Влияние малых белков теплового шока на тепловую агрегацию F-актина
Диссертация
Молекула G-актина скелетных и сердечных мышц имеет молекулярную массу 42 кДа, размер 5,5×5,5×3,5 нм и кислую изоэлектрическую точку (5,4—5,5). G-актин состоит из одной поли пептид ной цепи, включающей 375 аминокислотных остатков, причем N-концевая аминокислота (Asp или Glu) ацетилирована. Трехмерная структура мономера актина с разрешением 2,8 А впервые была получена в 1990 г. из данных… Читать ещё >
Список литературы
- Клюева А.В., Левчук Ю. Н., Набока Ю. Н. (2002) Фотонкореляционнаяспектроскопия белков. Укр. биохим, журн., 74, 12—26.
- Левицкий Д.И. (2004) Применение метода дифференциальной сканирующейкалориметрии для структурно-функциональных исследований мышечных белков. Успехи биол. химии, 44, 133—170.
- Левицкий Д.И., Николаева О. П., Орлов В. Н., Павлов Д. А., Пономарев М.А.,
- Росткова Е.В. (1998) Дифференциальная сканирующая калориметрия миозина и актина. Биохимия, 63, 381—394.
- Левицкий Д.И., Хайтлина С. Ю., Гусев Н. Б. (1995) Белки актомиозиновой системыподвижности. В кн.: «Белки и пептиды» (ред. Иванов В. Т., Липкин В.М.), М. Наука, том 1, с. 249−293.
- Меремьянин А.В., Еронина Т. Б., Чеботарева Н. А., Клейменов С. Ю., Юдин И.К.,
- Муранов К.О., Островский М. А., Курганов Б. И. (2007) Влияние альфа-кристаллина на тепловую агрегацию гликогенфосфорилазы b из скелетных мышц кролика. Биохимия, 72, 642−654.
- Михайлова В.В., Курганов Б. И., Пивоварова А. В., Левицкий Д.И. (2006)
- Диссоциативный механизм тепловой денатурации F-актина. Биохимия, 71, 1550−1560.
- Остерман Л.А. (1981) «Методы исследования белков и нуклеиновых кислот.
- Электрофорез и ультрацентрифугирование». М. Наука.
- Панасенко, О.О., Ким, М.В., Гусев, Н.Б. (2003) Структура и свойства малыхбелков теплового шока. Успехи биол. химии, 43, 59—98.
- Татунашвили Л.В., Привалов П. Л. (1984) Калориметрические исследованияденатурации G-актина. Биофизика, 29, 583−585.
- Хайтлина С.Ю. (2007) Механизмы сегрегации изоформ актина в клетке.1. Цитология, 49, 345−354.
- Benndorf R., Hayess K., Ryazantsev S., Wieske M., Behlke J. and Lutsch G. (1994)
- Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J. Biol. Chem. 269,20 780−20 784.
- Berengian A.R., Bova M.P. and McHaourab H.S. (1997) Structure and function of theconserved domain in alphaA-crystallin. Site-directed spin labeling identifies a beta-strand located near a subunit interface. Biochemistry, 36, 9951−9957.
- Bertazzon A. and Tsong T.Y. (1990) Effects of ions and pH on the thermal stability ofthin and thick filaments of skeletal muscle: high-sensitivity differential scanning calorimetric study. Biochemistry, 29, 6447—6452.
- Blanchoin L, and Pollard T.D. (1999) Mechanism of interaction of Acanthamoebaactophorin (ADF/Cofilin) with actin filaments. J. Biol. Chem., 274, 1 553 815 546.
- Blanchoin L. and Pollard T.D. (2002) Hydrolysis of ATP by polymerized actin dependson the bound divalent cation but not profilin. Biochemistry, 41, 597—602.
- Bobkov A.A., Muhlrad A., Pavlov D.A., Kokabi K., Yilmaz A. and Reisler E. (2006)
- Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J. Mol. Biol., 356, 325—334.
