Помощь в написании студенческих работ
Антистрессовый сервис

Взаимодействие мембранотропных катионов с митохондриями дрожжей Yarrowia lipolytica

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Совокупность полученных данных позволила сделать вывод о том, что ЗкС^ в относительно низких концентрациях не повреждают целостность митохондриальной мембраны, не шунтируют перенос электронов по дыхательной цепи митохондрий, обладают антиоксидантной и разобщающей активностью, снижают мембранный потенциал, в более высоких концентрациях ингибируют дыхание в состоянии 3, оказывают прооксидантное… Читать ещё >

Взаимодействие мембранотропных катионов с митохондриями дрожжей Yarrowia lipolytica (реферат, курсовая, диплом, контрольная)

Содержание

  • СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ, ПРИНЯТЫЕ В ТЕКСТЕ
  • ОБЗОР ЛИТЕРАТУРЫ
  • Глава I. Апоптоз и пути выхода апоптотических факторов из митохондрий
  • Глава II. Ионы «Скулачёва»
  • Глава III. Гипоксия или анаэробиоз
  • Глава III. 1. Ответ на гипоксию у млекопитающих
  • Глава III. 2. Ответ на гипоксию у дрожжей
  • Глава III. 2.1. Ответ на гипоксию патогенных дрожжей
  • Глава III. 3. Гипоксия и кальций
  • Глава IV. Са2±зависимая циклоспорин А-чувствительная пора
  • РТР — Permeability Transition Pore)
  • Глава IV. 1. Неспецифическая проницаемость митохондрий дрожжей
  • Глава V. Са2±зависимая, циклоспорин А-нечувствительная пора, индуцируемая жирными кислотами
  • Глава VI. Ионные каналы внутренней митохондриальной мембраны
  • Глава VI. 1. Митохондриальные К±каналы
  • Глава VI. 1.1. Митохондриальный АТР-регулируемый К±канал митоКдтр)
  • Глава VI. 1.2. Системы транспорта калия в митохондриях дрожжей
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • Глава 1. Материалы и методы исследования
  • Глава.
    • 1. 1. Реагенты
  • Глава.
    • 1. 2. Организм
  • Глава.
    • 1. 3. Условия выращивания
  • Глава.
    • 1. 4. Выделение митохондрий из дрожжей Y. lipolytica
  • Глава.
    • 1. 5. Аналитические методы
  • РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ
  • Глава 1. Влияние ионов Скулачёва на дрожжевые митохондрии
  • Глава 2. Проницаемость внутренней мембраны митохондрий дрожжей
    • Y. lipolytica
  • Глава. 2.1. В митохондриях дрожжей Y. lipolytica не индуцируется классическая" Са2+/Рн-зависимая, циклоспорин А-чувствительная пора

Глава. 2.2. Анаэробиоз не индуцировал повышенную проницаемость внутренней митохондриальной мембраны дрожжей 7. Нро1уИса. Впервые показана АТР-зависимая энергизация митохондрий дрожжей У. Иро1уйса в условиях анаэробиоза.

Глава. 2.3. Митохондриальный АТР-зависимый К±канал в митохондриях дрожжей Y. lipolytica.

Актуальность проблемы. Митохондрии часто называют локомотивом клетки. Хотя их роль в образовании АТР посредством окислительного фосфорилирования имеет решающее значение, они выполняют в клетке и другие важные функции, в том числе в катаболическом и анаболическом метаболизме, поддержании гомеостаза Са2+, образовании активных форм кислорода (АФК), клеточной сигнализации и апоптозе. Предполагается, что окисление биополимеров АФК играет ведущую роль в старении организма (Harman, 1956). Митохондриальные активные формы кислорода и окислительные повреждения митохондрий, вызванные ими, являются причиной различных патологий, включая диабет, сердечно-сосудистые расстройства, инфаркт, инсульт, нейродегенеративные и другие возрастные заболевания. Неудивительно, что исследователями неоднократно предпринимались попытки замедлить старение с помощью антиоксидантов.

Наиболее успешным с этой точки зрения оказалось использование MitoQположительно заряженного (следовательно, транспортирующегося исключительно в митохондрии) липофильного катиона трифенилфосфония, соединенного С10-алифатической цепью с убихиноном, компонентом электронтранспортной цепи митохондрий, обладающего антиоксидантной активностью (см. обзор (Murphy et al., 2007) и ссылки в нем). Митохондриально-направленные липофильные антиоксиданты имеют существенные преимущества перед другими антиоксидантами, поскольку они транспортируются в клетки и митохондрии в соответствии с величиной мембранного потенциала, генерируемого соответственно на цитоплазматической и митохондриальной мембранах, благодаря чему их концентрация в митохондриях могут увеличиваться на несколько порядков. Это позволяет использовать их в низких, нетоксичных, наномолярных и субъмикролярных концентрациях. Более того, липофильные антиоксиданты, накапливаясь в липидном бислое внутренней митохондриальной мембраны, могут восстанавливаться (регенерироваться) компонентами дыхательной цепи, что обеспечивает их многократное функционирование. В. П. Скулачёв (см. обзоры (Скулачёв, 2007; Skulachev et al., 2009) и ссылки в них) предложил заменить убихинон в составе липофильного антиоксиданта на потенциально более мощный природный антиоксидант пластохинон, функционирующий в фотосинтетической цепи переноса электронов в условиях повышенной концентрации кислорода и увеличенной продукции АФК.

В рамках руководимого В. П. Скулачёвым проекта были синтезированы различные производные пластохинона (под общим названием SkQ, где Sk означает проникающий катион, a Q — пластохинон). «Skulachev's ion» — термин, введенный Д. Грином (Green, 1974). Показано, что катионные производные пластохинона свободно проникают через бислойные липидные мембраны с образованием диффузионного потенциала расчетной величины. В ряде биологических моделей показано преимущество использования ионов Скулачёва (SkQs) по сравнению с MitoQ, поскольку, как первоначально и предполагалось В. П. Скулачёвым, у SkQs интервал концентраций, в которых антиоксидантная активность преобладает над прооксидантной, был существенно шире, чем у MitoQ. Наиболее простой и в то же время адекватной моделью для изучения механизма действия SkQs остаются митохондрии. При этом прочно сопряженные митохондрии дрожжей имеют некоторые преимущества по сравнению с митохондриями животных, поскольку они практически лишены эндогенного дыхания, что позволяет исследовать скорости окисления индивидуальных субстратов окисления, и, как мы показали (Kovaleva et al., 2009), не имеют Са2+/Рн-зависимых пор, что облегчает интерпретацию полученных данных.

АФК могут вызывать не только различные патологии, о которых мы упомянули выше, но и апоптоз. Апоптоз — это генетически запрограммированный, четко отрегулированный, высококоординированный механизм гибели клеток, направленный на удаление невостребованных, поврежденных, инфицированных, ослабленных, закончивших свой жизненный цикл, потенциально опасных клеток.

Для дрожжей в настоящее время показаны многочисленные случаи гибели клеток по механизму апоптоза под действием разных внешних стимулов и внутриклеточных дефектов (Ковалева и др., 2010). Выявлен ряд апоптотических факторов (метакаспаза-1 (Ycalp), AIF, AMID, Dnmlp, Rho5, GTPa3bi), некоторые из которых (цитохром с, эндонуклеаза G, белок, подобный протеазе HtrAHtrA2) локализованы, как и в митохондриях животных, в межмембранном пространстве, и выход которых при повреждении внешней мембраны должен означать начало необратимой стадии апоптоза, приводящей в конечном итоге к гибели клетки. Однако вопрос о том, каким образом осуществляется выход апоптотических факторов из дрожжевых митохондрий, до недавнего времени не имел ответа. Для митохондрий животных известны два основных пути выхода апоптотических факторов из межмембранного пространства. Первый включает в себя активацию, конформационную перестройку, встраивание во внешнюю мембрану митохондрий и димеризацию проапоптотического белка Вах, члена семейства белков Вс1−2, в результате чего образуется пора (Sheridan et al., 2008; Yamaguchi et al.,.

2008). Другим механизмом выхода апоптотических факторов из митохондрий является увеличение проницаемости митохондрий в результате открытия ряда пор во внутренней митохондриальной мембране (Коуа1еуа а1., 2009). Дрожжи лишены белков семейства Вс1−2, а информация об индукции неспецифической проницаемости дрожжевых митохондрий крайне скудна и противоречива.

Ранее (Коуа1еуа е1 а1., 2009) в нашей лаборатории было показано, что митохондрии дрожжей аэробного типа обмена Уаггомга Иро1уйса и П1рос1а$ст magnusii лишены Са2+/Рн-зависимой, циклоспорин А-чувствительной поры и поры, индуцируемой одновременным добавлением относительно низких концентраций жирных кислот и Са2+. Однако не все возможности индукции неспецифических пор были исследованы.

Цель работы:

1. Исследовать влияния мембранотропных катионов на энергетические параметры митохондрий дрожжей Уаггом>1а Иро1уйса.

2. Завершить исследование индукции неспецифической проницаемости в митохондриях дрожжей Уаггота Иро1уйса.

В соответствии с целью работы были поставлены следующие задачи:

1. Выявить антиоксидантное, разобщающее, прооксидантное, ингибирующее и детергентное действие мембранотропных катионов с локализованным и делокализованным зарядами на дыхание и мембранный потенциал митохондрий У. Нро1уйса, а также способность мембранотропных катионов усиливать разобщающее действие жирных кислот;

2. Исследовать возможность индукции неспецифической проницаемости в условиях анаэробиоза;

3. Исследовать возможность превращения АТР-зависимого К±канала в неспецифическую пору.

Научная новизна. Впервые проведено систематическое исследование влияния ионов Скулачёва (БкС^) на дрожжевые митохондрии. Показано, что в относительно низких концентрациях БкС^ не повреждают целостность митохондриальной мембраны, не шунтируют перенос электронов по дыхательной цепи митохондрий, обладают антиоксидантной и разобщающей активностью, снижают мембранный потенциал. В более высоких концентрациях БкС^ ингибируют дыхание в состоянии 3, оказывают прооксидантное, в еще более высоких — детергентное действие. Впервые показано, что только мембранотропные катионы с делокализованным зарядом усиливают транспорт гидрофобных карбоксилатов, в том числе жирных кислот. Обнаружена энергизация митохондрий дрожжей Y. lipolytica в условиях анаэробиоза за счет гидролиза АТР. Найдено, что Са2+ (в присутствии Са2+ ионофора ЕТН129) даже в условиях анаэробиоза не индуцирует повышенную проницаемость внутренней митохондриальной мембраны дрожжей Y. lipolytica. Найдено, что в условиях окислительного стресса при действии прооксидантов, особенно при использовании SkQs в концентрациях, вызывающих прооксидантный эффект, АТР-зависимый К±канал митохондрий дрожжей Y. lipolytica превращается в неспецифическую пору.

