин В. Б. и др. Методические указания по использованию стандартных программ ЭВМ для решения задач информатики. М.:Изд-во УДН. 1985.
  80. JIaueee Е.Б. О регуляризации некоторых операций векторного анализа // Методы функционального анализа в математической физике. М.: Изд-во УДН. 1987. С. 101−106.
  81. Е.Б., Васудеван Бхуваиа Об устойчивом решении одной смешанной задачи для уравнения Лапласа.//Вестник РУДН. Серия Прикладная математика и информатика. 1999. № 1. С.128−133.
  82. Е.Б. О некоторых постановках задачи продолжения потенциального поля.//Вестник РУДН. Серия Физика. 2000. № 8(1). С. 21−28.
  83. E. Б., Муратов M. H. Об устойчивом решении одной смешанной краевой задачи для уравнения Лапласа с приближенно заданной границей.// Вестник РУДН. Серия Математика. 2002. № 9(1). С. 102 111.
  84. Laneev Е.В., Mouratov M. N, Zhidkov E.P. Analytical continuation of the temperature field measuured on an approximately defined surface.// Abstracts of International Conference CMAM-1, July 20−24, 2003, Minsk, Belarus, pp. 34−35.
  85. Е. Б., Муратов М. Н. Об одной обратной задаче к краевой задаче для уравнения Лапласа с условием третьего рода иа неточно заданной границе.// Вестник РУДН. Серия Математика. 2003. № 10(1). С. 100−110.
  86. Р., Лионе Ж.-Л. Метод квазиобращения и его приложения. М., 1970. 33G с.
  87. А.С. Об устойчивом решении обратной задачи гравиметрии на классе выпуклых тел// Изв. АН СССР. Сер. Физика Земли. 1976. №-7. с. 55−64.
  88. Н.Р. Определение толщины однородного материального слоя, покрывающего сферу или плоскость по заданному потенциалу его// Труды Физико-математического института им. В. А. Стеклова. 1932. Т. 2. Вып. 4. С. 17−26.
  89. А.К. Об определении контактной поверхности гравиметрическим аномалиям// Прикладная геофизика. 1948. Вып. 4.
  90. О.И., Ниёзов И. Э. Регуляризация решения задачи Кошидля системы уравнений теории упругости в перемещениях // Сиб. Мат. журн. 1998. Т. 39. № 2. С. 369−376.
  91. О. И. Регуляризация решения задачи Коши для системы уравнений теории упругости // Математические заметки. 2000. Т. 68. № 6.
  92. С.Н. Гармоническая аппроксимация и приближенное решение задачи Коши для уранения Лапласа// УМН. 1956. Т. 11. JV25. С. З-26.
  93. М.М., Алипов В. И., Гершанович М. А., Мельникова М. П., Сухарев В. Ф. Тепловидение и его применение в медицине. М., 1981. 184 с.
  94. В.А. Регулярные методы решения некоррекно поставленных задач. М., 1987. 240 с.
  95. В.А. Об одном устойчивом методе вычисления неограниченных операторов. //ДАН СССР, 1969, Т.185, № 2. С.267−270.
  96. М.Н. Численное решение задачи продолжения температурного поля с поверхности, заданной приближенно. //XXXIX Всероссийская конференция по проблемам математики, информатики, физики и химии. Москва. 21−25 апреля 2003 г. С. 46.
  97. И.П., Бырпев П. Х. Аналитическое продолжение гравитационных аномалий// Изв. АН СССР. Сер. геофизич. 1963. № 6. С. 922 935.
  98. И.П. Редукция решений дифференциальных уравнений эллиптического типа// ДАН СССР. 1962. Т. 144. № 4. С. 751−754.
  99. И.П. Разделение потенциальных полей// Изв. АН СССР. Сер. Физика Земли. 1965. № 12. С. 31−44.
  100. И.П. О решении обратной задачи теории потенциала методом подбора при помощи дисплея// ДАН СССР. 1970. Т. 193. т. С. 576−578.
  101. И.П. О некоторых некорректных задачах теории потенциала и их приложении в разведочной геофизике. София: Изд-во Волг. АН. 1978.
  102. П.С. О единственности обратной задачи потенциала// ДАН СССР. 1938. Т. 19. т. С. 165−169.