- Bombardier H., Wong P. and Gicquaud C. (1997) Effects of nucleotides on thedenaturation of F-actin: a differential scanning calorimetry and FTIR spectroscopy study. Biochem. Biophys. Res. Commun., 236, 798−803.
- Boros S., Kamps В., Wunderink L., de Bruijn W., de Jong W.W., Boelens W.C. (2004)
- Transglutaminase catalyzes differential crosslinking of small heat shock proteins and amyloid-beta. FEBS Lett., 576, 57−62.
- Bova M.P., Huang Q., Ding L., Horwitz J. (2002) Subunit exchange, conformationalstability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J. Biol. Chem., Ill, 38 468—38 475.
- Bremer A., Henn C., Goldie K.N., Engel A., Smith P.R. and Aebi U. (1994) Towardsatomic interpretation of F-actin filament three-dimensional reconstructions. J. Mol. Biol., 242, 683−700.
- Brophy C.M., Dickinson M. and Woodrum D. (1999) Phosphorylation of the small heatshock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. J. Biol. Chem., 274, 6324−6329.
- Brown P.H. and Schuck P. (2006) Macromolecular sizc-and-shape distributions bysedimentation velocity analytical ultracentrifugation. Biophys. J., 90, 46 514 661.
- Bryantsev A.L., Loktionova S.A., llyinskaya O.P., Tararak E.M., Kampinga H.H.,
- Kabakov A.E. (2002) Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts: a functional link to cytoprotection. Cell Stress Chaperones, 7, 146−155.
- Bukach O.V., Marston S.B. and Gusev N.B. (2005) Small heat shock protein withapparent molecular mass 20 kDa (Hsp20, HspB6) is not a genuine actin-binding protein. J. Muscle Res. Cell. Motil., 26, 175−191.
- Cao W., Goodarzi J.P., De La Cruz E.M. (2006) Energetics and kinetics of cooperativecofilin-actin filament interactions. J. Mol. Biol., 361, 257—267.
- Carlier M. (1991) Actin: protein structure and filament dynamics. J. Biol. Chem., 266,1.4.
- Carlier M.F. (1998) Control of actin dynamics. Curr. Opin. Cell Biol., 10, 45−51.
- Chang Z., Primm T.P., Jakana J., Lee I.H., Serysheva I., Chiu W., Gilbert H.F. and
- Quiocho F. A. (1996) Mycobacterium tuberculosis 16-kDa antigen (Hspl6.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J.Biol. Chem., 271, 7218−7223.
- Chernik I.S., Panasenko O.O., Li Y, Marston S.B. and Gusev N.B. (2004) pH-inducedchanges of the structure of small heat shock proteins with molecular mass 24/27 kDa (HspBl). Biochem. Biophys. Res. Commun., 324, 1199−1203.
- Chik J.K., Lindberg U. and Schutt C.E. (1996) The structure of an open state of p-actinat 2.65 A resolution. J. Mol. Biol., 263, 607−623.
- Chowdary Т.К., Raman В., Ramakrishna T. and Rao C.M. (2004) Mammalian Hsp22 isa heat-inducible small heat-shock protein with chaperone-like activity. Biochem. J., 381, 379−387.
- Combeau C. and Carlier M-F. (1988) Probing the mechanism of ATP hydrolysis on Factin using vanadate and the structural analogs of phosphate BcF3″ and AIF4″. J. Biol. Chem., 263, 17 429−17 436.
- Creighton Т.Е. (1993) Proteins. Structures and Molecular Properties. WH Freeman &1. Co, New York.
- Dalle-Donne I., Rossi R., Milzani A., Di Simplicio P. and Colombo R. (2001) The actincytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic. Biol. Med., 31, 1624−1632.
- Das K.P., Surewicz W.K. (1995) Temperature-induced exposure of hydrophobicsurfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett., 369,321−325.
