Помощь в написании студенческих работ
Антистрессовый сервис

Влияние гена Trithorax-like на формирование глаза Drosophila melanogaster

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Вероятно, белок GAGA вовлечен в регуляцию экспрессии генов, задействованных в развитии глаза дрозофилы. Результаты исследований связывания белка GAGA с последовательностями ДНК генома дрозофилы свидетельствуют о том, что к его потенциальным мишеням относится более 600 генов (van Steensel et al., 2003, 2010; de Wit et al., 2008; Schuettengruber et al, 2009). Однако экспериментально доказано… Читать ещё >

Влияние гена Trithorax-like на формирование глаза Drosophila melanogaster (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • Глава 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Структура глаза дрозофилы
    • 1. 2. Развитие глаза дрозофилы
      • 1. 2. 1. Формирование и продвижение морфогенетической бороздки
      • 1. 2. 2. Дифференцировка клеток омматидия
        • 1. 2. 2. 1. Индуктивные взаимодействия, обеспечивающие последовательную дифференцировку клеток омматидия
        • 1. 2. 2. 2. Гены, требующиеся для дифференцировки клеток омматидия
    • 1. 3. Молекулярно-генетическая характеристика гена lozenge D. melanogaster
      • 1. 3. 1. Гены-мишени белка Lz, участвующие в развитии глаза дрозофилы
      • 1. 3. 2. Фенотипическое проявление мутаций гена lz
      • 1. 3. 3. Регуляция экспрессии гена h
    • 1. 4. Молекулярно-генетическая характеристика гена Trithorax-like (Tri)
      • 1. 4. 1. Структура гена Tr
      • 1. 4. 2. Транскрипция гена Tr
      • 1. 4. 3. Структура белка GAGA, продукта гена Tr
      • 1. 4. 4. Функции белка GAGA
        • 1. 4. 4. 1. Участие белка GAGA в ремоделировании структуры хроматина
        • 1. 4. 4. 2. Участие белка GAGA в активации транскрипции
        • 1. 4. 4. 3. Участие белка GAGA в подавлении активности генов
        • 1. 4. 4. 4. Белок GAGA требуется для функционирования инсуляторов
      • 1. 4. 5. Белковые взаимодействия GAGA-фактора
      • 1. 4. 6. Участие белка GAGA в процессе формировании глаза дрозофилы

Актуальность проблемы. Изучение генетических систем, контролирующих формирование тканей и органов многоклеточного организма, является одним из основных направлений современной генетики развития. Особое значение имеет не только анализ отдельных генов, но и выявление групп генов, скоординировано действующих в процессах клеточной дифференцировки и установлении пространственно упорядоченной организации клеток. Развитие глаза дрозофилы является удобной модельной системой для подобного рода исследований. Этот процесс имеет ряд общих черт с развитием глаза позвоночных, а многие гены и сигнальные пути, вовлеченные в формирование глаза дрозофилы, являются эволюционно-консервативными (Kumar, 2009). Данные, касающиеся генетического контроля формирования глаза дрозофилы, имеют общебиологическое значение и могут быть использованы для выяснения общих закономерностей органогенеза и у других видов, для которых применение генетических и цитогенетических методов исследования в условиях in vivo имеет значительные ограничения.

Сложный глаз дрозофилы состоит из 700−800 повторяющихся функциональных единиц — омматидиев, образованных клетками нескольких типов. Каждый омматидий состоит из 8 фоторецепторных нейронов (фотонейронов R1-R8), 4-х конусных клеток, секретирующих линзы, и 2-х первичных пигментных клеток. Вокруг омматидиев располагаются вторичные и третичные пигментные клетки, а также механо-сенсорные щетинки (Wolff, Ready, 1993). Формирование глаза дрозофилы является сложным многоэтапным процессом, каждая стадия которого контролируется множеством генов. К настоящему времени хорошо изучена роль сравнительно небольшого их числа, в частности, определены и изучены ключевые гены, ответственные за дифференцировку клеток, формирующих омматидий (Voas, Rebav. 2004). Роль других генов в формировании глаза изучена слабо, хотя есть данные о том, что мутации в них приводят к нарушению структуры глаза (Call et al., 2007). К числу таких генов относится ген Trithorax-like (Trl), кодирующий транскрипционный фактор GAGA. Этот эволюционно-консервативный белок у дрозофилы принимает участие в формировании «открытой» конформации хроматина в различных регуляторных элементах, задействованных в регуляции транскрипции (Farkas et al., 2000; Lehmann, 2004; Mito et al., 2007; Deal et al., 2010; Matharu et al., 2010).

Нарушения поверхности глаза были обнаружены у Trl «с-мутантов (Farkas et al., 1994) и генетических мозаиков по аллелю Trls2325 (Cali et al., 2007). В дальнейшем в глазах Trl-мутантов было выявлено наличие дополнительных вторичных и третичных пигментных клеток и недостаток щетинок вокруг омматидиев. Подобные rp 181.1 дефекты наблюдались и у генетических мозаиков, гомозиготных по аллелю irl, у которых дополнительно были обнаружены изменения количества и формы первичных пигментных клеток (Dos-Santos et al., 2008). Необходимо отметить, что интерпретацию полученных авторами результатов затрудняет отсутствие данных об изменении количества продуктов гена Trl в развивающемся глазу мутантов и генетических мозаиков, используемых в перечисленных работах. Поскольку механизмы нарушений структуры глаза у 7>/-мутантов выявлены не были, вопрос о роли транскрипционного фактора GAGA в процессе формирования данного органа остается открытым.

Вероятно, белок GAGA вовлечен в регуляцию экспрессии генов, задействованных в развитии глаза дрозофилы. Результаты исследований связывания белка GAGA с последовательностями ДНК генома дрозофилы свидетельствуют о том, что к его потенциальным мишеням относится более 600 генов (van Steensel et al., 2003, 2010; de Wit et al., 2008; Schuettengruber et al, 2009). Однако экспериментально доказано участие белка GAGA в контроле экспрессии не более 10 генов, среди которых нет генов, участвующих в формировании глаза. Для выявления генов-мишеней белка GAGA, необходимых для нормального развития глаза дрозофилы, предпочтителен анализ морфологии глаз 7>/-мутантов. Результаты анализа клонов клеток, гомозиготных по аморфным 7/7-мутациям, которые обычно составляют лишь небольшую часть глазо-антеннального имагинального диска, могут не отражать нарушения всех процессов, в которые вовлечен белок GAGA. Возможно также, что данный белок участвует в регуляции экспрессии генов, продукты которых секретируются, в таком случае гомозиготные по Г/7-мутации клетки могут не демонстрировать некоторых нарушений, поскольку они получают секретируемые белки от окружающих клеток, не содержащих мутацию.

Среди аллелей гена Tri, доступных в мировых коллекциях, нет хорошо охарактеризованных мутаций, которые значительно нарушают структуру глаза жизнеспособных мутантов. Нами были получены и описаны две новые гипоморфные мутации — Tri362 и Triеп82 (Огиенко и др., 2006, 2008), оказывающие такое действие на поверхность глаза. Одна из них — Trlen82, была охарактеризована в ходе данной работы. Эти мутации, приводящие к значительному снижению экспрессии гена Tri, дают уникальную возможность выявить весь спектр изменений структуры глаз 7W-мутантов и определить потенциальные гены-мишени белка GAGA, задействованные в развития глаза дрозофилы. По нашим предварительным данным к таким генам могут относиться lozenge (lz) и BarHl. Данные гены кодируют эволюционно-консервативные транскрипционные факторы, которые участвуют в контроле нескольких процессов в ходе формировании глаза дрозофилы (Higashijima et al., 1992; Daga et al, 1996; Lim, Choi. 2004; Wildonger et al, 2005).

Цель исследования заключалась в установлении роли гена Trithorax-like в процессе формирования глаза D. melanogaster и выявлении его взаимодействий с генами, участвующими в данном процессе.