  103. СМ., Старостенко В. И. Тела нулевого внешнего гравитационного потенциала: о забытых работах и современном состоянии теории // Изв. АН СССР. Физика Земли. 1985. № 3. С.49−62.
  104. А.Х. О единственности решения обратной задачи теории потенциала// ЖВМиМФ. 1969. Т. 9. № 5. С. 1189−1191.
  105. А.Х. О единственности решения обратной задачи теории потенциала// ЖВМиМФ. 1970. Т. 10. № 2. С. 352−361.
  106. А.И. Обратная задача метагармонического потенциала для тела, близкого к данному// Сиб. матем. журнал. 1965. Т. 6. № 6. С. 1332−1356.
  107. А.И. Внешняя обратная задача объемного потенциала переменной плотности для тела, близкого к данному// ДАН СССР. 1969. Т. 185. т. С. 40−42.
  108. А.И. Об единственности определения формы и плотности тела в обратных задачах теории потенциала// ДАН СССР. 1970. Т. 193. т. С. 288−291.
  109. А.И. О единственности решения внешней обратной задачах ныотонового потенциала// Дифференц. уравн. 1966. Т. 2. № 1. С. 107 124.
  110. ИЗ. Прилепко А. И. Об обратных задачах теории потенциала// Дифференц. уравн. 1967. Т. 3. № 1. С. 30−44.
  111. А.И. Обратные задачи теории потенциала// Матем. заметки. 1973. Т. 14. № 5. С. 755−767.
  112. И.М. О плоской обратной задаче теории потенциала// ДАН СССР. 1940. Т. 28. № 4. С. 305−307.
  113. И.М. Об устойчивости в обратной задаче теории потенциала// ДАН СССР. 1941. Т. 31. № 4. С. 303−306.
  114. А.А., Вабищевич П. Н. Численные методы решения обратных задач математической физики// М.: Едиториал УРСС, 2004. 480 с.
  115. В.П. К вопросу об единственности обратной задачи потен-циала//Научные доклады высшей школы. 1958. № 6. С. 14−18.
  116. JI.H. Теория ньютоновского потенциала. M.-JI. 1946.
  117. JI.H. О единственности определения формы притягивающего тела по значениям его внешнего потенциала// ДАН СССР. 1954. Т. 99. т. С. 21−22. .
  118. JI.H. Об одной обратной задаче теории потенциала// Изв АН СССР. Сер. матем. 1938. Т. 2. № 5−6. С. 551−570.
  119. В.И., Дядюра В. А., Заворотько А. Н. Об интерпретации гравитационного поля земли методом подбора// Изв. АН СССР. Сер. Физика Земли. 1975. № 4. С.78−85.
  120. В.И. Устойчивые численные методы в гравиметрии. Киев: Наукова думка. 1978. 228 с.
  121. В.И. Гравитационное поле однородных n-угольных пластин и порождаемых ими призм: обзор.// Физика Земли, 1998, № 3. С.37−53.
  122. Н.Э. О восстановлении источника гравитационных масс в задачах типа структурных. Случай открытых римановых поверхностей.// Физика Земли, 2000, № 6. С.92−96.
  123. Н.Э. О восстановлении источника гравитационных масс в задачах типа рудных. Случай компактных римановых поверхностей.// Физика Земли, 2000, № 8, с.86−91.
  124. Н.Э. О некоторых вариационных постановках обратной трехмерной задачи потенциала типа рудных.// Физика Земли, 2000, № 12, с.67−72.
  125. Н.Э. Об одном устойчивом алгоритме восстановления эллипсоидов.// Физика Земли, 2001, № 11, с.101−106.
  126. В.Н. Об условиях однозначного определения границ раздела двухмерных слоистых сред по данным гравитационных наблюдений// ДАН УССР. Сер. Б. 1975. № 12.
  127. В.Н. Эквивалентность в обратной задаче гравиметрии и возможности ее практического использования при интерпретации гравитационных аномалий// Изв. АН СССР. Физика Земли. 1980. № 2. С.44−64.