- Dedova I.V., Nikolaeva O.P., Mikhailova V.V., dos Remedios C.G. and Levitsky D.I.2004) Two opposite effects of cofilin on the thermal unfolding of F-actin: a differential scanning calorimetric study. Biophys. Chem., 110, 119—128.
- Dos Remedios C.G., Chhabra D., Kekic M., Dedova I.V., Tsubakihara M., Berry D.A.and Nosworthy N.J. (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev., 83, 433—473.
- Dudich I.V., Zav’yalov V.P., Pfeil W., Gaestel M., Zav’yalova G.A., Denesyuk A.I. and
- Korpela T. (1995) Dimer structure as a minimum cooperative subunit of small heat-shock proteins, Biochim. Biophys. Acta, 1253, 163—168.
- Egea G., Lazaro-Di6guez F. and Vilella M. (2006) Actin dynamics at the Golgi complexin mammalian cells. Curr. Opin, Cell. Biol., 18, 168—178.
- Ehrnsperger M., Graber S., Gaestel M. and Buchner J. (1997) Binding of non-nativeprotein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J., 16, 221−229.
- Ehrnsperger M., Lilie H., Gaestel M., Buchner J. (1999) The dynamics of Hsp25quaternary structure. Structure and function of different oligomeric species. J. Biol. Chetn., 274, 14 867−14 874.
- Fares M.A. and Wolfe K.H. (2003) Positive selection and subfunctionalization ofduplicated CCT chaperonin subunits. Mol. Biol Evol, 20, 1588−1597.
- Farnsworth P.N. and Singh K. (2000) Self-complementary motifs (SCM) in alphacrystallin small heat shock proteins. FEBSLett., 482, 175−179.
- Feil 1.К., Malfois M., Hendle J., van Der Zandt H. and Svergun D.I. (2001) A novelquaternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. J. Biol. Chem., 276, 12 024−12 029.
- Flaherty K.M., McKay D.B., Kabsh W. and Holmes K.C. (1991) Similarity of the threedimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci. USA., 88, 5041−5045.
- Franck E., Madsen O., van Rheede Т., Ricard G., Huynen M.A. and de Jong W.W.2004) Evolutionary diversity of vertebrate small heat shock proteins. J. Mol. Evol 59, 792−805.
- Galkin V.E., Van Loock M.S., Orlova A. and Egelman E.H. (2002) A new internalmode in F-actin helps explain the remarkable evolutionary conservation of actin’s sequence and structure. Curr. Biol., 12, 570—575.
- Ganea E. (2001) Chaperone-like activity of alpha-crystallin and other small heat shockproteins. Curr. Protein. Pept. Sci., 2, 205−225.
- Gesierich U. and Pfeil W. (1996) The conformation stability of a-crystallin is ratherlow: Calorimetric results. FEBS Lett., 393, 151−154.
- Golub N., Meremyanin A., Markossian K., Eronina Т., Chebotareva N., Asryants R.,
- Muronets V. and Kurganov B. (2007) Evidence for the formation of start aggregates as an initial stage of protein aggregation. FEBS Lett., 581, 4223— 4227.
- Groenning M., Olsen L., van de Weert M., Flink J.M., Frokjaer S., and Jorgensen F.S.2007) Study on the binding of thioflavin T to P-sheet-rich and non- P-sheet cavities. J.Struct. Biol. 58, 358−369.
- Haley D.A., Horwitz J. and Stewart P.L. (1998) The small heat-shock protein, alphaBcrystallin, has a variable quaternary structure. J. Mol. Biol., 277, 27−35.
- Haslbeck M., Walke S., Stromer Т., Ehrnsperger M., White H. E., Chen S., Saibil H. Rand Buchner J. (1999) Hsp26: a temperature-regulated chaperone. EMBO J., 18, 744−751.
- Hennessey E.S., Drummond D.R. and Sparrow J.C. (1993) Molecular genetics of actinfunction. Biochem. J., 291, 657—671.