Практическое значение работы. Данные, полученные при изучении SkQs, используются для оптимизации условий при заживлении ран, а также для лечения патологий митохондриального происхождения, вызванных окислительным стрессом, в частности «возрастных» болезней (катаракта, ретинопатия, макулодистрофия, глаукома, диабет, остеопороз и некоторые другие) (доклинические испытания). Особенно перспективным представляется использование полученных нами данных об усилении ионами Скулачёва разобщающего действия карбоксилатов и других гидрофобных анионов при лечении ожирения. Попытки лечения ожирения с помощью классического разобщителя 2,4-динитрофенола (DNF) неоднократно предпринимались в прошлом (начиная с 40-х годов), однако признавались неудачными из-за заметного токсического действия DNF, добавляемого в высоких концентрациях. При совместном использовании катионного SkQ и анионного DNP появляется возможность многократно уменьшить действующие концентрации DNF.

ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. вкОэ в относительно низких концентрациях не повреждают целостность митохондриальной мембраныне шунтируют перенос электронов по дыхательной цепи митохондрий, обладают антиоксидантной и разобщающей активностью, снижают мембранный потенциал, в более высоких концентрациях ингибируют дыхание в состоянии 3, оказывают прооксидантное воздействие, в еще более высоких — детергентное действие на митохондрии дрожжей У. Иро1уйса.

2. Только мембранотропные катионы с делокализованным зарядом промотируют транспорт гидрофобных карбоксилатов, в том числе жирных кислот;

3. Выявлены условия (окислительный стресс) при которых закрытый АТР-зависимый К±канал превращается в неспецифическую пору в митохондриях дрожжей У. Иро1уйса.

4. Впервые показана АТР-зависимая энергизация митохондрий данного вида дрожжей в условиях анаэробиоза. Са2+ (в присутствии ЕТН129) даже в условиях анаэробиоза не индуцировал повышенную проницаемость внутренней митохондриальной мембраны дрожжей У. ИрсЯуНса.

ЗАКЛЮЧЕНИЕ

.

С возрастом происходит усиление образования активных форм кислорода в клетках, ослабление систем защиты от них, что является результатом повреждения регуляторных систем организма или активации специальных программ старения. Это нашло отражение в свободнорадикальная гипотеза Хармана (Harman, 1956). Митохондрии являются главным источником активных форм кислорода (АФК). Митохондриальные АФК и окислительные повреждения митохондрий, вызванные ими, являются причинами большого количество различных патологий, включая диабет, сердечно-сосудистые расстройства, инфаркт, инсульт, нейродегенеративные и другие возрастные заболевания. Поэтому митохондрии являются важнейшей мишенью для лечения болезней, вызванных активными формами кислорода при помощи антиоксидантов.

Исторически было предложено несколько стратегий для специфической адресной доставки антиоксидантов в митохондрии. Наиболее популярный подход основан на применении так называемых проникающих ионов, то есть заряженных соединений, которые могут легко проходить сквозь митохондриальную мембрану благодаря делокализованному заряду. Синтетические ионы, проникающие сквозь мембрану митохондрий, впервые были описаны Либерманом и соавторами (Skulachev et al., 1967; Liberman and Skulachev, 1970). В литературе они были названы «ионами Скулачёва» или SkQs.

При попадании в клетку, проникающие катионы селективно накапливаются внутри митохондрий (отрицательно заряженных компартментов) и их концентрация внутри митохондрий возрастает на три порядка, в соответствии с уравнением Нернста, что позволяет использовать эти вещества в низких (микрои субмикромолярных) концентрациях. Использование этих соединений уже показало свое положительное действие при защите от апоптоза и некроза, некоторых видов рака, сердечной аритмии, инфарктов сердца и почек, инсульта и различных признаков старения, вызванных АФК (Антоненко и др., 2008). При этом очевидно, что действие этих веществ не ограничивается их геропротекторным эффектом, поскольку опыты по сердечной аритмии, инфарктам сердца и почек, инсульту, заживлению ран, и ряда других патологий были поставлены на молодых животных (Скулачев, 2007). Тем настоятельнее необходимость изучения механизма действия SkQl и родственных ему соединений на молекулярном уровне, в частности, на митохондриях. Митохондрии дрожжей Y. lipolytica в связи со сходством их дыхательной цепи с дыхательной цепью животных являются перспективной моделью для исследования взаимодействия мембранотропных катионов с митохондриями.

При этом прочно-сопряженные митохондрии дрожжей имеют даже преимущества перед митохондриями животных, поскольку они практически лишены эндогенных субстратов, что позволяет оценивать скорости дыхания индивидуальных субстратов, в отличие от митохондрий животных характеризуются очень высокими скоростями окисления экзогенных субстратов, в том числе и NAD-зависимых, и, как показано в данной диссертации, лишены Са2+ -зависимой пермеабилизации, что исключает двусмысленное толкование полученных данных.

Для дрожжей в настоящее время показаны многочисленные случаи гибели клеток по механизму апоптоза под действием разных внешних стимулов и внутриклеточных дефектов (см. Ковалева и др. 2010). Выявлен ряд апоптотических факторов (метакаспаза-1 (Ycalp), AIF, AMID, Dnmlp, Rho5 GTPa3bi), некоторые из которых (цитохром с, эндонуклеаза G, белок, подобный протеазе HtrA — HtrA2) локализованы, как и в митохондриях животных, в межмембранном пространстве, и выход которых при повреждении внешней мембраны должен означать начало необратимой стадии апоптоза, приводящей в конечном итоге к гибели клетки. Однако вопрос о том, каким образом осуществляется выход апоптотических факторов из дрожжевых митохондрий, до недавнего времени не имел ответа. Для митохондрий животных известны два основных пути выхода апоптотических факторов из межмембранного пространства. Первый включает в себя активацию, конформационную перестройку, встраивание во внешнюю мембрану митохондрий и димеризацию проапоптотического белка Вах, члена семейства белков Вс1−2, в результате чего образуется пора (Sheridan et al., 2008; Yamaguchi et al., 2008). Другим механизмом выхода апоптотических факторов из митохондрий является увеличение проницаемости митохондрий в результате открытия ряда пор во внутренней митохондриальной мембране: неспецифической, Са2+/Рн-зависимой, циклоспорин, А (ЦсА)-чувствительной поры, мегаканалу диаметром 2,6 — 2,9 нм, способного пропускать вещества с молекулярной массой до 1,5 кДа (Bernardi et al., 2006) — поры, открываемой при одновременном добавлении в митохондриях животных относительно низких концентраций Са2+ и насыщенных жирных кислот (Mironova et al., 2001; Sulton and Sokolove, 2001) и (и растений) в условиях анаэробиоза (Chavez et al., 1997; Kuzminova et al., 1998; Virolainen et al., 2002 и др.). Дрожжи лишены белков семейства Bcl-2, а информация об индукции неспецифической проницаемости дрожжевых митохондрий крайне скудна и противоречива. Ранее (Kovaleva et al., 2009; Ковалева и др., 2010) в нашей лаборатории было показано, что митохондрии дрожжей аэробного типа обмена Y. lipolytica и Dipodascus magnusii (Суханова Е.И., кандидатская диссертация) лишены.

Са2+/Рн-зависимой, циклоспорин, А (ЦсА)-чувствительной поры и поры, индуцированной одновременным добавлением относительно низких концентраций жирных кислот и Са2+. Однако не все возможности индукции неспецифических пор были исследованы.

Поэтому, в соответствии с основной целью исследования, с помощью стандартных тестов (измерения величины мембранного потенциала, скорости дыхания, набухания) и измерения образования пероксида водорода митохондриями мы исследовали взаимодействие мембранотропных катионов (в том числе БкС^) с митохондриями дрожжей У. Иро1уйса. Выбор объекта исследования был не случаен. В отличие от 5. сегеу1ъ1ае, У. Иро1уйса — облигатный аэроб. При выращивании клеток У. Иро1уИса на сукцинате, функционирует дыхательная цепь, напоминающая дыхательную цепь высших организмов, со всеми пунктами энергетического сопряжения и минимальным включением альтернативной оксидазы, что позволяет получать митохондриальные препараты высокого качества, соответствующие всем известным критериям физиологической интактности.

В соответствии с задачей исследования № 1, мы провели тщательное исследование на прочно-сопряженных митохондриях У. Иро1уНса влияния мембранотропных катионов с локализованным и делокализованным зарядами на дыхание и мембранный потенциал митохондрий и на их способность усиливать разобщающее действие жирных кислот.

Совокупность полученных данных позволила сделать вывод о том, что ЗкС^ в относительно низких концентрациях не повреждают целостность митохондриальной мембраны, не шунтируют перенос электронов по дыхательной цепи митохондрий, обладают антиоксидантной и разобщающей активностью, снижают мембранный потенциал, в более высоких концентрациях ингибируют дыхание в состоянии 3, оказывают прооксидантное воздействие, в еще более высоких — детергентное действие. Только мембранотропные катионы с делокализованным зарядом ускоряли транспорт гидрофобных карбоксилатов, в том числе жирных кислот. Найдены условия, позволящие тестировать мембранный потенциал при использовании родаминовых производных, имеющих те же спектральные характеристики, что и потенциал-зависимый зонд сафранин О. До этого измерения мембранного потенциала митохондрий животных с родаминовыми производными осуществляли с помощью В18-СЗ-(5) или Б18-С3-(3). Но поскольку митохондрии животных с очень низкой скоростью окисляют N АО-зависимые субстраты, в качестве дыхательного субстрата использовали сукцинат, что делало эти измерения некорректными, посколку Б18-СЗ-(5) или 018-СЗ-(3) тестируют главным образом комплекс I дыхательной цепи (вазкоуа е1 а1., 2007). Получены доказательства отсутствия в митохондриях дрожжей специального переносчика, обеспечивающего перенос хинонов через внутреннюю митохондриальную мембрану.

В соответствии с целью исследования, с помощью стандартных тестов (измерения величины мембранного потенциала, скорости дыхания, набухания) мы исследовали возможность индукции неспецифической проницаемости внутренней мембраны митохондрий дрожжей Y. lipolytica. Были проверены практически все условия, известные как вызывающие индукцию увеличенной проницаемости митохондрий животных и растений, а именно — истощение внутримитохондриального пула адениновых нуклеотидов и деэнергизация митохондрий, влияние высоких концентраций фосфата при кислых значениях рН, анаэробиоз и др. Совокупность полученных данных позволила заключить, что в митохондриях дрожжей Y. lipolytica не индуцируется классическая Са2+/Рн-зависимая циклоспорин А-чувствительная пора в условиях, способствующих ее открытию в митохондриях животных, растений и других дрожжей. В присутствии специфического Са2+ ионофора ЕТН129 имела место лишь активация Са2+/Н±обмена, зависимого от эндогенных жирных кислот, деполяризация мембраны частично снималась добавлением АТР и неорганического фосфата, который, как известно, потенциирует открытие Са2±зависимой поры в митохондриях животных.