  128. В.Н. Эквивалентность в обратной задаче гравиметрии и возможности ее практического использования при интерпретации гравитационных аномалий// Изв. АН СССР. Физика Земли. 1980. № 9. С.38−69.
  129. В.Н. К теории обратной задачи логарифмического потенциала для контактных поверхностей// Изв. АН СССР. Физика Земли. 1974. Ш. С. 39−60.
  130. В.Н., Голъдшмидт В. И., Калинина Т. Е. Состояние и перспективы развития в СССР теории интерпретации гравитационных и магнитных аномалий// Изв. АН СССР. Физика Земли. 1982. № 5. С.11−30.
  131. В.Н. Об одной обратной задаче теории логарифмического потенциала // Изв. АН СССР. Физика Земли. 1965. №. С. 90−97.
  132. В.Н. К теории интерпретации магнитных и гравитационных аномалий на основе аналитического продолжения// ДАН СССР. 1967. Т. 176. № 5. С. 1059−1062.
  133. В.Н. О вычислительных схемах для аналитического продолжения потенциальных полей I // Изв. АН СССР. Сер. геофиз. 1961. № 2. С. 215−223.
  134. В.Н. О вычислительных схемах для аналитического продолжения потенциальных полей II // Изв. АН СССР. Сер. геофиз. 1961. т. С. 349−359.
  135. В.Н. О вычислительных схемах для аналитического продолжения потенциальных полей III // Изв. АН СССР. Сер. геофиз. 1961. т. С. 1290−1313.
  136. В.Н., Голиздра Г. Я., Старостенко В. И. Развитие теории и практики интерпретации потенциальных полей в XX веке.// Физика Земли, 2000, №, с.41−64.
  137. В.Н. Теория аналитического продолжения двухмерных потенциальных полей в области нижней полуплоскости// Изв. АН СССР. Сер. Физика Земли. 1972. Ml. С. 38−55.
  138. В.Н. Об аналитическом продолжении двухмерных потенциальных полей в произвольные области нижней полуплоскости, примыкающие к оси ох// Изв. АН СССР. Сер. Физика Земли. 1970. № 6. С. 35−52.
  139. В.Н. Некоторые основные проблемы линейного анализа аномальных потенциальных полей// Изв. АН СССР. Сер. Физика Земли. 1974. т. С. 43−53.
  140. В.Н. Интерпретационные процессы в гравиметрии и магнитометрии это реализация единого аппроксимационного подход. I. Основные идеи и конструктивные принципы.// Физика Земли. 2001. № 10. С.3−18.
  141. В.Н. Становление новой парадигмы это разрушение господствующего стереотипа мышления (на примере гравиметрии и магнитометрии).// Физика Земли, 2002, № 3. С.3−20.
  142. В.Н., Керимов И. А. Аппроксимационные конструкции спектрального анализа (F-аппроксимация) гравиметрических данных.// Физика Земли, 2001, № 12. С.3−20.
  143. В.Н., Халфин Л. А. Статистический подход к корректности задач математической физики// ДАН СССР. 1964. Т. 157. № 5. С. 10 581 060.
  144. Н.Н. О матрице Карлемана для эллиптических систем// ДАН СССР. 1985. Т. 284. № 2. С. 294−297.
  145. А. Н. Об устойчивости обратных задач// ДАН СССР. 1943. Т. 39. № 5. С. 195−197.
  146. А.Н., Гласко В. Б. Применение метода регуляризации в нелинейных задачах//ЖВМ и МФ. 1965. Т. 5. № 3. С. 463−473.
  147. А.Н., Гласко В. Б., Литвипенко O.K., Мелихов В. Р. О продолжении потенциала в сторону возмущающих масс на основе метода регуляризации// Изв. АН СССР. Физика Земли. 1968. Ш. С. 30−48.
  148. А.Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979. 288 с.
  149. А.Н., Гласко В. Б. О применении метода регуляризации взадачах геофизической интерпретации// Изв. АН СССР. Сер. Физика Земли. 1975. № 1. С. 38−47.
  150. А.Н., Гласко В. Б. О приближенном решении интегральных уравнений I рода //ЖВМ и МФ. 1964. Т. 4. № 3. С. 564−571.
  151. А.Н., Самарский А. А. Уравнения математической физики. М., 1972. 736 с.