В связи с этим были поставлены следующие задачи:

1. провести молекулярно-генетический анализ аллеля Triеп82;

2. охарактеризовать экспрессию гена Tri в глазо-антеннальных имагинальных дисках и мозго-вентральных ганглиях у гетерозигот Trlen82/TrlR85 и Tri362/ TriR85;

3. исследовать влияние мутаций гена Tri на структуру глаза имаго и глазо-антеннальных имагинальных дисков 42-часовых куколок мутантов Trlen82ITrlR85 и Tri362/TriRS5;

4. выяснить влияние мутаций гена Tri на проявление мутаций генов lz и BarHl;

5. изучить экспрессию гена lz в глазо-антеннальных имагинальных дисках у гетерозигот Trlen82/TrlR85 и Tri362/TriR85;

6. провести анализ связывания рекомбинантного белка GAGA с потенциальными сайтами, выявленными в 5'-областях генов lz и BarHl.

Научная новизна. Впервые показано, что снижение уровня экспрессии гена Tri в глазо-антеннальных имагинальных дисках и мозговентральном ганглии приводит к изменению количества фотонейронов и конусных клеток в части омматидиев, а также к изменению ориентации некоторых омматидиев в глазу дрозофилы. Установлено, что проявление мутации генов Iz и BarHl усиливается на фоне мутаций по гену Tri, что свидетельствует о взаимодействии этих генов. Выявлено, что белок GAGA вовлечен в активацию экспрессии гена lz в клетках глазо-антеннальных имагинальных дисков предкуколок.

Научно-практическая значимость работы. Результаты данной работы способствуют расширению фундаментальных знаний о процессе формирования глаза насекомых. Поскольку структурные гомологи белков GAGA, Lz и BarHl присутствуют и у позвоночных, то полученные результаты представляют интерес для всех биологов, занимающимися вопросами развития. Материалы данной диссертационной работы могут быть использованы в курсах лекций по генетике развития для студентов биологических факультетов.

Апробация работы. Полученные в ходе работы данные были представлены: на XLIV Международной научной студенческой конференции «Студент и научно-технический прогресс» (Новосибирск, 2006 г.) — на международной молодежной научно-методической конференции «Проблемы молекулярной и клеточной биологии» (Томск, 2007 г.) — на V съезде Вавиловского общества генетиков и селекционеров (Москва, 2009 г.).

По теме диссертации опубликовано 6 печатных работ, из них статей в журналах, соответствующих Перечню ВАК — 3, тезисов докладов и материалов конференций-3.

Вклад автора. Основная часть экспериментальной работы и обработка полученных результатов выполнена автором самостоятельно. Анализ экспрессии генов Tri и/zb норме и у мутантов выполнен при участии Д. А. Карагодина (ИЦиГ СО РАН). Приготовление полутонких срезов глаза дрозофилы проводился совместно с С. И. Байбородиным (ИЦиГ СО РАН).

ВЫВОДЫ.

1) Проведен молекулярно-генетнческий анализ новой гипоморфной мутации гена Trithorax-like — аллеля ТгГ" 82. Установлено, что данная мутация обусловлена встройкой делеционного варианта Р-элемента размером 1,4 т.п.н. в 5'-некодирующую область гена Tri и делецией 6 п.н. в шестом экзоне гена. Делеция удаляет два глутаминовых кодона в последовательности, кодирующей глутамин-богатый домен изоформы белка GAGA-581.

2) Выявлено снижение экспрессии гена Tri в глазо-антеннальных имагинальных дисках и мозго-вентральных ганглиях у гетерозигот Trlen82/TrlR85 и Trl362/TrlR85. Относительное количество транскриптов у этих мутантов в 2,5−3 раза меньше, чем в норме.

3) Впервые показано, что ген Tri задействован в контроле формирования фотонейронов и конусных клеток омматидия, в установлении ориентации омматидиев и в формировании рядов омматидиев.

4) Выявлено взаимодействие гена Tri с генами lz и BarHl в процессе формирования глаза: а) на фоне мутаций гена Tri усиливается проявление мутаций генов lz и BarHl, влияющих на структуру поверхности глаза, а также на его размер и формуб) у мутантов lztsl-Trlen82/TrlR85 и lztsl-Trl362/TrlR85, по сравнению с lztslи TW-мутантами, значительно выше доля омматидиев с меньшим количеством фотонейронов или конусных клеток, а также омматидиев с измененной ориентацией.

5) Обнаружено, что на фоне снижения экспрессии гена Tri происходит снижение количества белка Lz в глазо-антеннальных имагинальных дисках 0-часовых предкуколок гетерозигот Trlen82/TrlR85и Tri362/TriRS5.

6) Установлено, что рекомбинантный белок GAGA in vitro связывается с сайтами, выявленными в 5'-областях генов lz и BarHl.

Заключение

.

Было показано, что снижение экспрессии гена Tri в глазо-антеннальных имагинальных дисках и мозговентральном ганглии приводит к широкому спектру нарушений в структуре глаз гетерозигот ТгГ82/TrlR85 и Tri362/TriR85, наблюдаемых на поверхности и на срезах глаз имаго, а также на поверхности глазо-антеннальных имагинальных дисков куколок мутантов. Впервые были выявлены нарушения в структуре некоторых омматидиев, такие как изменение количества фотонейронов, первичных пигментных клеток, уменьшение количества конусных клеток и изменение ориентации омматидия. Последние два типа нарушений встречались чаще, чем остальные. Вокруг омматидиев 7г/-мутантов часто располагается большее, чем в норме, количество вторичных и третичных пигментных клеток. Щетинки, в норме занимающие определенные позиции вокруг омматидиев, у 7>/-мутантов часто могут отсутствовать. Кроме этого было выявлено, что у мутантов Trlen82/TrlR85 и Tri362/TriR85 на заднем краю глаза наблюдается нарушение четкой организации рядов омматидиев. Следует отметить, что многие дефекты структуры глаза, наблюдаемые у 7>/-мутантов, сходны с нарушениями в глазах feмутантов, описанными в литературе и впервые выявленными в данной работе у мутантов lztsl. В данной работе показано, что на фоне Г/7-мутаций происходит усиление проявления мутаций по гену fe, влияющих на формирование глаза дрозофилы. Анализ глазо-антеннальных tsl т геп82/гр iR85 «utsl.T т362¡-T1R85 имагинальных дисков и срезов глаз мутантов lzTrl I Irl я lz, lri un выявил у них достоверное увеличение частот встречаемости большинства структурных нарушений, относительно таковых для мутантов по одному из генов. Эти данные свидетельствует о взаимодействии генов Tri и fe в процессе формирования глаза. Было показано, что на фоне снижения продуктов гена Tri наблюдается снижение экспрессии гена fe в глазо-антеннальных имагинальных дисках белых предкуколок 7?/-мутантов. В пользу того, что белок GAGA может принимать прямое участие в регуляции экспрессии гена fe, говорит наличие в 5-области этого гена G4-богатого района, с которым in vitro связывается рекомбинантный белок GAGA. Предполагается, что большая часть нарушений, выявленных у Тг/-мутантов, обусловлена нарушением у них экспрессии гена fe.

Еще одним геном-мишенью белка GAGA, участвующим в развитии глаза, по-видимому, является ген BarHl, на что указывает наличие генетического взаимодействия между генами Tri и BarHl, а также связывание рекомбииантного белка GAGA с сайтом в 5'-области гена BarHl.

На основании полученных в настоящей работе данных о взаимодействии гена Tri с генами lz и BarHl, а также литературных данных о взаимодействиях других генов и их белковых продуктов с генами lz и BarHl в процессе формирования глаза дрозофилы, была предложена схема этих взаимодействий (рис. 23).

Рис. 23. Взаимодействие генов Tri, lz и BarHl, кодирующих одноименные транскрипционные факторы, в процессе формирования глаза дрозофилы. I — активация транскрипции, -репрессия транскрипции, жирным отмечены белок-белковые взаимодействия, пунктиромпотенциальные взаимодействия, (х) — возможный посредник. Пояснения в тексте.