Мы проверили возможность индукции проницаемости внутренней митохондриальной мембраны митохондрий Y. lipolytica в условиях анаэробиоза (гипоксии). Нам не удалось индуцировать повышенную проницаемость внутренней митохондриальной мембраны дрожжей Y. lipolytica в состоянии анаэробиоза, а также при совместном влиянии условий анаэробиоза или гипоксии и Са2+ (в присутствие ионофора ЕТН129). Впервые была показана АТР-зависимая энергизация митохондрий Y. lipolytica в условиях анаэробиоза за счет энергии гидролиза АТР. Был сделан общий вывод о том, что отсутствие пермеабилизации под действием Са2+ является общим свойством дрожжевых митохондрий. Анализ литературных данных показал, что дрожжевые митохондрии не уникальны в этом отношении и напоминают митохондрии беспозвоночных (Menze et al., 2005).

Мы продолжили исследование открытого ранее в нашей лаборатории митохондриального АТР-зависимого К±канала (Ковалева, 2009), который, в отличие от неспецифического канала митохондрий дрожжей S. cerevisiae, закрывался добавлением АТР. Прямо противоположный ответ на АТР у дрожжей S. cerevisiae, с одной стороны, и у Y lipolytica, с другой стороны, может быть объяснен глобальной разницей в способах энергообеспечения этих дрожжей. Первые являются факультативными анаэробами, вторые — облигатными аэробами, обмен которых полностью зависит от функционирования митохондрий. В «нормальных» условиях АТР-зависимый К±канал митохондрий дрожжей аэробного типа обмена, ингибируемый микромолярными концентрациями АТР, должен находиться в закрытом состоянии. Однако снижение внутриклеточной концентрации АТР под действием разных неблагоприятных факторов (в частности окислительного стресса) может служить сигналом для открытия канала, что будет эквивалентно «мягкому» разобщению и, в конечном итоге, борьбе с окислительным стрессом. У факультативных анаэробов снижение внутриклеточного уровня АТР, напротив, будет способствовать закрытию канала, тем самым, обеспечивая возможность перехода на более эффективный — митохондриальный способ запасания энергии. Нами было обнаружено, что закрытию АТР-зависимого К±канала способствует добавление не только АТР (или система регенерации АТР), но также и субстратов дыхания (пирувата, малата, сукцината и NADH), а также неорганического фосфата. Пероксид водорода и антиоксидант N-ацетилцистеин, а также хинин (квинин), ингибитор транспорта К+, не оказывали влияния на АТР-зависимый К±канал.

Было найдено, что в присутствии прооксидантов (фениларсиноксида или сочетания менадиона, оксалоацета и фениларсиноксида, а особенно SkQs, в концентрациях, вызывающих прооксидатный эффект) специфический АТР-зависимый К±канал может вновь открываться. Повторное открытие канала (т. е. существенные деполяризация внутренней мембраны и набухание митохондрий) может указывать на образование неспецифической поры. Окончательное доказательство образования неспецифичности поры было получено при анализе выхода митохондриальных белков под действием прооксидантов (зафиксировано методом двумерного электрофореза) Таким образом, нам, наконец, удалось найти условия индукции неспецифической проницаемости дрожжевых митохондрий (окислительный стресс), а именно при превращении в условиях окислительно стресса АТР-зависимого К±канала в неспецифическую пору, через которую могли бы выходить белки межмембранного пространства митохондрий, в том числе, вероятно, и апоптотические факторы.