  152. А.Н., Арсенин В. Я., Тимонов А. А. Математические задачи компьютерной томографии. М.: Наука, 1987. 160 с.
  153. А.Н. О решении некорректно поставленных задач и методе регуляризации// ДАН СССР. 1963. Т. 151. № 3. С. 501−504.
  154. А.Н. О регуляризации некорректно поставленных задач// ДАН СССР. 1963. Т. 153. № 1. С. 49−52.
  155. И. Т., Зидаров Д. О единственности определения формы притягивающего тела по значениям его внешнего потенциала// ДАН СССР. 1958. Т. 120. № 2. С. 262−264.
  156. М.В. Об осесиммстричной задаче Коши для уравнения Лапласа// ЖВМиМФ. 1980. Т. 20. № 4. С. 939−947.
  157. A.M. Линейные некорректные задачи со случайными ошибками в данных. Новосибирск. 1982. 189 с.
  158. Р. В. Численные методы для научных работников и инженеров. М.: Наука. 1968.
  159. А.В. О единственности решения обратной задачи потенциала // Изв. АН СССР. Физика Земли. 1969. № 6. С.60−65.
  160. А.В. О связи задачи об аналитическом продолжении логарифмического потенциала с проблемой определения границ возмущающей области// Изв. АН СССР. Сер. геофизич. 1964. № 11. С. 16 931 696.
  161. Е.Н., Петров А. В., Таратории A.M., Кузнецова Г. Д., Королева В. И. Исследование собственных температурных полей, связанных с возбуждением коры большого мозга крысы// ДАН СССР. 1984. Т. 278. № 1. С. 249−252.
  162. Л.А. Разностные методы решения задачи Коши для уравнения Лапласа// ДАН СССР. 1962. Т. 143. № 4. С. 798−801.
  163. Ю.А. О единственности в обратной задаче теории потенциала// ДАН СССР. 1957. Т. 115. Ш. С. 64−66.
  164. Ю.А. Теоремы единственности и устойчивости обратной задачи логарифмического потенциала// Матем. сборник. 1964. Т. 63. № 2. С. 216−226.
  165. С.П., Фаязов К. С. Об операторе Карлемана для эволюционного уравнения эллиптического типа. Препринт № 81 ВЦ СО АН СССР. Новосибирск. 1977. 14 с.
  166. В.Б., Мисеоюпиков Г. С., Сельский А. Г. об одном радиофизическом методе обнаружения температурных аномалий внутренних органов человека// УФН. 1981. Т. 134. № 1. С. 163−164.
  167. Ш. О задаче Коши для уравнения Лапласа// ДАН СССР. 1977. Т. 235. № 2. С. 281−283.
  168. Ш. Формула Грина в бесконечной области и ее применение // ДАН СССР. 1985. Т. 285. № 2. С. 305−308.
  169. СаНемап Т. Les fonctions quasi analytiqies. Paris. 1926.
  170. John F. A note on «improper» proBlems in partial differential equations// Comm. pure and appl. math. 1955. v. 8. № 4. p. 591−594.
  171. Payne L.E. Bounds in the Cauchy ргов1еш for the Laplace equation// Arch, rational, mech. anal. 1960. v. 5. № 1. p. 35−45.
  172. NewMan D.J. Numerical method for solution of an elleptic Cauchy proBlem// J. Math, and Phys. 1960. V. 39. №. P. 72−75.
  173. Pucci G. Sui proBlemi Cauchy non 'ben posti'// Atti Accad. naz. Lincei. Rend. CI. sci. fis., mat. e natur. 1955. Serie 8. V. 18. P. 473−477.
  174. Pucci C. Discussione del ргов1ета di Cauchy pur le equazioni di tipo elliptico// Ann. mat. pura ed appl. 1958. Serie 4. V.46. P. 131−153.
  175. Stainov G., Nedyahov I., VUkov A., Usunov V. Separation of potenrial fields// Докл. Волг. АН. 1967. Т. 20. Ш. С. 767−770.
  176. Stainov G., Nedyalnov I. Analogue device computing the Cauchy problem for Laplace equations// Докл. Волг. АН. 1967. Т. 20. №. С. 767−770.
Заполнить форму текущей работой