По нашим данным Белок GAGA участвует в положительной регуляции экспрессии гена lz, что может происходить напрямую, либо опосредованно, например, через активацию экспрессии гена so. Возможно, что белок GAGA задействован в активации гена lz через сигнальный каскад DER/Rasl, принимающий участие в данном процессе (Behan et al., 2002; Firth, Baker, 2007). Существуют данные о том, что белок GAGA in vivo связывается с последовательностями в 5'-областях генов Rasl и pointed, кодирующих компоненты данного каскада (van Steensel et al.,.

2010).

Транскрипционный фактор Lz участвует в формировании глаза дрозофилы посредством регуляции экспрессии генов spa, pros, BarH, dpn и svp, кодирующих транскрипционные факторы. В случае последних двух генов белок Lz выступает в качестве репрессора транскрипции (Daga et al., 1996; Flores et al., 2000; Xu et al., 2000; Canon, Banerjee, 2003). В регуляцию большинства известных генов-мишеней белка Lz также вовлечен сигнальный каскад DER/Rasl (Flores et al., 2000; Xu et al., 2000 Firth, Baker, 2007). Белок Lz может влиять на действие самого DER/Rasl-каскада, поскольку он физически взаимодействует с его ядерным эффекторомтранскрипционным фактором Pnt, и активирует в некоторых клетках гены aos и klu, кодирующие негативные регуляторы данного каскада (Behan et al, 2005; Wildonger et al., 2005). Известно, что DER /Rasl-каскад задействован в запуске дифференцировки фотонейронов, конусных и пигментных клеток, в установлении ориентации омматидия, а также в блокировке клеточной смерти (Freeman, 1997; Bergmann et al, 1998; Gaengel et al., 2003). Все эти процессы нарушаются и у мутантов по гену lz, а также у 7>/-мутантов.

Согласно нашим данным белок GAGA может быть задействован в репрессии гена BarHl. Следует отметить, что к настоящему моменту известны только активаторы экспрессии данного гена. Так, показано, что в дифференцированных клетках данный ген активируется белком Lz (Daga et al, 1996). Результаты исследований свидетельствуют о том, что в недифференцированных клетках данный белок не участвует в активации гена BarHl. В этих клетках положительная регуляция экспрессии гена BarHl обеспечивается как сигнальными путями НН и DER/Rasl, так и самим транскрипционным фактором BarHl (Lim, Choi, 2004). Для ограничения количества продуктов гена BarHl в этих клетках должен существовать фактор, обеспечивающий репрессию данного гена. На роль такого фактора может подходить белок GAGA, который нарабатывается во всех клетках глазо-антеннального имагинального диска (Dos-Santos et al, 2008).

Возможно, белок GAGA задействован в регуляции экспрессии не только генов lz и BarHl, но и других генов, к числу которых относятся pnt, Rasl, so, hh, dpp и другие гены, участвующие как в lzи BarHlзависимых процессах, так и в других процессах в ходе развития глаза дрозофилы. Об этом свидетельствует наличие сайтов связывания белка GAGA в регуляторных районах данных генов (Schuettengruber et al., 2009; van Steensel et al., 2010).