- Holmes K.C., Popp D., Gebhard W. and Kabsch W. (1990) Atomic model of the actinfilament. Nature, 347, 44-^19.
- Horwitz J., Huang Q. and Ding L. (2004) The native oligomeric organization of alphacrystallin: is it necessary for its chaperone function? Exp. Eye Res., 79, 817—821.
- Hozumi T. (1990) A hydrophobicity on skeletal muscle actin molccule modulated bynucleotide binding at a second site. Biochem. Int., 20, 45—51.
- Huot J., Houle F., Spitz D.R. and Landry J. (1996) HSP27 phosphorylation-mediatedresistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res., 56, 273−279.
- Ingolia T.D. and Craig E.A. (1982) Four small Drosophila heat shock proteins arerelated to each other and to mammalian alpha-crystallin. Proc. Natl. Acad. Sci. USA., 19, 2360−2364.
- Kabsch W., Mannherz H.G., Suck D., Pai E.F. and Holmes K.C. (1990) Atomicstructure of the actin: DNase I complcx. Nature, 347, 37−44.
- Kappe G., Franck E., Verschuure P., Boclcns W.C., Leunissen J.A. and de Jong W.W.2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspBl-10. Cell Stress Chaperones, 8, 53—61.
- Kasai M., Nakano E. and Oosawa F. (1965) Polymerization of actin free of nucleotidesand divalent cation. Biochim. Biophys. Acta, 94, 494—503.
- Kasakov A.S., Bukach O.V., Seit-Nebi A.S., Marston S.B. and Gusev N.B. (2007)
- Effect of mutations in the beta5-beta7 loop on the structure and properties of human small heat shock protein HSP22 (HspB8, Hll). FEBS J., 274, 56 285 642.
- Khaitlina S.Y., Moraczewska J. and Strzeleeka-Golaszewska H. (1993) The actin/actininteractions involving the N terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur. J. Biochem., 218, 911−920.
- Kim K.K., Kim R. and Kim S.H. (1998) Crystal structure of a small heat-shock protein.1. Nature, 394, 595−599.
- Kinosan H.J., Selden L.A., Estes J.E. and Gershman L.C. (1993) Actin Filamentannealing in the presence of ATP and phalloidin. Biochemistry, 32, 12 353— 12 357.
- Koh T.J. and Escobedo J. (2004) Cytoskeletal disruption and small heat shock proteintranslocation immediately after lengthening contractions. Am. J. Physiol. Cell Physiol., 286, C713−722.
- Кокке B.P., Leroux M.R., Candido E.P., Boelens W.C. and de Jong W.W. (1998)
- Caenorhabditis elegans small heat-shock proteins Hspl2.2 and Hspl2.3 form tetramers and have no chaperone-like activity. FEBSLett., 433, 228—232.
- Kurganov B.I., Kornilaev B.A., Chebotareva N.A., Malikov V.P., Orlov V.N., Lyubarev
- A.E. and Livanova N.B. (2000) Dissociative mechanism of thermal denaturation of rabbit skeletal muscle glycogen phosphorylase b. Biochemistry, 39, 13 144— 13 152.
- Kuznetsova I.M., Biktashev A.G., Khaitlina S.Y., Vassilenko K.S., Turoverov K.K. and
- Uversky V.N. (1999) Effect of self-association on the structural organization of partially folded proteins: inactivated actin. Biophys. J., 77, 2788−2800.
- Kuznetsova I.M., Khaitlina S.Y., Konditerov S.N., Surin A.M. and Turoverov K.K.1988) Changes of structure and intermolecular mobility in the course of actin denaturation. Biophys. Chem., 32, 73—78.
- Kuznetsova I.M., Turoverov K.K. and Uversky V.N. (1999) Inactivated actin, anaggregate composed of partially-folded monomers, has an overall native-like packing density. Protein Peptide Lett., 6, 173—178.
- Lambert H., Charette S.J., Bernier A.F., Guimond A. and Landry J. (1999) HSP27multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J. Biol. Chem., 274, 9378—9385.