Показать весь текст

Список литературы

  1. А.Ю., Кушнарева Ю. Е., Старков A.A. (2005) Метаболизм активных форм кислорода в митохондриях. Биохимия, 70:246 264.
  2. E.H., Дерябина Ю. И., Звягильская P.A. (1997) Стимулирующее действие АДФ на систему транспорта ионов кальция митохондрий дрожжей. ДАН СССР, 353:1 3.
  3. Л.Е., Барсков И. В., Егоров М. В., Исаев Н. К., Капелько В. И., Казаченко A.B., Кирпатовский В. И., Козловский C.B., Лакомкин В. Л., Левина C.B., Писаренко О. И., Плотников Е. Ю., Сапрунова В. Б., Серебрякова Л. И., Скулачев М. В., Стельмашук Е.В.,
  4. КН., Белослудцева Н. В., Миронова Г. Д. (2005) Возможный механизм образования и регуляции пальмитат-индуцируемой циклоспорин А-нечувствительной митохондриальной поры. Биохимия, 70 (7):815 821.
  5. К.Н., Белослудцева Н. В., Миронова Г. Д. (2008) Роль митохондриальной пальмитат/Са2±активируемой поры в пальмитат-индуцируемом апоптозе. Биофизика, 536.:967 971.
  6. Н.В., Белослудцев К. Н., Агафонов А. В., Миронова Г. Д. (2009) Влияние холестерина на образование пальмитат/Са2±активируемой поры в митохондриях и липосомах. Биофизика, 54 (3):464 470.
  7. Ю.А. (2000) Свободные радикалы в биологических системах. Соросовский Образовательный журнал, с. 13 19
  8. Ю.И., Баженова Е. Н., Звягильская Р. А. (1996) Регуляция транспорта ионов кальция в митохондриях дрожжей Endomyces magnusii. Биохимия, 61(9):1704 1713.
  9. О.И. (2005) Энергетические функции митохондрий растений в стрессовых условиях. J. Stress Physio & Biochemistry, 1:37 54.
  10. В.Н., Демин О. В., Черняк В. Ю., Черняк Б. В. (1999) Индукция неселективной проницаемости внутренней мембраны в деэнергизованных митохондриях. Биохимия, 647.:809 816.
  11. Ю.И., Баженова Е. Н., Звягильская Р. А. (1996) Регуляция транспорта ионов кальция в митохондриях дрожжей Endomyces magnusii. Биохимия, 61 (9):1704 1713.
  12. Ю.И. и Звягильская Р.А. (2000) Са2±транспортирующая система митохондрий дрожжей Endomyces magnusii: независимые пути для поглощения и выхода иона. Биохимия, 65:607 1611.
  13. Ю.И., Баженова Е. Н., Звягильская Р. А. (2000) Пути выхода ионов кальция из митохондрий дрожжей Endomyces magnusii. Биохимия, 65 (10): 1380 1388.
  14. Ю.И., Исакова Е. П., Шурубор Е. И., Звягильская Р. А. (2004) Кальцийзависимая неспецифическая проницаемость внутренней митохондриальной мембраны не индуцируется в митохондриях дрожжей Endomyces magnusii. Биохимия, 69:1261 1270.
  15. P.A., Зеленщикова В. А., Уральская J1.A., Котельникова A.B. (1981) Изучение дыхательной системы Endomyces magnusii. Свойства митохондрий из клеток, выращенных на глицерине. Биохимия, 46 (1):3 10.
  16. P.A., Лейкин Ю. Н., Кожокару H.JI., Котельникова A.B. (1983) Транспорт ионов кальция дрожжевыми митохондриями. ДАН СССР, 269:1238 1240.
  17. P.A. и Котельникова A.B. (1991) Структура и функциональная активность дрожжевых митохондрий (монография). М.: ВИНИТИ, сер. Биол. Хим., Т. 36,172 сс.
  18. P.A. (1995) Митохондрии дрожжей: отличительные свойства, вклад в решение общих проблем биоэнергетики (обзор). Прикл. биохим. микробиолог., Т. 31, N.I., с. 50 60.
  19. Д.Б., Исаев Н. К., Плотников Е. Ю., Зорова Л. Д., Стельмашук Е. В., Васильева А. К., Архангельская A.A., Хряпенкова Т. Г. (2007) Митохондрия как двуликий янус. Биохимия, 72 (10): 1371 -1394.
  20. М.В., Суханова Е. И., Тренделева Т. А., Попова K.M., Зылькова М. В., Уральская Л. А., Звягильская P.A. (2010) Мини-обзор. Индукция проницаемости внутренней мембраны митохондрий дрожжей. Биохимия, 75 (3):365 372.
  21. A.B. и Звягильская P.A. (1963) Окислительное фосфорилирование в субклеточных препаратах из дрожжей Endomyces magnusii. Биохимия, 28 (3):879 — 887.
  22. A.B. и Звягильская P.A. (1973) Биохимия дрожжевых митохондрий (монография). Наука, М., 239 сс.
  23. Ю.Н., Вотякова Т. В., Баженова E.H., Звягильская P.A., Котельникова A.B. (1987) Взаимодействие ионов кальция с митохондриями дрожжей Endomyces magnusii. Биохимия, 52:676 682.
  24. М.Н. Функциональная морфология дрожжевых организмов. (1950) М.-Л. Из-во АН СССР, 368 сс.
  25. Т.Д., Федотчева Н. И., Макаров П. Р., Проневич Л. А., Миронов Т. П. (1981) Белок из митохондрий сердца быка индуцирует проводимость калиевого канала в билипидных мембранах. Биофшика, 26 (3):451 457.
  26. Г. Д., Качаева Е. В., Копылов А. Т. (2007) Митохондриальный АТФ-чувствительный калиевый канал. I. Структура канала, механизм его функционирования и регуляция. Вестник РАМН, 2:44 50.
  27. E.H. и Хайлова J1.C. (2005) Участие анионных переносчиков внутренней мембраны митохондрий в разобщающем действии жирных кислот. Биохимия, 70:197 -202.
  28. В.Н., Кожина О. В., Рыбакова С. Р. (2010) Зависимость разобщающего действия пальмитиновой кислоты в митохондриях печени от массы тела крыс разного возраста. Ж. Эволюц. Биохгш. физиол., 46 (2): 164 166.
  29. В.П. (2007) Попытка биохимиков атаковать проблему старения: «Мегапроект» по проникающим ионам. Первые итоги и перспективы. Биохимия, 72:1700 -1714.
  30. .А. и Заичкин Э.И. (1972) Микробиология, 41:168.
  31. Хайлова и др. Персональное сообщение.
  32. М.И., Гриценко E.H., Мурзаева C.B., Горбачёва О. С., Таланов Е. Ю., Миронова Г. Д. (2010) Возрастные изменения функционирования митохондриальной системы транспорта калия. Биофизика, 55 (6): 1030 1037.
  33. S., Robin Е., Simerabet M., Kipnis E., Tavernier В., Vallet В., Bordet R., Lebuffe G. (2010) Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial К ATP channel. Br J Anaesth., 104(2):191 -200.
  34. T.A., Cheong A., Comerford K.M., Scholz C.C., Bruning U., Clarke A., Cummins E.P., Cagney G., Taylor C.T. (2011) Small ubiquitin-related modifier (SUMO)-l promotes glycolysis in hypoxia. J Biol Chem., 286(6):4718 4726.
  35. Akerman K.E. and Wikstrom M.K. (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett., 68:191 197.
  36. Alcaide-German M.L., Vara-Vega A., Garcia-Fernandez L.F., Landazuri M.O., del Peso L. (2008) A yeast three-hybrid system that reconstitutes mammalian hypoxia inducible factor regulatory machinery. BMC Cell Biol., 9:18.
  37. Al-Dhaheri R.S. and Douglas L.J. (2010) Apoptosis in Candida biofilms exposed to amphotericin B. J. Med. Microbiol., 59 (Pt 2): 149 157.
  38. Almeida B., Buttner S., Ohlmeier S., Silva A., Mesquita A., Sampaio-Marques B., Osorio N.S., Kollau A., Mayer B., Leao C., Laranjinha J., Rodrigues F., Madeo F., Ludovico P. (2007) NO-mediated apoptosis in yeast. J. Cell. Sci., 120 (Pt 18):3279 3288.
  39. Almeida B., Silva A., Mesquita A., Sampaio-Marques B., Rodrigues F., Ludovico P. (2008) Drug-induced apoptosis in yeast. Biochim. Biophys. Acta, 1783:1436 1448.
  40. A., Costa A.D., West I.C., Garlid K.D. (2006) Opening mitoKATp increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol., 291: H2067 H2074.
  41. Anflous-Pharayra K., Lee N., Armstrong D.L., Craigen W.J. (2011) VDAC3 has differing mitochondrial functions in two types of striated muscles. Biochim Biophys Acta., 1807(1):150 -156.
  42. H., Kadoya K., Taniguchi H., Satoh T., Hatanaka H. (1999) Generation of free radicals during the death of Saccharomyces cerevisiae caused by lipid hydroperoxide. Biosci. Biotechnol. Biochem., 63 (6): 1025 1031.
  43. Arcangioli B. and Ben Hassine S. (2009) Unrepaired oxidative DNA damage induces an ATR/ATM apoptotic-like response in quiescent fission yeast. Cell Cycle, 8 (15):2326 2331.
  44. H. (2005) Cytoprotective channels in mitochondria. J. Bioenerg. Biomembr., 37 (3):171 -177.
  45. Argaud L., Gateau-Roesch O., Chalabreysse L., Gomez L., Loufouat J., Thivolet-Bejui F., Robert D., Ovize M. (2004) Preconditioning delays Ca2±induced mitochondrial permeability transition. Cardiovasc Res., 61:115 -122.
  46. Argaud L., Gateau-Roesch O., Raisky O., Loufouat J., Robert D., Ovize M. (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation., 111:194−197.
  47. Asimakis G.K. and Sordahl L.A. (1981) Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria. Am. J. Physiol., 241 (5):H672 678.
  48. Aw T.Y., Andersson B.S., Jones D.P. (1987) Suppression of mitochondrial respiratory function after short-term anoxia. Am J Physiol., 252(4 Pt 1):C362 368.
  49. D.F., Herrington J., Goodwin P.C., Park Y.B., Hille B. (1997) Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol., 136(4):833 844.
  50. M.E., Sanhueza M.A., Cifuentes V.H. (2008) Occurrence of killer yeast strains in industrial and clinical yeast isolates. Biol. Res., 41 (2):173 182.
  51. R., Seetharaman S., Kowaltowski A.J., Garlid K.D., Paucek P. (2001) Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J. Biol. Chem., 276 (36):33 369 -33 374.
  52. Balcavage W.X., Lyoyd J.L., Mattoon J.R., Ohnishi T. and Scarpa A. (1973) Cation movements and respiratory response in yeast mitochondria treated with high Ca2+ concentrations. Biochim. Biophys. Acta, 305:41 51.
  53. E.N., Deryabina Y.I., Eriksson O., Zvyagilskaya R.A., Saris N.E. (1998a) Characterization of a high capacity calcium transport system in mitochondria of the yeast Endomyces magnusii. J. Biol. Chem., 20 (273):4372 4377.
  54. Bazhenova E.N., Saris N-E., Pentilla T., Zvyagilskaya R.A. (19 986) Stimulation of the mitochondrial calcium uniporter by hypotonicity and ruthenium red. Biochim. Biophys. Acta, 1371:96−100.
  55. A.D., Brannan R.D., Garlid K.D. (1985) Swelling and contraction of the mitochondrial matrix. I. A structural interpretation of the relationship between light scattering and matrix volume. J Biol Chem., 260:13 424 -13 433.
  56. P., Kicinska A., Kominkova V., Ondrias K., Dolowy K., Szewczyk A. (2004) Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J. Membr. Biol., 199:63 72.
  57. P., Dolowy K., Szewczyk A. (2005) Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. FEBSLett., 579:1625 1632.
  58. P., Barker G.D., Halestrap A.P. (2008a) Determination of the rate of K+ movement through potassium channels in isolated rat heart and liver mitochondria. Biochim. Biophys. Acta, 1777:540−548.
  59. P., Dolowy K., Szewczyk A. (20 086) New properties of mitochondrial ATP-regulated potassium channels. J. Bioenerg. Biomembr., 40:325 335.
  60. P. (2009) Potassium channels in brain mitochondria. REVIEW. Acta Biochim. Pol., 56 (3):385 -392.
  61. Bernardi P., Krauskopf A., Basso E., Petronilli V., Blachly-Dyson E., Di Lisa F., Forte M.A. (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J., 273:2077 2099.
  62. Bogucka K. and Wojtczak L. (1971) Intramitochondrial distribution of magnesium. Biochem. Biophys. Res. Commun., 44 (6):1330 1337.
  63. M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248 254.
  64. P.C., Jung D.W., Pfeiffer D.R. (2001) Free Fatty Acids Activate a Vigorous Ca2+:2H+ Antiport Activity in Yeast Mitochondria. J. Biol Chem., 276:40 502 40 509.