Показать весь текст

Список литературы

  1. Н.Я., Захаров И. К., Корочкин Л. И. Мутация Notch и судьба плодовой мушки Drosophila melanogaster II Успехи современной биологии. 2002. Т. 121. № 1.С. 95−108.
  2. Н.Я. Сигнальные пути клеток в онтогенезе животных // Информационный вестник ВОГиС. 2003. № 27. С. 3−13.
  3. A.B., Пиндюрин A.B., Федорова Е. В., Баричева Э. М. Молекулярно-генетический анализ гена Trithorax-like, кодирующего транскрипционный фактор GAGA Drosophila melanogaster 11 Генетика. 2001. Т. 37. № 4. С. 467−474.
  4. A.A., Карагодин Д. А., Федорова С. А., Федорова Е. В., Лашина В. В. и др. Влияние гипоморфной мутации гена Trithorax-like на оогенез Drosophila melanogaster 11 Онтогенез. 2006. Т. 37. № 3. С. 211−220.
  5. Е.С., Павлова Н. В., Огиенко A.A., Баричева Э. М. Для формирования дорзальных выростов хориона Drosophila melanogaster требуется белок GAGA // Доклады Академии наук. 2011. Т. 436. № 5. С. 696−698.
  6. Н.В., Карагодин Д. А. Анализ влияния мутаций по гену Trithorax-like на формирование глаза Drosophila melanogaster II V Съезд Вавиловского общества генетиков и селекционеров. Москва, 21−28 июня 2009. Часть II. М.: ИОГен им. Н. И. Вавилова. С. 381.
  7. Н.В., Карагодин Д. А., Байбородин С. И., Баричева Э. М. Анализ структуры глаза мутантов по гену Trithorax-like Drosophila melanogaster II Информационный вестник ВОГиС. 2010. Т. 14. № 3. С. 558−568.
  8. Л.М., Баричева Э. М., Себелева Т. Е., Катохин A.B., Соловьева И. В. и др. Изучение особенностей экспрессии последовательностей Ncl8A, Nc34CD, Nc70 °F и Nc98 °F из генома Drosophila melanogaster II Генетика. 1992. Т. 28. С. 98−103.
  9. Alberts В., Johnson A., Lewis J., et al. From RNA to Protein. In: Molecular Biology of the Cell. 4th edition. New York: Garland Science, 2002.
  10. Alexander F., Hallenbeck Y. C and P.C. A Luminol/Iodophenol Chemiluminescent Detection System for Western Immunoblots // Luminescence Biotechnology: Instruments and Applications. CRC Press. 2002. P. 179−187. (DOI: 10.1201/9 781 420 041 804.chl 1).
  11. Aronson B.D., Fisher A.L., Blechman K., Caudy M., Gergen J.P. Groucho-dependent and -independent repression activities of Runt domain proteins // Mol. Cell. Biol. 1997. V. 17. № 9. P. 5581−5587.
  12. Artavanis-Tsakonas S., Rand M.D., Lake R.J. Notch signaling: cell fate control and signal integration in development // Science. 1999. V. 284. № 5415. P. 770−776.
  13. Badenhorst P., Voas M., Rebay I., Wu C. Biological functions of the ISWI chromatin remodeling complex NURF // Genes Dev. 2002. V. 16. № 24. P. 3186−3198.
  14. Baker N.E. Notch signaling in the nervous system. Pieces still missing from the puzzle // Bioessays. 2000. V. 22. № 3. P. 264−273.
  15. Baonza A., Casci Т., Freeman M. A primary role for the epidermal growth factor receptor in ommatidial spacing in the Drosophila eye // Curr Biol. 2001. V. 11. № 6. P. 396−404.
  16. Barnett Т., Pachl C., Gergen J.P., Wensink, P.C. The isolation and characterization of Drosophila yolk protein genes. // Cell. 1980. V. 21. № 3. P. 729−738.
  17. Baricheva E.M., Katokhin A.V., Perelygina L.M. Expression of Drosophila melanogaster gene encoding transcription factor GAGA is tissue-specific and temperature-dependent // FEBS Lett. 1997. V. 414. № 2. P. 285−288.
  18. Bastock R., Strutt D. The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis // Development. 2007. V. 134. № 17. P. 3055−3064.
  19. Batterham P., Crew J.R., Sokac A.M., Andrews J.R., Pasquini G.M. et al Genetic analysis of the lozenge gene complex in Drosophila melanogaster. adult visual system phenotypes 11 J. Neurogenet. 1996. V. 10. № 4. P. 193−220.
  20. Baumann O. Spatial pattern of nonmuscle myosin-II distribution during the development of the Drosophila compound eye and implications for retinal morphogenesis // Dev. Biol. 2004. V. 269. № 2. P. 519−533.
  21. Begemann G., Michon A.M., vd Voorn L., Wepf R., Mlodzik M. The Drosophila orphan nuclear receptor Seven-up requires the Ras pathway for its function in photoreceptor determination // Development. 1995. V. 121. № 1. P. 225−235.
  22. Behan K J., Nichols C.D., Cheung T.L., Farlow A., Hogan B.M. et al. Yan regulates lozenge during Drosophila eye development // Dev. Genes Evol. 2002. V. 212. № 6. P. 267−276.
  23. Behan K.J., Fair J., Singh S., Bogwitz M., Perry T. et al. Alternative splicing removes an Ets interaction domain from Lozenge during Drosophila eye development //Dev. Genes Evol. 2005. V. 215. № 8. P. 423−435.
  24. Bejarano F., Busturia A. Function of the Trithorax-like gene during Drosophila development // Dev. Biol. 2004. V. 268. № 2. P. 327−341.
  25. Belozerov V.E., Majumder P., Shen P., Cai H.N. A novel boundary element may facilitate independent gene regulation in the Antennapedia complex of Drosophila // EMBO J. 2003. V. 22. № 12. P. 3113−3121.
  26. Bender W., Spierer P., Hogness D.S. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster II J. Mol. Biol. 1983. V. 168. № 1. P. 17−33.
  27. Benyajati C., Mueller L" Xu N., Pappano M., Gao J. et al. Multiple isoforms of GAGA factor, a critical component of chromatin structure // Nucleic Acids Res. 1997. V. 25. № 16. P. 3345−3353.
  28. Bergmann A., Agapite J., McCall K., Steller H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling // Cell. 1998. V. 95. № 3. P. 331−341.
  29. Bernues J., Pineyro D., Kosoy A. General, negative feedback mechanism for regulation of Trithor ax-like gene expression in vivo: new roles for GAGA factor in flies // Nucleic Acids Res. 2007. V. 35. № 21. P. 7150−7159.
  30. Bessa J., Gebelein B., Pichaud F., Casares F., Mann R.S. Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt II Genes Dev. 2002. V. 16. № 18. P. 2415−2427.
  31. Bevilacqua A., Fiorenza M.T., Mangia F. A developmental^ regulated GAGA box-binding factor and Spl are required for transcription of the hsp70.1 gene at the onset of mouse zygotic genome activation // Development. 2000. V. 127. № 7. P. 15 411 551.
  32. Bhat K.M., Farkas G., Karch F., Gyurkovics H., Gausz J. et al. The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division // Development. 1996. V. 122. № 4. P. 1113−1124.
  33. Biggin M.D., Tjian R. Transcription factors that activate the Ultrabithorax promoter in developmental^ staged extracts // Cell. 1988. V. 53. № 5. P. 699−711.
  34. Bodmer R., Carretto R., Jan Y.N. Neurogenesis of the peripheral nervous system in Drosophila embryos: DNA replication patterns and cell lineages // Neuron. 1989. V. 3. № l.P. 21−32.
  35. Bonaccorsi S., Giansanti M.G., Gatti M. Spindle assembly in Drosophila neuroblasts and ganglion mother cells //Nat. Cell Biol. 2000. V. 2. № 1. P. 54−56.
  36. Boulton S.J., Brook A., Staehling-Hampton K., Heitzler P., Dyson N. A role for Ebi in neuronal cell cycle control // EMBO J. 2000. V. 19. № 20. P. 5376−5386.
  37. Brown N.L., Sattler C.A., Paddock S.W., Carroll S.B. Hairy and Emc negatively regulate morphogenetic furrow progression in the Drosophila eye // Cell. 1995. V. 80. № 6. P. 879−887.
  38. Brunner D., Ducker K., Oellers N" Hafen E., Scholz H. et al. The ETS domain protein pointed-P2 is a target of MAP kinase in the Sevenless signal transduction pathway // Nature. 1994. V. 370. № 6488. P. 386−389.
  39. Burke R., Basler K. Hedgehog-dependent patterning in the Drosophila eye can occur in the absence of Dpp signaling // Dev. Biol. 1996. V. 179. № 2. P. 360−368.
  40. Busturia A., Lloyd A., Bejarano F., Zavortink M., Xin H. el al. The MCP silencer of the Drosophila Abd-B gene requires both Pleiohomeotic and GAGA factor for the maintenance of repression // Development. 2001. V. 128. № 11. P. 2163−2173.
  41. Cagan R. Principles of Drosophila eye differentiation // Curr. Top. Dev. Biol. 2009. V. 89. № P. 115−135.
  42. Cagan R.L., Ready D.F. The emergence of order in the Drosophila pupal retina // Dev. Biol. 1989. V. 136. № 2. P. 346−362.
  43. Call G.B., Olson J.M., Chen J., Villarasa N., Ngo K.T. et al. Genomewide clonal analysis of lethal mutations in the Drosophila melanogaster eye: comparison of the X chromosome and autosomes // Genetics. 2007. V. 177. № 2. P. 689−697.