- Lavoie J.N., Hickey E., Weber L.A. and Landry J. (1993) Modulation of actinmicrofilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem., 268, 24 210−24 214.
- Le Bihan T. and Gicquaud C. (1993) Kinetic study of the thermal denaturation of Gactin using differential scanning calorimetry and intrinsic fluorescence spectroscopy. Biochem. Biophys. Res. Commun., 194, 1065—1073.
- Lebowitz J., Lewis M.S. and Schuck P. (2002) Modern analytical ultracentrifugation inprotein science: a tutorial review. Protein Sci., 11, 2067—2079.
- Lelj-Garolla B. and Mauk A.G. (2006) Self-association and chaperone activity of Hsp27are thermally activated. J. Biol. Chem., 281, 8169−8174.
- Leroux M.R., Melki R., Gordon В., Batelier G. and Candido E.P. (1997) Structurefunction studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem., 272, 24 646−24 656.
- Levitsky D.I., Pivovarova A.V., Mikhailova V.V. and Nikolaeva O.P. (2008) Thermalunfolding and aggregation of actin. Stabilization and destabilization of actin filaments. FEBSJ., 275, 4280−4295.
- Lindner R.A., Carver J.A., Ehrnsperger M., Buchner J., Esposito G., Behlke J., Lutsch
- G., Kotlyarov A. and Gaestel M. (2000) Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. Eur. J. Biochem., 267, 1923−3192.
- Lorenz M., Popp D. and Holmes K.C. (1993) Refinement of the F-actin model against
- X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol, 234, 826−836.
- Lorinczy D., Konczol F., Gaszner B. and Belagyi J. (1998) Structural stability of actinfilaments as studied by DSC and EPR. Thermochim. Acta, 322, 95−100.
- MacRae Т.Н. (2000) Structure and function of small heat shock/alpha-crystallinproteins: established concepts and emerging ideas. Cell Mol. Life Sci., 57, 899— 913.
- Malacombe M., Bader M.F. and Gasman S. (2006) Exocytosis in neuroendocrine cells: new tasks for actin. Biochim. Biophys. Acta., 1763, 1175—1183.
- Markov D.I., Pivovarova A.V., Chernik I.S., Gusev N.B. and Levitsky D.I. (2008) Smallheat shock protein Hsp27 protects myosin SI from heat-induced aggregation, but not from thermal denaturation and ATPase inactivation. FEBS Lett., 582, 1407— 1412.
- Martin-Benito J., Boskovic J., Gomez-Puertas P., Carrascosa J.L., Simons C.T., Lewis
- S.A., Bartolini F., Cowan N.J. and Valpuesta J.M. (2002) Structure of cukaryoticprefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBOJ., 21, 6377−6386.
- Mazzocci C., Benos D.J. and Smith P.R. (2006) Interaction of epithelial ion channelswith actin-based cytoskeleton. Amer. J. Physiol. Renal. Physiol., 291, F1113-F1122.
- Melkani G.C., Cammarato A. and Bernstein S.I. (2006) ocB-Crystallin maintains skeletalmuscle myosin enzymatic activity and prevents its aggregation under heat-shock stress. J. Mol. Biol., 358, 635−645.
- Merck K.B., De Haard-Hoekman W.A., Oude Essink B.B., Bloemendal H. and De Jong
- W.W. (1992) Expression and aggregation of recombinant alpha A-crystallin and its two domains. Biochim. Biophys. Acta, 1130, 267—276.
- Michaud S., Marin R. and Tanguay R. M. (1997) Regulation of heat shock geneinduction and expression during Drosophila development. Cell Mol. Life Sci. 53, 104−113.+
- Miralles F. and Visa N. (2006) Actin in transcription and transcription regulation. Curr.
- Opin. Cell Biol., 18, 261−266.
- Miron Т., Vancompernolle K., Vandekerckhove J., Wilchek M. and Geiger B. (1991) A25. kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J. Cell. Biol., 114, 255−261.