  65. R.J., Zischka H., Madeo F., Eisenberg T., Wissing S., Buttner S., Engelhardt S.M., Buringer D., Ueffing M. (2006) Crucial mitochondrial impairment upon CDC48 mutation in apoptotic yeast. J. Biol. Chem., 281 (35):25 757 25 767.
  66. R.K. (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev., 17(21):2614 -2623.
  67. Burhans W.C. and Weinberger M. (2009) Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes? Cell Cycle, 8 (14):2300 232.
  68. C.R., Murakami C.J., Kennedy B.K., Kaeberlein M. (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle, 8 (8):1256 1270.
  69. Buttner S., Eisenberg T., Herker E., Carmona-Gutierrez D., Kroemer G, Madeo F. (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J. Cell Biol., 175 (4):521 525.
  70. Buttner S., Eisenberg T., Carmona-Gutierrez D., Ruli D., Knauer H., Ruckenstuhl C., Sigrist C., Wissing S., Kollroser M., Frohlich K.U., Sigrist S., Madeo F. (2007) Endonuclease G regulates budding yeast life and death. Mol. Cell., 25:233 246.
  71. Bussche J.V. and Soares E.V. (2011) Lead induces oxidative stress and phenotypic markers of apoptosis in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 90 (2):679 687.
  72. D.V., Trabuco L.G., Reboucas N.A., Kowaltowski A.J. (2003) ATP-sensitive K+ channels in renal mitochondria. Am. J. Physiol. Renal. Physiol., 285: F1291 -F1296.
  73. Cao C.M., Xia Q., Gao Q., Chen M" Wong T.M. (2005) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther., 312(2):644 650.
  74. Cap M, Vachova L, Palkova Z. (2010) How to survive within a yeast colony?: Change metabolism or cope with stress? Commun. Integr. Biol., 3 (2):198 200.
  75. E. (1987) Intracellular calcium homeostasis. Ann. Rev. Biochem., 56:395 433.
  76. V., Pena A., Uribe S. (2002) Closure of the yeast mitochondria unspecific channel (YMUC) unmasks a Mg2+ and quinine sensitive K+ uptake pathway in Saccharomyces cerevisiae. J. Bioenerg. Biomembr., 34 (4):299 306.
  77. G., Paraskeva E., Mingot J.M., Braliou G.G., Gorlich D., Simos G. (2009) Transport of hypoxia-inducible factor HIF-lalpha into the nucleus involves importins 4 and 7. Biochem Biophys Res Commun390(2) :235 240.
  78. T., Akiyama K., Sekito T., Sugimoto N., Okabe M., Nishimoto S., Sugahara T., Kakinuma Y. (2009) Tributyltin induces Ycalp-dependent cell death of yeast Saccharomyces cerevisiae. J. Toxicol. Sci., 34 (5):541 545.
  79. Chai Y., Zhang D.M., Lin Y.F. (2011) Activation of cGMP-dependent protein kinase stimulates cardiac ATP-sensitive potassium channels via a ROS/calmodulin/CaMKII signaling cascade. PLoS One, 6(3):el8191.
  80. Chance B. and Williams G.R. (1955) A simple and rapid assay of oxidative phosphorylation. Nature, 175 (4469):1120 -1121.
  81. Chavez E., Moreno-Sanchez R., Zazueta C., Rodriguez J.S., Bravo C., Reyes-Vivas H. (1997) On the protection by inorganic phosphate of calcium-induced membrane permeability transition. J. Bioenerg. Biomembr., 29 (6):571 -577.
  82. Chavez E., Melendez E., Zazueta C., Reyes-Vivas H., Perales S.G. (1997) Membrane permeability transition as indused by dysfunction of the electron transport chain. Biochem Mol Biol lint, 41(5):961 -968.
  83. Chen H. and Fink G.R. (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev., 20 (9):1150 -1161.
  84. W.C., Leach K.M., Hardwick J.M. (2008) Mitochondrial death pathways in yeast and mammalian cells. Review. Biochim. Biophys. Acta, 1783 (7): 1272 1279.
  85. B.V., Dedov V.N., Chernyak V.Ya. (1995) Ca(2+)-triggered membrane permeability transition in deenergized mitochondria from rat liver. FEBS Lett., 365 (1):75 78.
  86. Chernyak B.V. and Bernardi P. (1996) The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur. J. Biochem., 238 (3):623 630.
  87. B.V. (1997a) Cyclosporin A-sensitive release of Ca2+ from mitochondria in intact thymocytes. FEBS Lett., 418 (1−2):131 134.
  88. B.V. (19 976) Redox regulation of the mitochondrial permeability transition pore. Biosci. Rep., 17 (3):293 302.
  89. S.M., Park H. (2009) The novel peptide F29 facilitates the DNA-binding ability of hypoxia-inducible factor-1 alpha. BMB Rep., 42(11):737 742.
  90. Circu M.L. and Aw T.Y. (2008) Glutathione and apoptosis. Free Radic. Res., 42 (8):689 706.
  91. J., Garibal J., Mignotte B., Guenal I. (2009) The mitochondrial TOM complex modulates bax-induced apoptosis in Drosophila. Biochem. Biophys. Res. Commun., 379:931 -943.
  92. A.D., Garlid K.D., West I.C., Lincoln T.M., Downey J.M., Cohen M.V., Critz S.D. (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res., 97:329−336.
  93. Costa A.D. and Garlid K.D. (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am. J. Physiol. Heart. Circ. Physiol., 295 (2): H874 -882.
  94. A.D., Jakob R., Costa C.L., Andrukhiv K., West I.C., Garlid K.D. (2006) The mechanism by which mitoKATP opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem., 281:20 801 20 808.
  95. A.D., Quinlan C., Andrukhiv A., West I.C., Garlid K.D. (2006) The direct physiological effects of mitoKatp opening on heart mitochondria. Am J Physiol Heart Circ Physiol., 290: H406 H415.
  96. Costa A.D. and Krieger M.A. (2009) Evidence for an ATP-sensitive K (+) channel in mitoplasts isolated from Trypanosoma cruzi and Crithidia fasciculate. Int. J. Parasitol., 39 (9):955−961.
  97. P., Chernyak B.V., Petronilli V., Bernardi P. (1995) Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane. FEBS Lett., 362 (2):239 -242.
  98. M. (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J., 341:233 249.
  99. C., Melvin A., Mudie S., Rocha S. (2011) HIF-la depletion results in SPl-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs. Cell Cycle, 10(8):1249 -1260.
  100. Cuong D.V., Kim N., Joo H., Youm J.B., Chung J.Y., Lee Y., Park W.S., Kim E., Park Y.S., Han J. (2005) Subunit composition of ATP-sensitive potassium channels inmitochondria of rat hearts. Mitochondrion, 5(2): 121 133.
  101. I.A., Chung I., Beckmann B.M., Bujnicki J.M., Meiss G. (2008) EXOG, a novel paralog of Endonuclease G in higher eukaryotes. Nucleic Acids Res., 36:1369 1379.
  102. Dai B.D., Cao Y.Y., Huang S., Xu Y.G., Gao P.H., Wang Y., Jiang Y.Y. (2009) Baicalein induces programmed cell death in Candida albicans. J. Microbiol. Biotechnol., 19(8):803 809.
  103. Y.A., Horn T.F., Buntinas L., Gonoi T., Wolf G., Siemen D. (2004) The human mitochondrial KATP channel is modulated by calcium and nitric oxide: a patchclamp approach. Biochim. Biophys. Acta, 1656:46 56.
  104. Y.A., Wolf G., Siemen D., Horn T.F. (2006) Combined modulation of the mitochondrial ATP-dependent potassium channel and the permeability transition pore causes prolongation of the biphasic calcium dynamics. Cell Calcium., 39:387 400.
  105. Dai B.D., Cao Y.Y., Huang S., Xu Y.G., Gao P.H., Wang Y., Jiang Y.Y. (2009) Baicalein induces programmed cell death in Candida albicans. J. Microbiol. Biotechnol., 19 (8):803 809.
  106. De Castro P.A., Savoldi M., Bonatto D., Barros M.H., Goldman M.H., Berretta A.A., Goldman G.H. (2011) Molecular Characterization of Propolis-Induced Cell Death in Saccharomyces cerevisiae. Eukaryot. Cell, 10 (3):398 411.
  107. De Pablo M., Susin S., Jacotot E., Larocette N., Costantini P., Ravagnan L., Zamzani N. and Kroemer G. (1999) Palmitate induces apoptosis via a direct effect on mitochondria. Apoptosis, 4:81 87.
  108. De Smet K., Eberhardt I., Reekmans R., Contreras R. (2004) Bax-induced cell death in Candida albicans. Yeast, 21:1325 1334.
  109. Debska G., May R., Kicinska A., Szewczyk A., Elger C.E., Kunz W.S. (2001) Potassium channel openers depolarize hippocampal mitochondria. Brain Res., 892:42 50.
  110. Debska G., Kicinska A., Skalska J., Szewczyk A., May R., Elger C.E., Kunz W.S. (2002) Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim. Biophys. Acta, 1556 (2−3):97 -105.
  111. Dejean L.M., Ryu S.Y., Martinez-Caballero S., Teijido O., Peixoto P.M., Kinnally K.W. (2010) MAC and Bcl-2 family proteins conspire in a deadly plot. Biochim Biophys Acta., 1797(6−7):1231 -1238.
  112. Del Carratore R., Delia Croce C., Simili M., Taccini E., Scavuzzo M., Sbrana S. (2002) Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutat. Res., 513 (1−2): 183 191.
  113. Deryabina Y.I. and Zvyagilskaya R.A. (2000) The Ca (2+)-transport system of yeast (Endomyces magnusii) mitochondria: independent pathways for Ca (2+) uptake and release. Biochemistry (Moscow), 65(12): 1352 -1356.
  114. Y.I., Bazhenova E.N., Zvyagilskaya R.A. (2000) Ca2±release pathways from mitochondria of the yeast Endomyces magnusii. Biochemistry (Mosc), 65(10):1167 1174.
  115. Y.I., Bazhenova E.N., Saris N.E., Zvyagilskaya R.A. (2001) Ca(2+) efflux in mitochondria from the yeast Endomyces magnusii. J. Biol. Chem., 276:47 801 -47 806.
  116. Y.I., Isakova E.P., Shurubor E.I., Zvyagilskaya R.A. (2004) Calcium-dependent nonspecific permeability of the inner mitochondrial membrane is not induced in mitochondria of the yeast Endomyces magnusii. Biochemistry (Moscow), 69(9): 1025 1033.
  117. R.J., Prescott M., Boyle G.M., Nagley P. (2000) The oligomycin axis of mitochondrial ATP synthase: OSCP and the proton channel. J. Bioenerg. Biomembr., 32 (5): 507 -515.
  118. Dirmeier R, O’Brien K.M., Engle M., Dodd A., Spears E., Poyton R.O. (2002) Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem., 277(38):34 773 34 784.
  119. J.M., Davis A.M., Cohen M.V. (2007) Signaling pathways in ischemic preconditioning. Heart Fail Rev., 12:181 188.
  120. Du L., Su Y., Sun D., Zhu W., Wang J., Zhuang X., Zhou S., Lu Y. (2008) Formic acid induces Yea lp-independent apoptosis-like cell death in the yeast Saccharomyces cerevisiae. FEMS Yeast Res., 8 (4):531 539.
  121. T., Buttner S., Kroemer G., Madeo F. (2007) The mitochondrial pathway in yeast apoptosis. Review. Apoptosis, 12 (5):1011 1023.
  122. J.F., Tielker D. (2009) Responses to hypoxia in fungal pathogens. Cell Microbiol, 11(2):183 -190.
  123. Fabrizio P., Battistella L., Vardavas R., Gattazzo C., Liou L.L., Diaspro A., Dossen J.W., Gralla E.B. and Longo V.D. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J. Cell Biol, 166:1055−1067.
  124. Fabrizio P. and Longo V.D. (2008) Chronological aging-induced apoptosis in yeast. Review. Biochim. Biophys. Acta, 1783 (7):1280 1285.
  125. Facundo H.T., de Paula J.G., Kowaltowski A.J. (2007) Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic. Biol. Med., 42(7):1039 -1048.
  126. B., Sauder U., Aebi U. (2004) The S. cerevisiae HtrA-like protein Nmal 1 lp is a nuclear serine protease that mediates yeast apoptosis. J. Cell. Sci., 117:115 126.