  44. Canon J., Banerjee U. In vivo analysis of a developmental circuit for direct transcriptional activation and repression in the same cell by a Runx protein // Genes Dev. 2003. V. 17. № 7. P. 838−843.
  45. Canon J., Banerjee U. Runt and Lozenge function in Drosophila development // Semin. Cell Dev. Biol. 2000. V. 11. № 5. P. 327−336.
  46. Casci T., Vinos J., Freeman M. Sprouty, an intracellular inhibitor of Ras signaling // Cell. 1999. V. 96. № 5. P. 655−665.
  47. Cavodeassi F., Diez Del Corral R., Campuzano S., Dominguez M. Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins //Development. 1999. V. 126. № 22. P. 4933−4942.
  48. Cayouette M., Raff M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals // Nat. Neurosci. 2002. V. 5. № 12. P. 1265−1269.
  49. Chang H.C., Solomon N.M., Wassarman D.A., Karim F.D., Therrien M. et al. phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila // Cell. 1995. V. 80. № 3. P. 463−472.
  50. Cho K.O., Choi K.W. Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye // Nature. 1998. V. 396. № 6708. P. 272−276.
  51. Choi K.W., Benzer S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene // Cell. 1994. V. 78. № 1. P. 125−136.
  52. Chopra V.S., Srinivasan A., Kumar R.P., Mishra K., Basquin D. et al. Transcriptional activation by GAGA factor is through its direct interaction with dmTAF3 // Dev. Biol. 2008. V. 317. № 2. P. 660−670.
  53. Chung Y.T., Keller E.B. Regulatory elements mediating transcription from the Drosophila melanogaster actin 5C proximal promoter // Mol. Cell. Biol. 1990. V. 10. № l.P. 206−216.
  54. Cook T., Pichaud F., Sonneville R., Papatsenko D., Desplan C. Distinction between color photoreceptor cell fates is controlled by Prospero in Drosophila // Dev. Cell. 2003. V. 4. № 6. P. 853−864.
  55. Crew, J.R., Batterham, P., Pollock, J.A. Developing compound eye in lozenge mutants of Drosophila: lozenge expression in the R7 equivalence group. // Dev. Genes Evol. 1997. V. 206. № 8. P. 481−493.
  56. Czermin B., Schotta G., Hulsmann B.B., Brehm A., Becker P.B. et al. Physical and functional association of SU (VAR)3−9 and HDAC1 in Drosophila // EMBO Rep. 2001. V. 2. № 10. P. 915−919.
  57. Deal R.B., Henikoff J.G., Henikoff S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones // Science. 2010. V. 328. № 5982. P. 1161−1164.
  58. Dickson B.J., Dominguez M., van der Straten A., Hafen E. Control of Drosophila photoreceptor cell fates by Phyllopod, a novel nuclear protein acting downstream of the Raf kinase // Cell. 1995. V. 80. № 3. P. 453−462.
  59. Dokucu M.E., Zipursky S.L., Cagan R.L. Atonal, rough and the resolution of proneural clusters in the developing Drosophila retina // Development. 1996. V. 122. № 12. P. 4139−4147.
  60. Domingos P.M., Mlodzik M" Mendes C.S., Brown S., Steller H. et al. Spalt transcription factors are required for R3/R4 specification and establishment of planar cell polarity in the Drosophila eye // Development. 2004. V. 131. № 22. P. 56 955 702.
  61. Dominguez M. Dual role for Hedgehog in the regulation of the proneural gene atonal during ommatidia development// Development. 1999. V. 126. № 11. P. 2345−2353.
  62. Dominguez M., de Celis J.F. A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye // Nature. 1998. V. 396. № 6708. P. 276−278.
  63. Dominguez M., Hafen E. Hedgehog directly controls initiation and propagation of retinal differentiation in the Drosophila eye // Genes Dev. 1997. V. 11. № 23. P. 3254−3264.
  64. Dominguez M., Wasserman J.D., Freeman M. Multiple functions of the EGF receptor in Drosophila eye development // Curr. Biol. 1998. V. 8. № 19. P. 10 391 048.
  65. Dong X., Tsuda L., Zavitz K.H., Lin M., Li S. et al. ebi regulates epidermal growth factor receptor signaling pathways in Drosophila // Genes Dev. 1999. V. 13. № 8. P. 954−965.
  66. Doroquez D.B., Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk // Crit. Rev. Biochem. Mol. Biol. 2006. V. 41. № 6. P. 339−385.
  67. Dos-Santos N., Rubin T., Chalvet F., Gandille P., Cremazy F. et al. Drosophila retinal pigment cell death is regulated in a position-dependent manner by a cell memory gene // Int. J. Dev. Biol. 2008. V. 52. № 1. P. 21−31.
  68. Ekas L.A., Baeg G.H., Flaherty M.S., Ayala-Camargo A., Bach E.A. JAK/STAT signaling promotes regional specification by negatively regulating wingless expression in Drosophila // Development. 2006. V. 133. № 23. P. 4721−4729.
  69. Espinas M.L., Jimenez-Garcia E., Vaquero A., Canudas S" Bernues J. et al. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity // J. Biol. Chem. 1999. V. 274. № 23. P. 1 646 116 469.
  70. Farkas G., Gausz J., Galloni M., Reuter G., Gyurkovics H. et al. The Trithorax-like gene encodes the Drosophila GAGA factor // Nature. 1994. V. 371. № 6500. P. 806 808.
  71. Farkas G., Leibovitch B.A., Elgin S.C. Chromatin organization and transcriptional control of gene expression in Drosophila // Gene. 2000. V. 253. № 2. P. 117−136.
  72. Fiehler R.W., Wolff T. Drosophila Myosin II, Zipper, is essential for ommatidial rotation // Dev. Biol. 2007. V. 310. № 2. P. 348−362.
  73. Firth L.C., Baker N.E. Spitz from the retina regulates genes transcribed in the second mitotic wave, peripodial epithelium, glia and plasmatocytes of the Drosophila eye imaginal disc // Dev. Biol. 2007. V. 307. № 2. P. 521−538.
  74. Flores G.V., Duan H., Yan H., Nagaraj R., Fu W. et al. Combinatorial signaling in the specification of unique cell fates // Cell. 2000. V. 103. № 1. P. 75−85.
  75. Frankfort B.J., Nolo R., Zhang Z., Bellen H., Mardon G. Senseless repression of rough is required for R8 photoreceptor differentiation in the developing Drosophila eye //Neuron. 2001. V. 32. № 3. P. 403−414.
  76. Freeman M. Cell determination strategies in the Drosophila eye // Development. 1997. V. 124. № 2. P. 261−270.
  77. Freeman M. Misexpression of the Drosophila argos gene, a secreted regulator of cell determination // Development. 1994a. V. 120. № 8. P. 2297−2304.
  78. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye // Cell. 1996. V. 87. № 4. P. 651−660.
  79. Freeman M. The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor // Mech. Dev. 1994b. V. 48. № l.P. 25−33.
  80. Freeman M., Klambt C., Goodman C.S., Rubin G.M. The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye // Cell. 1992. V. 69. № 6. P. 963−975.
  81. Freeman M.R. Sculpting the nervous system: glial control of neuronal development 11 Curr. Opin. Neurobiol. 2006. V. 16. № 1. P. 119−125.
  82. Fu W., Noll M. The Pax2 homolog sparkling is required for development of cone and pigment cells in the Drosophila eye // Genes Dev. 1997. V. 11. № 16. P. 20 662 078.
  83. Gaengel K., Mlodzik M. Egfr signaling regulates ommatidial rotation and cell motility in the Drosophila eye via MAPK/Pnt signaling and the Ras effector Canoe/AF6 // Development. 2003. V. 130. № 22. P. 5413−5423.
  84. Gilmour D.S., Thomas G.H., Elgin S.C. Drosophila nuclear proteins bind to regions of alternating C and T residues in gene promoters // Science. 1989. V. 245. № 4925. P. 1487−1490.
  85. Giot L., Bader J.S., Brouwer C., Chaudhuri A., Kuang B. el al. A protein interaction map of Drosophila melanogaster // Science. 2003. V. 302. № 5651. P. 1727−1736.
  86. Glaser R.L., Thomas G.H., Siegfried E., Elgin S.C., Lis J.T. Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n.(GA)n repeats // J. Mol. Biol. 1990. V. 211. № 4. P. 751−761.
  87. Goetz T.L., Gu T.L., Speck N.A., Graves B.J. Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor alpha2 // Mol. Cell. Biol. 2000. V. 20. № 1. P. 81−90.
  88. Granok H., Leibovitch B.A., Shaffer C.D., Elgin S.C. Chromatin. Ga-ga over GAGA factor// Curr. Biol. 1995. V. 5. № 3. P. 238−241.
  89. Green M.M. The foundations of genetic fine structure: a retrospective from memory // Genetics. 1990. V. 124. № 4. P. 793−796.