- Mounier N. and Arrigo A-P (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7, 167—176.
- Narberhaus F. (2002) Alpha-crystallin-type heat shock proteins: socializingminichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev., 66, 64−93.
- Nikolaeva O.P., Dedova I.V., Khvorova I.S. and Levitsky D.I. (1994) Interaction of Factin with phosphate analogues studied by differential scanning calorimetry. FEBSLett., 351, 15−18.
- Nolen В J. and Pollard T.D. (2007) Insights into the influence of nucleotides on actinfamily proteins from seven structures of Arp2/3 complex. Mol. Cell., 26, 449— 457.
- Oda Т., Namba K. and Maeda Y. (2005) Position and orientation of phalloidin in F-actindetermined by X-ray fiber diffraction analysis. Biophys. J., 88, 2727—2736.
- Orlova A. and Egelman E.H. (1993) A conformational change in the actin subunit canchange the flexibility of the actin filament. J. Mol. Biol., 232, 334−341.
- Orlova A. and Egelman E.H. (1995) Structural dynamics of F-actin: I. Changes in the Сterminus. J. Mol. Biol., 245, 582−597.
- Panasenko O.O., Kim M.V., Marston S.B. and Gusev N.B. (2003) Interaction of thesmall heat shock protein with molecular mass 25 kDa (hsp25) with actin. Eur. J. Biochem., 270, 892−901.
- Panasenko O.O., Seit Nebi A., Bukach O.V., Marston S.B. and Gusev N.B. (2002)
- Structure and properties of avian small heat shock protein with molecular weight 25 kDa. Biochim. Biophys. Acta, 1601, 64−74.
- Philo J.S. (2006) Is any measurement method optimal for all aggregate sizes and types?1. AAPSJ., 8, E564—571.
- Photon Correlation and Light Beating Spectroscopy (1974) (Cummins, H. Z. and Pike,
- E. R., Eds) Plenum, New York.
- Plater M. L., Goode D. and Crabbe M.J. (1996) Effects of site-directed mutations on thechaperone-like activity of alphaB-crystallin. J. Biol. Chem., 271, 28 558−28 566.
- Plater M.L., Goode D. and Crabbe M.J. (1996) Effects of site-directed mutations on thechaperone-like activity of alphaB-crystallin. J. Biol. Chem., 271, 28 558−28 566.
- Pollard T.D. (1976) The role of actin in the temperature-dependent gelation andcontraction of extracts of Acanthamoeba. J Cell. Biol., 68, 579−601.
- Privalov P.L. and Potekhin S.A. (1986) Scanning microcalorimetry in studyingtemperature-induced changes in proteins. Methods Enzymol., 131, 4−51.
- Raman В., Ramakrishna T. and Rao C.M. (1995) Temperature dependent chaperonelike activity of alpha-crystallin. FEBS LettX 365, 133−136.
- Reddy G.B., Das K.P., Petrash J.M. and Surewicz W.K. (2000) Temperature-dependentchaperone activity and structural properties of human alphaA- and alphaB-crystallins. J. Biol. Chem., 275, 4565−4570.
- Reisler E. and Egelman E.H. (2007) Actin structure and function: what we still do notunderstand. J. Biol. Chem., 282, 36 133−36 137.
- Rogalla Т., Ehrnsperger M., Preville X., Kotlyarov A., Lutsch G., Ducasse C., Paul C.,
- Wieske M., Arrigo A. P., Buchner J. and Gaestel M. (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J. Biol. Chem., 274, 18 947−18 956.
- Rould M.A., Wan Q., Joel P.B., Lowey S. and Trybus K.M. (2006) Crystal structures ofexpressed non-polymerizable monomelic actin in the ADP and ATP states. J. Biol. Chem., 281, 31 909−31 919.
- Rubenstein P.A. (1990) The functional importance of multiple actin isoforms.1. Bioessays, 12, 309−315.