  127. Fannjiang Y., Cheng W.C., Lee S.J., Qi B., Pevsner J., McCaffer J.M., Hill R.B., Basanez G., Hardwick J.M. (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev., 18:2785−2797.
  128. Foger N., Rangell L., Danilenko D.M. and Chan A.C. (2006) Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science, 313:839 842.
  129. F., Soto I.C., Horn D., Barrientos A. (2006) Assembly of mitochondrial cytochrome c oxidase, a complicated and highly regulated cellular process. Am. J. Physiol. Cell Physiol., 291:1129−1147.
  130. Fornazari M., de Paula J.G., Castilho R.F., Kowaltowski A.J. (2008) Redox properties of the adenoside triphosphate-sensitive K+channel inbrain mitochondria. J. Neurosci. Res., 86(7):1548 -1556.
  131. D.B., Rucker J.J., Marban E. (2008) Is Kir6.1 a subunit of mitoK (ATP)? Biochem Biophys Res Commun., 366(3):649 656.
  132. Fukuda R" Zhang H., Kim J.W., Shimoda L., Dang C.V., Semenza G.L. (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129(1):111 -122.
  133. Gao W., Pu Y., Luo K.Q. and Chang D.C. (2001) Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells. J. Cell Sci., 114:2855- 2862.
  134. A., Chedin S., Lagniel G., Aude J.C., Godat E., Catty P., Labarre J. (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol. Microbiol., 76 (4): 1034−1048.
  135. K.D. (1996) Cation transport in mitochondria—the potassium cycle. Biochim Biophys Acta., 1275:123−126.
  136. Garlid K.D., Paucek P., Yarov-Yarovoy V., Sun X., Schindler P.A. (1996) The mitochondrial Katp channel as a receptor for potassium channel openers. J Biol Chem., 271:8796 8799.
  137. Garlid K.D., Costa A.D., Quinlan C.L., Pierre S.V., Dos Santos P. (2009) Cardioprotective signaling to mitochondria. J. Mol. Cell Cardiol., 46 (6):858 866.
  138. Gaskova D., DeCorby A., Lemire B.D. (2007) DiS-C3(3) monitoring of in vivo mitochondrial membrane potential in C. elegans. Biochem Biophys Res Commun., 354(3):814 -819.
  139. Gateau-Roesch O., Pavlov E., Lazareva A.V., Limarenko E.A., Levrat C., Saris N.E., Louisot P., Mironova G.D. (2000) Calcium-binding properties of the mitochondrial channel-forming hydrophobic component. J. Bioenerg. Biomembr., 32:105 -110.
  140. Giannattasio S., Guaragnella N., Corte-Real M., Passarella S., Marra E. (2005) Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene, 354:93 98.
  141. Godon C., Lagniel G., Lee J., Buhler J.M., Kieffer S., Perrot M., Boucherie H., Toledano M.B., Labarre J. (1998) The H202 stimulon in Saccharomyces cerevisiae. J. Biol. Chem., 273 (35):22 480 22 489.
  142. Goglia F. and Skulachev V.P. (2003) A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J., 17 (12):1585 -1591.
  143. V., Robertson J.D., Enoksson M., Zhivotovsky B., Orrenius S. (2004) Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition. Biochem. J., 378:213 -217.
  144. Gourlay C.W., Carpp L.N., Timpson P., Winder S.J. and Ayscough K.R. (2004) A role for the actin cytoskeleton in cell death and ageing in yeast. J. Cell. Biol., 164:803 809.
  145. Gourlay C.W. and Ayscough K.R. (2005a) The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat. Rev. Mol. Cell Biol., 6:583 589.
  146. Gourlay C.W. and Ayscough K.R. (20 056) Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J. Cell Sci., 118 (Pt 10):2119 -2132.
  147. Gourlay C.W., Du W., Ayscough K.R. (2006) Apoptosis in yeast—mechanisms and benefits to a unicellular organism. Mol. Microbiol., 62 (6):1515 1521.
  148. Gourlay C.W. and Ayscough K.R. (2006) Actin induced hyperactivation of the Ras signaling pathway leads to apoptosis in S. cerevisiae. Mol. Cell Biol., 26:6487 6501.
  149. D. (1974) The electromechanochemical model for energy coupling in mitochondria. Biochim. Biophys. Acta, 346:27 78.
  150. W., Stephan C., Chaudhuri B. (1996) Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett, 380:169 175.
  151. Greenwood M.T. and Ludovico P. (2010) Expressing and functional analysis of mammalian apoptotic regulators in yeast. REVIEW. Cell Death Differ., 17 (5):737 745.
  152. E.J., Halestrap A.P. (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J, 307:93 98.
  153. Grover G. and Garlid K. (2000) ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J. Mol. Cell Cardiol., 32:677 695.
  154. M.C., Portz D., Stitz M., Anwar A., Schneider T., Jacob C., Schlaich N.L., Slusarenko A.J. (2010) Allicin disrupts the cell’s electrochemical potential and induces apoptosis in yeast. Free Radic. Biol. Med., 49 (12): 1916 1924.
  155. N., Passarella S., Marra E., Giannattasio S. (2010) Knock-out of metacaspase and/or cytochrome c results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast. FEBS Lett., 584 (16):3655 3660.
  156. B., Bunoust O., Rouqueys V., Rigoulet M. (1994) ATP-induced unspecific channel in yeast mitochondria. J. Biol. Chem., 269 (41):25 406 25 410.
  157. R., Beauregard P.B., Leroux A., Rokeach L.A. (2009) Calnexin regulates apoptosis induced by inositol starvation in fission yeast. PLoS One, 4 (7):e6244.
  158. T.E., Gunter K.K., Sheu S.S., Gavin C.E. (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol., 267(2 Pt 1):C313 339.
  159. Gunter T.E. and Sheu S.S. (2009) Characteristics and possible functions of mitochondrial Ca (2+) transport mechanisms. Biochim. Biophys. Acta, 1787 (11): 1291 1308.
  160. Gutierrez-Aguilar M., Perez-Vazquez V., Bunoust O., Manon S., Rigoulet M., Uribe S. (2007) In yeast, Ca2+ and octylguanidine interact with porin (VDAC) preventing the mitochondrial permeability transition. Biochim. Biophys. Acta, 1767 (10):1245 1251.
  161. Gutierrez-Aguilar M., Perez-Martinez X., Chavez E., Uribe-Carvajal S. (2010) In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel. Arch. Biochem. Biophys., 494 (2):184 191.
  162. Guzy R.D. and Schumacker P.T. (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol., 91 (5):807 819.
  163. Hagen T., Lagace C.J., Modica-Napolitano J.S., Aprille J.R. (2003) Permeability transition in rat liver mitochondria is modulated by the ATP-Mg/Pi carrier. Am J Physiol Gastrointest Liver Physiol., 285(2):G274 281.
  164. Hajnoczky G., Robb-Gaspers L.D., Seitz M.B., Thomas A.P. (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell, 82(3):415 424.
  165. A.P., Kerr P.M., Javadov S., Woodfield K.Y. (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta, 1366:79 94.
  166. A.P. (2009) What is the mitochondrial permeability transition pore? J. Mol. Cell Cardiol, 46:821 831.
  167. Halestrap A.P. and Pasdois P. (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim. Biophys. Acta, 1787:1402 1411.
  168. Hanada M., Aime-Sempe C., Sato T., Reed J.C. (1995) Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J. Biol. Chem., 270:11 962 11 969.
  169. Hanley P.J. and Daut J. (2005) K (ATP) channels and preconditioning: a re-examination of the role of mitochondrial K (ATP) channels and an overview of alternative mechanisms. J. Mol. Cell. Cardiol., 39 (1):17 50.
  170. D. (1956) Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 11:298−300.
  171. Hauptmann P., Riel C., Kunz-Schughart L.A., Frohlich K.U., Madeo F., Lehle L. (2006) Defects in N-glycosylation induce apoptosis in yeast. Mol. Microbiol., 59 (3): 765 778.
  172. D.J., Maddock H.L., Baxter G.F., Yellon D.M. (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning. Cardiovasc Res, 55:534 543.
  173. E., Jungwirth H., Lehmann K.A., Maldener C., Frohlich K.U., Wissing S., Buttner S., Fehr M., Sigrist S., Madeo F. (2004) Chronological aging leads to apoptosis in yeast. J. Cell Biol., 164:501 507.
  174. J.D., Hand S.C. (2009) Metabolic Depression is Delayed and Mitochondrial Impairment Averted during Prolonged Anoxia in the ghost shrimp, Lepidophthalmus louisianensis (Schmitt, 1935). J Exp Mar Bio Ecol., 376(2):85 93.
  175. Hon T., Dodd A., Dirmeier R., Gorman N., Sinclair P.R., Zhang L., Poyton R.O. (2003) A mechanism of oxygen sensing in yeast. Multiple oxygen-responsive steps in the heme biosynthetic pathway affect Hapl activity. J Biol Chem., 278(50):50 771 50 780.
  176. Hong J., Zhang J., Liu Z., Qin S., Wu J., Shi Y. (2009) Solution structure of S. cerevisiae PDCD5-like protein and its promoting role in H (2)0(2)-induced apoptosis in yeast. Biochemistry, 48 (29):6824 6834.
  177. H., Vogt M., Weibel E.R., Fluck M. (2003) Response of skeletal muscle mitochondria to hypoxia. Exp Physiol., 88(1):109 119.
  178. Hu H.L., Zhang Z.X., Chen C.S., Cai C., Zhao J.P., Wang X. (2010) Effects of mitochondrial potassium channel and membrane potential on hypoxic human pulmonary artery smooth muscle cells. Am JRespir Cell Mol Biol., 42(6):661 665.
  179. Huard S., Chen M., Burdette K.E., Fenyvuesvolgyi C., Yu M., Elder R.T., Zhao R.Y. (2008) HIV-1 Vpr-induced cell death in Schizosaccharomyces pombe is reminiscent of apoptosis. Cell Res., 18 (9):961 -973.
  180. Hwang S.O., Boswell S.A., Seo J.S., Lee S.W. (2008) Novel oxidative stress-responsive gene ERS25 functions as a regulator of the heat-shock and cell death response. J. Biol. Chem., 283 (19): 13 063 13 069.
  181. Jaburek M" Costa A.D., Burton J.R., Costa C.L., Garlid K.D. (2006) Mitochondrial PKCepsilon and mitoKATP co-purify and co-reconstitute to form a functioning signaling module in proteoliposomes. Circ Res., 99:878 883.
  182. Jarmuszkiewicz W., Matkovic K., Koszela-Piotrowska I. (2010) Potassium channels in the mitochondria of unicellular eukaryotes and plants. FEBS Lett., 584(10):2057 2062.
  183. Javadov S.A., Clarke S., Das M., Griffiths E.J., Lim K.H., Halestrap A.P. (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol, 549:513 524.
  184. Josse L., Li X., Coker R.D., Gourlay C.W., Evans I.H. (2011) Transcriptomic and phenotypic analysis of the effects of T-2 toxin on Saccharomyces cerevisiae: evidence of mitochondrial involvement. FEMS Yeast Res., 11 (1):133 150.
  185. L.S., Ichas F., Holmuhamedov E.L., Camacho P., Lechleiter J.D. (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature, 377(6548):438 441.
  186. D.W., Bradshaw P.C., Pfeiffer D.R. (1997) Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J. Biol Chem., 272:21 104 21 112.
  187. M.E., Simpkins J.W., Wilson A.M., Downey H.F., Mallet R.T. (2008) Intermittent hypoxia conditioning prevents behavioral deficit and brain oxidative stress in ethanol-withdrawn rats. JAppl Physiol, 105(2):510 517.
  188. J.M., Krajewski S., Armstrong R.C., Wilson G.M., Oltersdorf T., Fritz L.C. (1997) Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell., 8:325 339.
  189. Kang M.S., Lee S.K., Park C.S., Kang J.H., Bae S.H., Yu S.L. (2008) Expression of death receptor 4 induces caspase-independent cell death in MMS-treated yeast. Biochem. Biophys. Res. Commun., 376 (2):305 309.