  90. Green M.M., Green K.C. Crossing-over between alleles at the lozenge locus in Drosophila melanogaster II Proc. Natl. Acad. Sci. USA. 1949. V. 35. № 10. P. 586 591.
  91. Green P., Hartenstein A.Y., Hartenstein V. The embryonic development of the Drosophila visual system // Cell Tissue Res. 1993. V. 273. № 3. P. 583−598.
  92. Greenberg A.J., Schedl P. GAGA factor isoforms have distinct but overlapping functions in vivo II Mol. Cell. Biol. 2001. V. 21. № 24. P. 8565−8574.
  93. Greenwood S., Struhl G. Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway // Development. 1999. V. 126. № 24. P. 5795−5808.
  94. Gu T.L., Goetz T.L., Graves B.J., Speck N.A. Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1) // Mol. Cell. Biol. 2000. V. 20. № 1. P. 91−103.
  95. Gupta B.P., Rodrigues V. Distinct mechanisms of action of the lozenge locus in Drosophila eye and antennal development are suggested by the analysis of dominant enhancers // J. Neurogenet. 1995. V. 10. № 3. P. 137−151.
  96. Hagstrom K., Muller M., Schedl P. A Polycomb and GAGA dependent silencer adjoins the Fab-7 boundary in the Drosophila bithorax complex // Genetics. 1997. V. 146. № 4. P. 1365−1380.
  97. Hanafusa H., Torii S., Yasunaga T., Nishida E. Sproutyl and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway // Nat. Cell Biol. 2002. V. 4. № 11. P. 850−858.
  98. Hayashi T., Kojima T., Saigo K. Specification of primary pigment cell and outer photoreceptor fates by BarHl homeobox gene in the developing Drosophila eye // Dev. Biol. 1998. V. 200. № 2. P. 131−145.
  99. Hayashi T., Saigo K. Diversification of cell types in the Drosophila eye by differential expression of prepattern genes // Mech. Dev. 2001. V. 108. № 1−2. P. 1327.
  100. Haynie J.L., Bryant P.J. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster II J. Exp. Zool. 1986. V. 237. № 3. p. 293−308.
  101. Heberlein U., Borod E.R., Chanut F.A. Dorsoventral patterning in the Drosophila retina by wingless II Development. 1998. V. 125. № 4. P. 567−577.
  102. Heberlein U., Hariharan I.K., Rubin G.M. Star is required for neuronal differentiation in the Drosophila retina and displays dosage-sensitive interactions with Rasl // Dev. Biol. 1993a. V. 160. № 1. P. 51−63.
  103. Heberlein U., Mlodzik M., Rubin G.M. Cell-fate determination in the developing Drosophila eye: role of the rough gene // Development. 1991. V. 112. № 3. P. 703 712.
  104. Heberlein U., Moses K. Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive // Cell. 1995. V. 81. № 7. P. 987−990.
  105. Heberlein U., Wolff T., Rubin G.M. The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina // Cell. 1993b. V. 75. № 5. P. 913−926.
  106. Higashijima S., Kojima T., Michiue T., Ishimaru S., Emori Y. et al. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development // Genes Dev. 1992. V. 6. № 1. P. 50−60.
  107. Hodgson J.W., Argiropoulos B., Brock H.W. Site-specific recognition of a 70-base-pair element containing d (GA)(n) repeats mediates bithoraxoid polycomb groupresponse element-dependent silencing // Mol. Cell. Biol. 2001. V. 21. № 14. P. 45 284 543.
  108. Horard B., Tatout C., Poux S., Pirrotta V. Structure of a polycomb response element and in vitro binding of polycomb group complexes containing GAGA factor // Mol. .Cell. Biol. 2000. V. 20. № 9. P. 3187−3197.
  109. Huang D.H., Chang Y.L., Yang C.C., Pan I.C., King B. pipsqueak encodes a factor essential for sequence-specific targeting of a polycomb group protein complex // Mol. Cell. Biol. 2002. V. 22. № 17. P. 6261−6271.
  110. Iwanami M., Hiromi Y., Okabe M. Cell-type specific utilization of multiple negative feedback loops generates developmental constancy // Genes Cells. 2005. V. 10. № 7. P. 743−752.
  111. Jarman A.P., Sun Y., Jan L.Y., Jan Y.N. Role of the proneural gene, atonal in formation of Drosophila chordotonal organs and photoreceptors // Development. 1995. V. 121. № 7. P. 2019−2030.
  112. Kaminker J.S., Canon J., Salecker I., Banerjee U. Control of photoreceptor axon target choice by transcriptional repression of Runt // Nat. Neurosci. 2002. V. 5. № 8. P. 746−750.
  113. Kaminker J.S., Singh R., Lebestky T., Yan H., Banerjee U. Redundant function of Runt Domain binding partners, Big brother and Brother, during Drosophila development // Development. 2001. V. 128. № 14. P. 2639−2648.
  114. Karagiosis S.A., Ready D. F. Moesin contributes an essential structural role in Drosophila photoreceptor morphogenesis // Development. 2004. V. 131. P. 725−732.
  115. Katsani K.R., Hajibagheri M.A., Verrijzer C.P. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology // EMBO J. 1999. V. 18. № 3. P. 698−708.
  116. Kauffmann R.C., Li S., Gallagher P.A., Zhang J., Carthew R.W. Rasl signaling and transcriptional competence in the R7 cell of Drosophila // Genes Dev. 1996. V. 10. № 17. P. 2167−2178.
  117. Kenyon K.L., Ranade S.S., Curtiss J., Mlodzik M., Pignoni F. Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head // Dev. Cell. 2003. V. 5. № 3. P. 403−414.
  118. Kerrigan L.A., Croston G.E., Lira L.M., Kadonaga J.T. Sequence-specific transcriptional antirepression of the Drosophila Kruppel gene by the GAGA factor // J. Biol. Chem. 1991. V. 266. № 1. P. 574−582.
  119. Kim M.H., Shin J.S., Park S., Hur M.W., Lee M.O. et al. Retinoic acid response element in HOXA-7 regulatory region affects the rate, not the formation of anterior boundary expression // Int. J. Dev. Biol. 2002. V. 46. № 3. P. 325−328.
  120. Kim W.Y., Sieweke M., Ogawa E., Wee H.J., Englmeier U. et al. Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains // EMBO J. 1999. V. 18. № 6. P. 1609−1620.
  121. Kimmel B.E., Heberlein U., Rubin G.M. The homeo domain protein Rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype // Genes Dev. 1990. V. 4. № 5. P. 712−727.
  122. Klein D.E., Nappi V.M., Reeves G.T., Shvartsman S.Y., Lemmon M.A. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration // Nature. 2004. V. 430. № 7003. P. 1040−1044.
  123. Kojima T., Ishimaru S., Higashijima S., Takayama E., Akimaru H. et al. Identification of a different-type homeobox gene, BarHl, possibly causing Bar (B) and Om (lD) mutations in Drosophila // Proc. Natl. Acad. Sci. USA. 1991. V. 88. № 10. P. 4343−4347.
  124. Kosoy A., Pagans S., Espinas M.L., Azorin F., Bernues J. GAGA factor down-regulates its own promoter // J. Biol. Chem. 2002. V. 277. № 44. P. 42 280−42 288.
  125. Kramer S., Okabe M., Hacohen N., Krasnow M.A., Hiromi Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila // Development. 1999. V. 126. № 11. P. 2515−2525.
  126. Kramer S., West S.R., Hiromi Y. Cell fate control in the Drosophila retina by the orphan receptor seven-up: its role in the decisions mediated by the ras signaling pathway // Development. 1995. V. 121. № 5. P. 1361−1372.
  127. Kumar J.P. The molecular circuitry governing retinal determination // Biochim. Biophys. Acta. 2009. V. 1789. № 4. P. 306−314.
  128. Kumar J.P., Moses K. The EGF receptor and Notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development // Development. 2001. V. 128. № 14. P. 2689−2697.
  129. Kurada P., White K. Ras promotes cell survival in Drosophila by downregulating hid expression 11 Cell. 1998. V. 95. № 3. P. 319−329.
  130. Lai Z.C., Harrison S.D., Karim F., Li Y., Rubin G.M. Loss of tramtrack gene activity results in ectopic R7 cell formation, even in a sina mutant background // Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 10. P. 5025−5030.
  131. Laney J.D., Biggin M.D. Redundant control of Ultrabithorax by zeste involves functional levels of Zeste protein binding at the Ultrabithorax promoter // Development. 1996. V. 122. № 7. P. 2303−2311.
  132. Lebestky T., Chang T., Hartenstein V., Banerjee U. Specification of Drosophila hematopoietic lineage by conserved transcription factors // Science. 2000. V. 288. № 5463. P.146−149.
  133. Lee C., Li X., Hechmer A., Eisen M., Biggin M.D. et al. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila // Mol. Cell. Biol. 2008. V. 28. № 10. P. 3290−3300.