- Sakamoto H., Mashima Т., Yamamoto K. and Tsuruo T. (2002) Modulation of heatshock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification. J. Biol. Chem., 277, 45 770^15775.
- Sanchez-Ruiz J.M. (1992) Theoretical analysis of Lumry-Eyring models in differentialscanning calorimetry. Biophys. J., 61, 921—935.
- Schmid M.F., Sherman M.B., Matsudaira P. and Chiu W. (2004) Structure of theacrosomal bundle. Nature, 431, 104—107.
- Singh B.N., Rao K.S., Ramakrishna Т., Rangaraj N. and Rao C.M. (2007) Associationof aB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo. J. Mol. Biol., 366, 756—767.
- Straub F.B. (1942) Actin. Stud. Inst. Med. Chem. Univ. Szeged, vol. 2, p. 1.
- Stromer Т., Ehrnsperger M., Gaestel M. and Buchner J. (2003) Analysis of theinteraction of small heat shock proteins with unfolding proteins. J. Biol. Chem., 278,18 015−18 021.
- Studer S. and Narberhaus F. (2000) Chaperone activity and homo- and hetero-oligomerformation of bacterial small heat shock proteins. J. Biol. Chem., 275, 37 212— 37 218.
- Sun W., Van Montagu M. and Verbruggen N. (2002) Small heat shock proteins andstress tolerance in plants. Biochim. Biophys. Acta, 1577, 1—9.
- Takamoto K., Kamal J.K. and Chance M.R. (2007) Biochemical implications of a threedimensional model of monomeric actin bound to magnesium-chelated ATP. Structure, 15, 39−51.
- Taylor R.P. and Benjamin I.J. (2005) Small heat shock proteins: a new classificationscheme in mammals. J. Mol. Cell Cardiol., 38, 433−444.
- Tezel G. and Wax M.B. (2000) The mechanisms of hsp27 antibody-mediated apoptosisin retinal neuronal cells. JNeurosci., 20, 3552—3562.
- Theriault J.R., Lambert H., Chavez-Zobel A.T., Charest G., Lavigne P. and Landry J.2004) Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J. Biol. Chem., 279, 23 463−23 471.
- Thomson J.A. and Augusteyn R.C. (1984) On the structure of alpha-crystallin. Thereversibility of urea dissociation. J. Biol. Chem., 259, 4339^4345.
- Tirion M.M. and bcn-Avraham D. (1993) Normal mode analysis of G-actin. J. Mol.1. Biol., 230, 186−195.
- Wagstaff M.J., Collaco-Moraes Y., Smith J., de Belleroche J.S., Coffin R.S. and1. tchman D.S. (1999) Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. J. Biol. Chem., 274, 5061— 5069.
- Wang K. and Spector A. (1996) a-Crystallin stabilizes actin filaments and preventscytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur. J. Biochem. 242, 56—66.
- Wieske M., Benndorf R., Behlke J., Dolling R., Grelle G., Bielka H. and Lutsch G.2001) Defined sequence segments of the small heat shock proteins HSP25 and alphaBcrystallin inhibit actin polymerization. Eur. J. Biochem. 268, 2083—2090.
- Yudin I.K., Nikolaenko G.L., Kosov V.I., Agayan V.A., Anisimov M.A. and Sengers
- J.V. (1997) Simple photon-correlation spectrometer for research and education. Int. J. Thermophys., 18, 1237−1248.1. БЛАГОДАРНОСТИ л1. И)
- Я искренне признательна своему научному руководителю доктору биологических наук, профессору Дмитрию Ивановичу Левицкому за внимательное, чуткое и доброжелательное руководство.
- Я благодарна своим коллегам и друзьям из отдела структурной биохимии белка Института биохимии им. А. Н. Баха РАН за неоценимую помощь в работе, поддержку и доброту.
- Данная работа выполнена при финансовой поддержке грантов РФФИ и Программы «Молекулярная и клеточная биология» Президиума РАН.