  190. K., Fong W.P., Tsang P.W. (2010) Antifungal activity of baicalein against Candida krusei does not involve apoptosis. Mycopathologia, 170 (6):391 396.
  191. K., Wong K.S., Fong W.P., Tsang P.W. (2011) Metergoline-induced cell death in Candida krusei. Fungal. Biol., 115 (3):302 309.
  192. N., Jain R., Meineke B., Diver M., Shuman S. (2009) Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA, 15 (6): 1036 1044.
  193. Keyhani E. and Keyhani J. (2004) Plasma membrane alteration is an early signaling event in doxorubicin-induced apoptosis in the yeast Candida utilis. Ann. N. Y. Acad. Sci., 1030:369 -376.
  194. Keyhani E., Khavari-Nejad S., Keyhani J., Attar F. (2009) Acriflavine-mediated apoptosis and necrosis in yeast Candida utilis. Ann. N. Y. Acad. Sci., 1171:284 291.
  195. Y., Ueno M., Terada H. (2007) Difference between yeast and bovine mitochondrial ADP/ATP carriers in terms of conformational properties of the first matrix loop as deduced by use of copper-o-phenanthroline. Biol. Pharm. Bull., 30 (5):885 890.
  196. Klassen R. and Meinhardt F. (2005) Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell. Microbiol., 7:393 401.
  197. Kong J. and Rabkin S. (2000) Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosporin A. Biochim. Biophys. Acta, 1485:45 55.
  198. S.S., Skulachev V.P., Starkov A.A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett., 416(1): 15 -18.
  199. Kotelnikova A.V. and Zvjagilskaya R.A. (1965) On the efficiency of oxidative phosphorylation in yeast mitochondria. Life Science, 4:1651 1655.
  200. A.J., Vercesi A.E., Rhee S.G., Netto L.E. (2000) Catalases and thioredoxin peroxidase protect Saccharomyces cerevisiae against Ca2±induced mitochondrial membrane permeabilization and cell death. FEBS Lett., 473:177 182.
  201. B.F., Kuzminova A.E., Zorov D.B. (1997) The Ca2+ -induced pore opening in mitochondria energized by succinate-ferricyanide electron transport. FEBS Lett., 419 (1):137 -140.
  202. T., Bernardi P., Siesjo B.K. (2001) Acidosis promotes the permeability transition in energized mitochondria: implications for reperfiision injury. J. Neurotrauma, 18 (10):1059 -1074.
  203. F., Frohlich E., Ligr M., Grey M., Sigrist S.J., Wolf D.H., Frohlich K.U. (1999) Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol., 145 (4):757 767.
  204. F., Herker E., Maldener C., Wissing S., Lachelt S., Herlan M., Fehr M., Lauber K., Sigrist S.J., Wesselborg S., Frohlich K.U. (2002) A caspase-related protease regulates apoptosis in yeast. Mol. Cell, 9:911 917.
  205. F., Herker E., Wissing S., Jungwirth H., Eisenberg T., Frohlich K.U. (2004) Apoptosis in yeast. Curr. Opin. Microbiol., 7 (6):655 660.
  206. Madeo F. and Frohlich K.U. (2008) Apoptosis in yeast. Preface. Biochim. Biophys. Acta, 1783:1271.
  207. F., Durchschlag M., Kepp O., Panaretakis T., Zitvogel L., Frohlich K.U., Kroemer G. (2009) Phylogenetic conservation of the preapoptotic calreticulin exposure pathway from yeast to mammals. Cell Cycle, 8 (4):639 642.
  208. K., Mori K., Takatsume Y., Izawa S., Inoue Y. (2005) Diagnosis of cell death induced by methylglyoxal, a metabolite derived from glycolysis, in Saccharomyces cerevisiae. FEMS Microbiol. Lett., 243 (l):87−92.
  209. F., Tani C., Gamberi T., Caselli A., Bianchi L., Bini L., Modesti A. (2007) Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H202. Proteomics, 7 (9): 1434 -1445.
  210. A.J., Wong W.J., Simon M.C. (2010) Hypoxia inducible factors and the response to hypoxic stress. Mol Cell., 40(2):294 -309.
  211. S. (2004) Utilization of yeast to investigate the role of lipid oxidation in cell death. Antioxid. Redox Signal, 6 (2):259 267.
  212. S., Roucou X., Rigoulet M., Guerin M. (1995) Stimulation of oxidative phosphorylation by electrophoretic K+ entry associated to electroneutral K+/H+ exchange in yeast mitochondria. Biochim. Biophys. Acta, 1231 (3):282 -288.
  213. Manon S. and Guerin M. (1997) The ATP-induced K±transport pathway of yeast mitochondria may function as an uncoupling pathway. Biochim. Biophys. Acta, 1318 (3):317 -321.
  214. Manon S. and Guerin M. (1998) Investigation of the yeast mitochondrial unselective channel in intact and permeabilized spheroplasts. Biochem. Mol. Biol. Int., 44 (3):565 575.
  215. S., Roucou X., Guerin M., Rigoulet M., Guerin B. (1998) Characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore? J. Bioenerg. Biomembr., 30 (5):419 429.
  216. B.S., Grigoriev S.M., Skarga Yu.Yu., Olovjanishnikova G.D., Mironova G.D. (2001) Effects of pelargonidine and a benzocaine analogue p-diethylaminoethyl benzoate on mitochondrial K(ATP) channel. Membr. Cell Biol, 14 (5):663 671.
  217. Martinet W., Van den Pias D., Raes H., Reekmans R., Contreras R. (1999) Bax-induced cell death in Pichiapastoris. Biotechnol. Lett., 21:821 829.
  218. Martinez-Serrano A., Satrustegui J. (1992) Regulation of cytosolic free calcium concentration by intrasynaptic mitochondria. Mol Biol Cell, 3(2):235 248.
  219. Mazzoni C., Herker E., Palermo V., Jungwirth H., Eisenberg T., Madeo F. and Falcone C. (2005) Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep., 6: 1076−1081.
  220. G.D., Skarga Y.Y., Grigoriev S.M., Negoda A.E., Kolomytkin O.V., Marinov B.S. (1999) Reconstitution of the mitochondrial ATP-dependent potassium channel into bilayer lipid membrane. J. Bioenerg. Biomembr., 31(2):159 163.
  221. G.D., Belosludtsev K.N., Belosludtseva N.V., Gritsenko E.N., Khodorov B.I., Saris N.E. (2007) Mitochondrial Ca2+ cycle mediated by the palmitate-activated cyclosporin A-insensitive pore. J. Bioenerg. Biomembr., 39 (2):167 174.
  222. K., Nakagawa D., Nakamura M., Okamoto T., Tsurugi K. (2005) Valproic acid induces apoptosis dependent of Ycalp at concentrations that mildly affect the proliferation of yeast. FEBS Lett., 579 (3):723 727.
  223. Moreau C., Jacquet H., Prost A.L., D’Hahan N., Vivaudou M. (2000) The molecular basis of the specificity of action of Katp channel openers. EMBO J., 19:6644 6651.
  224. Murphy M.P. and Smith R.A.J. (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol., 47:629 656.
  225. Y., Kwok W.M., Bosnjak Z.J., Jiang M.T. (2003) Isoflurane activates rat mitochondrial ATP-sensitive K+ channels reconstituted in lipid bilayers. J. Physiol. Heart Circ. Physiol., 284: H1865 H1871.
  226. Narasimhan M.L., Damsz B., Coca M.A., Ibeas J.I., Yun D.J., Pardo J.M. et al. (2001) A plant defense response effector induces microbial apoptosis. Mol. Cell, 8:921 930.
  227. T., Inoue T., Kamiike W., Kawashima Y., Tagawa K. (1989) Involvement of Ca2+ release and activation of phospholipase A2 in mitochondrial dysfunction during anoxia. J Biochem., 106(3):533 538.
  228. O’Rourke B. (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ. Res., 94 (4):420 432.
  229. O’Rourke B. (2007) Mitochondrial ion channels. Annu. Rev. Physiol., 69:19 49.
  230. S.M., Knorre D.A., Severin F.F., Bakeeva L.E. (2009) Yeast cell ultrastructure after amiodarone treatment. Tsitologiia, 51 (11):911 916.
  231. V., Falcone C., Mazzoni C. (2007) Apoptosis and aging in mitochondrial morphology mutants of S. cerevisiae. Folia Microbiol. (Praha), 52 (5):479 483.
  232. Z., Vachova L., Gaskova D., Kucerova H. (2009) Synchronous plasma membrane electrochemical potential oscillations during yeast colony development and aging. Mol. Membr. Biol., 26:228−235.
  233. Park C. and Lee D.G. (2010) Melittin induces apoptotic features in Candida albicans. Biochem. Biophys. Res. Commun., 394 (1):170 172.
  234. Pastore D., Stoppelli M.C., Di Fonzo N., Passarella S. (1999) The existence of the K (+) channel in plant mitochondria. J. Biol. Chem., 274:26 683 26 690.
  235. Pastore D., Tronto D., Laus M. N., Di Fonzo N. and Flagella Z. (2007) Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J. Exp. Bot., 58:195 210.
  236. Perez P. and Cansado J. (2010) Cell integrity signaling and response to stress in fission yeast. Curr. Protein. Pept. Sci, 11(8):680 692.
  237. Pineau L. and Ferreira T. (2010) Lipid-induced ER stress in yeast and P cells: parallel trails to a common fate. FEMS Yeast Res., 10(8):1035 -1045.
  238. D., Sokolikova B., Kolarov J., Sabova L. (2002) The antiapoptotic protein Bcl-x(L) prevents the cytotoxic effect of Bax, but not Bax-induced formation of reactive oxygen species, in Kluyveromyces lactis. Microbiology, 148 (Pt 9):2789 2795.
  239. A.I., Knorre D.A., Markova O.V., Hyman A.A., Skulachev V.P., Severin F.F. (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J. Cell Biol., 168 (2):257−269.
  240. M., Camougrand N., Kinnally K.W., Vallette F.M., Manon S. (2003) Yeast as a tool to study Bax/mitochondrial interactions in cell death. FEMS Yeast Res., 4:15 27.
  241. S., Bouillaud F., Ricquier D., Rial E. (1992) Activation by ATP of a proton-conducting pathway in yeast mitochondria. Eur. J. Biochem., 208 (2):487 491.
  242. S., Bouillaud F., Rial E. (1995) The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae. Biochem. J., 307 (Pt 3): 657 -661.
  243. S., Bouillaud F., Rial E. (1996) The nature and regulation of the ATP-induced anion permeability in Saccharomyces cerevisiae mitochondria. Arch. Biochem. Biophys., 334 (1):43 -49.
  244. Qiu J., Yoon J.H., Shen B. (2005) Search for apoptotic nucleases in yeast: role of Tat-D nuclease in apoptotic DNA degradation. J. Biol. Chem., 280 (15):15 370 15 379.
  245. B.B., Wojtovich A.P., Nadtochiy S.M., Kowaltowski A.J., Brookes P. S. (2011) Redox regulation of the mitochondrial K(ATP) channel in cardioprotection. Biochim Biophys Acta., 1813(7):1309 -1315.
  246. M., Hoppe T., Gorr I., Kalocay M., Richly H., Jentsch S. (2001) Mobilization of processed, membranetethered SPT23 transcription factor by CDC48 (UFD1/NPL4), a ubiquitin-selective chaperone. Cell, 107:667 677.
  247. Raval A.P., Dave K.R., DeFazio R.A., Perez-Pinzon M.A. (2008) epsilonPKC phosphorylates the mitochondrial K (+)(ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res., 1184:345 353.
  248. J., Herker E., Madeo F., Schmitt M.J. (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J. Cell Biol., 168 (3):353 358.
  249. R., Bastianutto C., Brini M., Murgia M., Pozzan T. (1994) Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol., 126(5):1183 -1194.
  250. R., Simpson A.W., Brini M., Pozzan T. (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature, 358(6384):325 327.
  251. M., Rondeau P., Singh N.R., Tarnus E., Bourdon E. (2008) The antioxidant properties of serum albumin. Review. FEBS Lett., 582 (13):1783 1787.
  252. Rockenfeller P. and Madeo F. (2008) Apoptotic death of ageing yeast. Exp. Gerontol, 43 (10):876 881.