  134. Lee H., Kraus K.W., Wolfner M.F., Lis J.T. DNA sequence requirements for generating paused polymerase at the start of hsp70 II Genes Dev. 1992. V. 6. № 2. P. 284−295.
  135. Lehmann M. Anything else but GAGA: a nonhistone protein complex reshapes chromatin structure // Trends. Genet. 2004. V. 20. № 1. P. 15−22.
  136. Lehmann M., Siegmund T., Lintermann K.G., Korge G. The Pipsqueak protein of Drosophila melanogaster binds to GAGA sequences through a novel DNA-binding domain // J. Biol. Chem. 1998. V. 273. № 43. P. 28 504−28 509.
  137. Li J., Liang V.C., Sedgwick T., Wong J., Shi Y.B. Unique organization and involvement of GAGA factors in transcriptional regulation of the Xenopus stromelysin-3 gene //Nucleic Acids Res. 1998. V. 26. № 12. P. 3018−3025.
  138. Li S., Li Y., Carthew R.W., Lai Z.C. Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack // Cell. 1997. V. 90. № 3. P. 469−478.
  139. Li S., Xu C., Carthew R.W. Phyllopod acts as an adaptor protein to link the Sina ubiquitin ligase to the substrate protein Tramtrack // Mol. Cell. Biol. 2002. V. 22. № 19. P. 6854−6865.
  140. Lim J., Choi K.W. Bar homeodomain proteins are anti-proneural in the Drosophila eye: transcriptional repression of atonal by Bar prevents ectopic retinal neurogenesis // Development. 2003. V. 130. № 24. P. 5965−5974.
  141. Lim J., Choi K.W. Induction and autoregulation of the anti-proneural gene Bar during retinal neurogenesis in Drosophila // Development. 2004. V. 131. № 22. P. 5573−5580.
  142. Lim J., Jafar-Nejad H., Hsu Y.C., Choi K.W. Novel function of the class I bHLH protein Daughterless in the negative regulation of proneural gene expression in the Drosophila eye // EMBO Rep. 2008. V. 9. № 11. P. 1128−1133.
  143. Lorsbach R.B., Moore J., Ang S.O., Sun W., Lenny N. et al Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression // Blood. 2004. V. 103. № 7. P. 2522−2529.
  144. Lu Q., Wallrath L.L., Granok H., Elgin S.C. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene // Mol. Cell. Biol. 1993. V. 13. № 5. P. 2802−2814.
  145. Ma C., Moses K. Wingless and Patched are negative regulators of the morphogenetic furrow and can affect tissue polarity in the developing Drosophila compound eye // Development. 1995. V. 121. № 8. P. 2279−2289.
  146. Ma C., Zhou Y., Beachy P.A., Moses K. The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye // Cell. 1993. V. 75. № 5. P. 927−938.
  147. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: A Laboratory Manual. M.: Cold Spring Harbor Laboratory, 1982.
  148. Matharu N.K., Hussain T., Sankaranarayanan R., Mishra R.K. Vertebrate homologue of Drosophila GAGA factor // J Mol Biol. V. 400. № 3. P. 434−447.
  149. Miller D.T., Cagan R.L. Local induction of patterning and programmed cell death in the developing Drosophila retina // Development. 1998. V. 125. № 12. P. 2327−2335.
  150. Min W., Woo H.J., Lee C.S., Lee K.K., Yoon W.K. et al. 307-bp fragment in HOXA7 upstream sequence is sufficient for anterior boundary formation // DNA Cell Biol. 1998. V. 17. № 3. P. 293−299.
  151. Mirkovic I., Mlodzik M. Cooperative activities of drosophila DE-cadherin and DN-cadherin regulate the cell motility process of ommatidial rotation // Development. 2006. V. 133. № 17. P. 3283−3293.
  152. K., Chopra V.S., Srinivasan A., Mishra R.K. 7W-GAGA directly interacts with tola like and both are part of the repressive complex of Polycomb group of genes // Mech. Dev. 2003. V. 120. № 6. P. 681−689.
  153. Mito Y., Henikoff J.G., Henikoff S. Histone replacement marks the boundaries of cis-regulatory domains // Science. 2007. V. 315. № 5817. P. 1408−1411.
  154. Mlodzik M. Planar polarity in the Drosophila eye: a multifaceted view of signaling specificity and cross-talk // EMBO J. 1999. V. 18. № 24. P. 6873−6879.
  155. Mlodzik M., Hiromi Y., Weber U., Goodman C.S., Rubin G.M. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates // Cell. 1990. V. 60. № 2. P. 211−224.
  156. Mollereau B., Domingos P.M. Photoreceptor differentiation in Drosophila: from immature neurons to functional photoreceptors // Dev. Dyn. 2005. V. 232. № 3. P. 585−592.
  157. Nagaraj R., Banerjee U. Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye // Development. 2007. V. 134. № 5. P. 825−831.
  158. Nakayama T., Nishioka K., Dong Y.X., Shimojima T., Hirose S. Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading // Genes Dev. 2007. Y. 21. № 5. P. 552−561.
  159. Niwa N., Hiromi Y., Okabe M. A conserved developmental program for sensory organ formation in Drosophila melanogaster II Nat. Genet. 2004. Y. 36. № 3. P. 293 297.
  160. O’Donnell K.H., Chen C.T., Wensink P.C. Insulating DNA directs ubiquitous transcription of the Drosophila melanogaster alpha 1-tubulin gene // Mol. Cell. Biol. 1994. V. 14. № 9. P. 6398−6408.
  161. O’Donnell K.H., Wensink P.C. GAGA factor and TBF1 bind DNA elements that direct ubiquitous transcription of the Drosophila alpha 1-tubulin gene // Nucleic Acids Res. 1994. V. 22. № 22. P. 4712−4718.
  162. O’Hare K., Rubin G.M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome // Cell. 1983. V. 34. № l.P. 25−35.
  163. O’Neill E.M., Rebay I., Tjian R., Rubin G.M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway // Cell. 1994. V. 78. № 1. P. 137−147.
  164. Ohtsuki S., Levine M. GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo // Genes Dev. 1998. V. 12. № 21. P. 3325−3330.
  165. Oliver C.P. A Reversion to Wild-Type Associated with Crossing-over in Drosophila melanogaster 11 Proc. Natl. Acad. Sci. USA. 1940. V. 26. № 7. P. 452−454.
  166. Omelina E.S., Baricheva E.M., Oshchepkov D.Y., Merkulova T.I. Analysis and recognition of the GAGA transcription factor binding sites in Drosophila genes // Comput. Biol. Chem. V. 35. № 6. P. 363−370.
  167. Omichinski J.G., Pedone P.V., Felsenfeld G., Gronenborn A.M., Clore G.M. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode // Nat. Struct. Biol. 1997. V. 4. № 2. P. 122−132.
  168. Pagans S., Ortiz-Lombardia M., Espinas M.L., Bernues J., Azorin F. The Drosophila transcription factor Tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA-mediated activation // Nucleic Acids Res. 2002. V. 30. № 20. P. 4406−4413.
  169. Papayannopoulos V., Tomlinson A., Panin V.M., Rauskolb C., Irvine K.D. Dorsalventral signaling in the Drosophila eye // Science. 1998. V. 281. № 5385. P. 20 312 034.
  170. Pauli T., Seimiya M., Blanco J., Gehring W.J. Identification of functional Sine oculis motifs in the autoregulatory element of its own gene, in the eyeless enhancer and in the signalling gene hedgehog II Development. 2005. V. 132. № 12. P. 2771−2782.
  171. Poux S., Horard B., Sigrist C.J., Pirrotta V. The Drosophila Trithorax protein is a coactivator required to prevent re-establishment of poly comb silencing // Development. 2002. V. 129. № 10. P. 2483−2493.
  172. Poux S., Melfi R., Pirrotta V. Establishment of Polycomb silencing requires a transient interaction between PC and ESC // Genes Dev. 2001. V. 15. № 19. P. 25 092 514.
  173. Rawls A.S., Schultz S.A., Mitra R.D., Wolff T. Bedraggled, a putative transporter, influences the tissue polarity complex during the R3/R4 fate decision in the Drosophila eye // Genetics. 2007. V. 177. № 1. P. 313−328.
  174. Read D., Nishigaki T., Manley J.L. The Drosophila even-skipped promoter is transcribed in a stage-specific manner in vitro and contains multiple, overlapping factor-binding sites // Mol. Cell. Biol. 1990. V. 10. № 8. P. 4334−4344.
  175. Ready D.F., Hanson T.E., Benzer S. Development of the Drosophila retina, a neurocrystalline lattice // Dev. Biol. 1976. V. 53. № 2. P. 217−240.
  176. Rebay I., Rubin G.M. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Rasl/MAPK pathway // Cell. 1995. V. 81. № 6. P. 857−866.
  177. Reifegerste R., Moses K. Genetics of epithelial polarity and pattern in the Drosophila retina // BioEssays. 1999. V. 21. № 4. P. 275−285.
  178. Roignant J.Y., Treisman J.E. Pattern formation in the Drosophila eye disc // Int. J. Dev. Biol. 2009. V. 53. № 5−6. P. 795−804.
  179. Rusconi J.C., Fink J.L., Cagan R. klumpfuss regulates cell death in the Drosophila retina // Mech. Dev. 2004. V. 121. № 6. P. 537−546.
  180. Salvaing J., Lopez A., Boivin A., Deutsch J.S., Peronnet F. The Drosophila Corto protein interacts with Polycomb-group proteins and the GAGA factor // Nucleic Acids Res. 2003. V. 31. № 11. P. 2873−2882.
  181. Sawamoto K., Okano H., Kobayakawa Y., Hayashi S., Mikoshiba K. et al. The function of argos in regulating cell fate decisions during Drosophila eye and wing vein development// Dev. Biol. 1994. V. 164. № 1. P. 267−276.
  182. Schuettengruber B., Ganapathi M., Leblanc B., Portoso M., Jaschek R. et al. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos // PLoS Biol. 2009. V. 7. № 1. P. el3.
  183. Schwanhausser B., Busse D., Li N., Dittmar G., Schuchhardt J., et al Global quantification of mammalian gene expression control // Nature. 2011. V. 19. № 473. P. 337−342.
  184. Schweinsberg S., Hagstrom K., Gohl D., Schedl P., Kumar R.P. et al The enhancer-blocking activity of the Fab-7 boundary from the Drosophila bithorax complex requires GAGA-factor-binding sites // Genetics. 2004. V. 168. № 3. P. 1371−1384.
  185. Schweitzer R., Howes R., Smith R" Shilo B.Z., Freeman M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos // Nature. 1995. V. 376. № 6542. P. 699−702.
  186. Schwendemann A., Lehmann M. Pipsqueak and GAGA factor act in concert as partners at homeotic and many other loci // Proc. Natl. Acad. Sci. USA. 2002. V. 99. № 20. P. 12 883−12 888.
  187. Shimojima T., Okada M., Nakayama T., Ueda H., Okawa K. et al. Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor // Genes Dev. 2003. V. 17. № 13. P. 1605−1616.
  188. Shopland L.S., Hirayoshi K., Fernandes M., Lis J.T. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites // Genes Dev. 1995. V. 9. № 22. P. 2756−2769.
  189. Shulman J.M., Perrimon N., Axelrod J.D. Frizzled signaling and the developmental control of cell polarity // Trends Genet. 1998. V. 14. № 11. P. 452−458.
  190. Soeller W.C., Oh C.E., Kornberg T.B. Isolation of cDNAs encoding the Drosophila GAGA transcription factor // Mol. Cell. Biol. 1993. V. 13. № 12. P. 7961−7970.
  191. Soeller W.C., Poole S.J., Kornberg T. In vitro transcription of the Drosophila engrailed gene // Genes Dev. 1988. V. 2. № 1. P. 68−81.
  192. Strutt D. L, Mlodzik M. Ommatidial polarity in the Drosophila eye is determined by the direction of furrow progression and local interactions // Development. 1995. V. 121. № 12. P. 4247−4256.
  193. Strutt H., Cavalli G., Paro R. Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression // EMBO J. 1997. V. 16. № 12. P. 3621−3632.
  194. Strutt H., Strutt D. EGF signaling and ommatidial rotation in the Drosophila eye // Curr. Biol. 2003. V. 13. № 16. P. 1451−1457.
  195. Tagami H., Ray-Gallet D., Almouzni G., Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis // Cell. 2004. V. 116. № 1. P. 51−61.
  196. Tang A.H., Neufeld T.P., Kwan E., Rubin G.M. PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism // Cell. 1997. V. 90. № 3. P. 459−467.
  197. Tavares A.A., Glover D.M., Sunkel C.E. The conserved mitotic kinase Polo is regulated by phosphorylation and has preferred microtubule-associated substrates in Drosophila embryo extracts // EMBO J. 1996. V. 15. № 18. P. 4873−4883.
  198. Tie F., Prasad-Sinha J., Birve A., Rasmuson-Lestander A., Harte P.J. A 1-megadalton ESC/E (Z) complex from Drosophila that contains Polycomblike and RPD3. // Mol. Cell. Biol. 2003. V. 23: № 9. P. 3352−3362.
  199. Tio M., Ma C., Moses K. spitz, a Drosophila homolog of transforming growth factor-alpha, is required in the founding photoreceptor cells of the compound eye facets // Mech. Dev. 1994. V. 48. № 1. P. 13−23.
  200. Tomlinson A., Ready D.F. Neuronal differentiation in Drosophila ommatidium // Dev. Biol. 1987. V. 120. № 2. P. 366−376.
  201. Tomlinson A., Struhl G. Decoding vectorial information from a gradient: sequential roles of the receptors Frizzled and Notch in establishing planar polarity in the Drosophila eye // Development. 1999. V. 126. № 24. P. 5725−5738.
  202. Tomlinson A., Struhl G. Delta/Notch and Boss/Sevenless signals act combinatorially to specify the Drosophila R7 photoreceptor // Mol. Cell. 2001. V. 7. № 3. P. 487−495.
  203. Topol J., Dearolf C.R., Prakash K., Parker C.S. Synthetic oligonucleotides recreate Drosophila fushi tarazu zebra-stripe expression // Genes Dev. 1991. V. 5. № 5. P. 855−867.
  204. Treisman J.E., Rubin G.M. wingless inhibits morphogenetic furrow movement in the Drosophila eye disc // Development. 1995. V. 121. № 11. P. 3519−3527.
  205. Tsai Y.C., Yao J.G., Chen P.H., Posakony J.W., Barolo S. et al. Upd/Jak/STAT signaling represses wg transcription to allow initiation of morphogenetic furrow in Drosophila eye development // Dev. Biol. 2007. V. 306. № 2. P. 760−771.
  206. Tsuda L., Nagaraj R., Zipursky S.L., Banerjee U. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su (H)/SMRTER repression during inductive Notch signaling // Cell. 2002. V. 110. № 5. P. 625−637.
  207. Tsukiyama T., Becker P.B., Wu C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor // Nature. 1994. V. 367. № 6463. P. 525−532.
  208. Tsukiyama T., Wu C. Purification and properties of an ATP-dependent nucleosome remodeling factor // Cell. 1995. V. 83. № 6. P. 1011−1020.
  209. Vaquero A., Espinas M.L., Azorin F., Bernues J. Functional mapping of the GAGA factor assigns its transcriptional activity to the C-terminal glutamine-rich domain // J. Biol. Chem. 2000. V. 275. № 26. P. 19 461−19 468.
  210. Voas M.G., Rebay I. Signal integration during development: insights from the Drosophila eye // Dev. Dyn. 2004. V. 229. № 1. P. 162−175.
  211. Wasserman J.D., Urban S., Freeman M. A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling // Genes Dev. 2000. V. 14. № 13. P. 1651−1663.
  212. Wheeler J.C., Shigesada K., Gergen J.P., Ito Y. Mechanisms of transcriptional regulation by Runt domain proteins // Semin. Cell Dev. Biol. 2000. V. 11. № 5. P. 369−375.
  213. Wildonger J., Mann R.S. The t (8−21) translocation converts AML1 into a constitutive transcriptional repressor // Development. 2005. V. 132. № 10. P. 2263−2272.
  214. Wildonger J., Sosinsky A., Honig B., Mann R.S. Lozenge directly activates argos and klumpfuss to regulate programmed cell death // Genes Dev. 2005. V. 19. № 9. P. 1034−1039.
  215. Wilkins R.C., Lis J.T. DNA distortion and multimerization: novel functions of the glutamine-rich domain of GAGA factor // J. Mol. Biol. 1999. V. 285. № 2. P. 515 525.
  216. Wilkins R.C., Lis J.T. Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation // Nucleic Acids Res. 1997. V. 25. № 20. P. 39 633 968.
  217. Wolff T., Ready D.F. The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave // Development. 1991. V. 113. № 3. P. 841−850.
  218. Wolff T., Ready D.F. Pattern formation in the Drosophila retina, in: The development of Drosophila melanogaster. M.: Cold Spring Harbor Laboratory Press, 1993. P. 1277−1325.
  219. Wotton D., Ghysdael J., Wang S., Speck N.A., Owen M.J. Cooperative binding of Ets-1 and core binding factor to DNA // Mol. Cell. Biol. 1994. V. 14. № 1. P. 840 850.
  220. Xiao H., Sandaltzopoulos R., Wang H.M., Hamiche A., Ranallo R. et al Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions // Mol. Cell. 2001. V. 8. № 3. P. 531−543.
  221. Xiong W.C., Montell C. Tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye // Genes Dev. 1993. V. 7. № 6. P. 1085−1096.
  222. Xu C., Kauffmann R.C., Zhang J., Kladny S., Carthew R.W. Overlapping activators and repressors delimit transcriptional response to receptor tyrosine kinase signals in the Drosophila eye // Cell. 2000. V. 103. № 1. P. 87−97.
  223. Yusoff P., Lao D.H., Ong S.H., Wong E.S., Lim J. et al Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf // J. Biol. Chem. 2002. V. 277. № 5. P. 3195−3201.
Заполнить форму текущей работой