  253. X., Manon S., Guerin M. (1997) Modulation of the electrophoretic ATP-induced K(+)-transport in yeast mitochondria by delta pH. Biochem. Mol Biol Int., 43 (1):53 61.
  254. Ruckenstuhl C., Carmona-Gutierrez D., Madeo F. (2010) The sweet taste of death: glucose triggers apoptosis during yeast chronological aging. Aging (Albany NY), 2 (10):643 649.
  255. Ruiz-Meana M., Garcia-Dorado D., Miro-Casas E., Abellan A., Soler-Soler J. (2006) Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc Res., 71(4):715 724.
  256. Ruy F., Vercesi A.E., Andrade P.B., Bianconi M.L., Chaimovich H., Kowaltowski A.J. (2004) A highly active ATP-insensitive K+ import pathway in plant mitochondria. J. Bioenerg. Biomembr., 36:195−202.
  257. K., Bannister W., Balzan R. (2008) Mitochondrial involvement in aspirin-induced apoptosis in yeast. Microbiology, 154 (Pt 9):2740 2747.
  258. A., Knauer H., Ruckenstuhl C., Fussi H., Durchschlag M., Potocnik U., Frohlich K.U. (2009) Vacuolar functions determine the mode of cell death. Biochim. Biophys. Acta, 1793 (3):540 545.
  259. L., Reiser G. (2005) Oxidative stress is involved in the permeabilization of the inner membrane of brain mitochondria exposed to hypoxia/reoxygenation and low micromolar Ca2+. FEBS J., 272(14):3593 3601.
  260. Schmitt M.J. and Reiter J. (2008) Viral induced yeast apoptosis. Biochim. Biophys. Acta, 1783:1413−1417.
  261. G.L. (2007) Oxygen-dependent regulation of mitochondrial respiration. Biochem J., 405(1):1 9.
  262. G.L. (1998) Hypoxia-inducible factor 1: master regulator of 02 homeostasis. Curr Opin Genet Dev., 8(5):588 594.
  263. Severin F.F. and Hyman A.A. (2002) Pheromone induces programmed cell death in S. cerevisiae. Curr. Biol., 12: R233 R235.
  264. F.F., Meer M.V., Smirnova E.A., Knorre D.A., Skulachev V.P. (2008) Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta, 1783:1350−1353.
  265. C., Delivani P., Cullen S.P., Martin S.J. (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol. Cell, 31:570 585.
  266. Shirtliff M.E., Krom B.P., Meijering R.A., Peters B.M., Zhu J., Scheper M.A., Harris M.L., Jabra-Rizk M.A. (2009) Farnesol-induced apoptosis in Candida albicans. Antimicrob. Agents. Chemother., 53 (6):2392 -2401.
  267. Silva R.D., Sotoca R., Johansson B., Ludovico P., Sansonetty F., Silva M.T., Peinado J.M., Corte-Real M. (2005) Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol. Microbiol., 58:824 834.
  268. Silva R.D., Manon S., Gonfalves J., Saraiva L., Corte-Real M. (2011a) The importance of humanized yeast to better understand the role of bcl-2 family in apoptosis: finding of novel therapeutic opportunities. Curr. Pharm. Des., 17 (3):246 -255.
  269. Silva R.D., Manon S., Gon^alves J., Saraiva L., Corte-Real M. (20 116) Modulation of Bax mitochondrial insertion and induced cell death in yeast by mammalian protein kinase Ca. Exp. Cell Res., 317 (6):781 790.
  270. K., Kang P.J., Park H.O. (2008) The Rho5 GTPase is necessary for oxidant-induced cell death in budding yeast. Proc. Natl. Acad. USA, 105:1522 1527.
  271. V.P. (2007) A biochemical approach to the problem of aging: «megaproject» on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc), 72(12):1385 -1396.
  272. Skulachev V.P. and Liberman E.A. (1970) Conversion of biomembrane-produced energy into electric form. IV. General discussion. Biochim Biophys Acta. 216(1):30 42.
  273. V.P., Sharaf A.A., Liberman E.A. (1967) Proton conductors in the respiratory chain and artificial membranes. Nature. 216(5116):718 719.
  274. S., Pozniakovsky A., Bocharova N., Knorre D., Severin F. (2006) Expression of an expanded polyglutamine domain in yeast causes death with apoptotic markers. Biochim. Biophys. Acta, 1757 (5−6):660 666.
  275. S., Durchschlag M., Frohlich K.U., Macheroux P. (2009) The redox-sensing quinone reductase Lot6p acts as an inducer of yeast apoptosis. FEMS Yeast Res., 9 (6):885 891.
  276. Sparagna G., Hickson-Bick D., Buja L. and McMillin J. (2000) A metabolic role for mitochondria in palmitate-iinduced cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol., 279:2124 -2132.
  277. Srivastava S. and Chan C. (2007) Hydrogen peroxide and hydroxyl radicals mediate palmitate-induced cytotoxicity to hepatoma cells: relation to mitochondrial permeability transition. Free Radic. Res., 41 (1):38 49.
  278. K.A., Kaeberlein M., Kennedy B.K. (2008) Replicative aging in yeast: the means to the end. Annu. Rev. Cell Dev. Biol., 24:29 54.
  279. C.C., Bush D.S., Sachs M.M. (1998) Mitochondrial Contribution to the Anoxic Ca2+ Signal in Maize Suspension-Cultured Cells. Plant Physiol., 118(3):759 771.
  280. Sultan A. and Sokolove P. (2001a) Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. Arch. Biochem. Biophys., 386:31 51.
  281. Sultan A. and Sokolove P. (20 016) Free fatty acid effects on mitochondrial permeability: an overview. Arch. Biochem. Biophys., 386:52 61.
  282. A., Wojcik G., Lobanov N.A., Nalecz M.J. (1999) Modification of the mitochondrial sulfonylurea receptor by thiol reagents. Biochem. Biophys. Res. Commun., 262(1):255 258.
  283. Synnott J.M., Guida A., Mulhern-Haughey S., Higgins D.G., Butler G. (2010) Regulation of the hypoxic response in Candida albicans. Eukaryot Cell, 9(11):1734 1746.
  284. A., Jarmuszkiewicz W., Kunz W.S. (2009) Mitochondrial potassium channels. IUBMB Life., 61 (2): 134 143.
  285. Thomas S.G., Huang S., Li S., Staiger C.J. and Franklin-Tong V.E. (2006) Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J. Cell Biol., 174:221−229.
  286. ToddB.L., Stewart E.V., Burg J.S., Hughes A.L., Espenshade P.J. (2006) Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol Cell Biol., 26(7):2817 2831.
  287. Vachova L. and Palkova Z. (2005) Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J. Cell Biol., 169 (5):711 717.
  288. L., Kucerova H., Devaux F., Ulehlova M., Palkova Z. (20 096) Metabolic diversification of cells during the development of yeast colonies. Environ. Microbiol., 11:494 -504.
  289. D., Braeckmans K., Nelis H.J., Coenye T. (2010) Fungicidal activity of miconazole against Candida spp. biofilms. J. Antimicrob. Chemother., 65 (4):694 700.
  290. Villinger S., Briones R., Giller K., Zachariae U., Lange A., de Groot B.L., Griesinger C., Becker S., Zweckstetter M. (2010) Functional dynamics in the voltage-dependent anion channel. Proc Natl Acad Sci USA., 107(52):22 546 22 551.
  291. E., Blokhina O., Fagerstedt K. (2002) Ca2±induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress. Ann. Bot., 90 (4):509 -516.
  292. Votyakova T.V., Bazhenova E.N., Zvyagil’skaya R.A. (1990) Polyamines improve Ca2+ transport system of the yeast mitochondria. FEBS Lett., 261:139 141.
  293. Votyakova T.V., Bazhenova E.N., Zvyagil’skaya R.A. (1993) Regulation of the yeast mitochondrial Ca2+ uptake by polyamines and Mg2+. J. Bioenerg. Biomembr., 25:569 574.
  294. Walter D., Matter A., Fahrenkrog B.M.E. (2010) Brelp-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae. J. Cell Sci., 123 (Pt 11):1931 -1939.
  295. Wang X., Karlsson J.O., Zhu C., Bahr B.A., Hagberg H., Blomgren K. (2001) Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biol Neonate., 79(3−4): 172 179.
  296. J.S., Givskov M., Kjelleberg S. (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr. Opin. Microbiol., 6:578 585.
  297. Weinberger M., Ramachandran L., Feng L., Sharma K., Sun X., Marchetti M. et al. (2005) Apoptosis in budding yeast caused by defects in initiation of DNA replication. J. Cell Sci., 118:3543−3553.
  298. Weinberger M., Feng L., Paul A., Smith D.L. Jr., Hontz R.D., Smith J.S., Vujcic M., Singh K.K., Huberman J.A., Burhans W.C. (2007) DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS One, 2 (8):e748.
  299. Wieckowski M., Brdiczka D. and Wojtczak L. (2000) Long-chain fatty acids opening of the reconstituted mitochondrial permeability transition pore. FEBS Lett., 484:61 64.
  300. Wigfield S.M., Winter S, C., Giatromanolaki A., Taylor J., Koukourakis M.L., Harris A.L. (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer, 98(12):1975 1984.
  301. A.P., Brookes P. S. (2008) The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim. Biophys. Acta, 1777(7−8):882 889.
  302. A.P., Burwell L.S., Sherman T.A., Nehrke K.W., Brookes P. S. (2008) The C. elegans mitochondrial K+(ATP) channel: a potential target for preconditioning. Biochem. Biophys. Res. Commun., 376 (3):625−628.
  303. Wu Q., Tang C., Zhang Y.J., Jiang Y., Li X.W., Wang S.G., Bie P. (2011) Diazoxide suppresses hepatic ischemia/reperfusion injury after mouse liver transplantation by a BCL-2-dependent mechanism. J Surg Res., 169(2):el55 -166.
  304. Wu X.Z., Chang W.Q., Cheng A.X., Sun L.M., Lou H.X. (2010) Plagiochin E, an antifungal active macrocyclic bis (bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. Biochim. Biophys. Acta, 1800 (4):439 447.
  305. Xu C., Wang J., Gao Y., Lin H., Du L., Yang S., Long S., She Z., Cai X., Zhou S., Lu Y. (2010) The anthracenedione compound bostrycin induces mitochondria-mediated apoptosis in the yeast Saccharomyces cerevisiae. FEMS Yeast Res., 10 (3):297 308.
  306. M., Umehara T., Chimura T., Horikoshi M. (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells, 6 (12):1043 -1054.
  307. Yang H., Ren Q., Zhang Z. (2006) Chromosome or chromatin condensation leads to meiosis or apoptosis in stationary yeast (Saccharomyces cerevisiae) cells. FEMS Yeast Res., 6 (8): 1254 -1263.
  308. Yang H., Ren Q., Zhang Z. (2008) Cleavage of Mcdl by caspase-like protease Espl promotes apoptosis in budding yeast. Mol. Biol. Cell., 19 (5):2127 2134.
  309. Yogev O., Singer E., Shaulian E., Goldberg M., Fox T.D., Pines O. (2010) Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol., 8(3):el000328.
  310. Zadrag R., Wojnar L., Bartosz G. and Bilinski T. (2006) Does yeast shmooing mean a commitment to apoptosis? Cell Biol. Int., 30:205 209.
  311. V., Conte L., Trumpower B.L. (2007) Identification and characterization of cytochrome hc subcomplexes in mitochondria from yeast with single and double deletions of genes encoding bc subunits. FEBS J., 214:4526 4539.
  312. Zhang D.X., Chen Y.F., Campbell W.B., Zou A.P., Gross G.J., Li P.L. (2001) Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ. Res., 89(12):1177 1183.
  313. Zhang H., Wang Z.Q., Zhao D.Y., Zheng D.M., Feng J., Song L.C., Luo Y. (2011) AIF-mediated mitochondrial pathway is critical for the protective effect of diazoxide against SH-SY5Y cell apoptosis. Brain Res., 1370:89 98.
  314. Zhu C., Qiu L., Wang X., Hallin U., Cande C., Kroemer G., Hagberg H., Blomgren K. (2003) Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. JNeurochem., 86(2):306 317.
  315. D.B., Juhaszova M., Yaniv Y., Nuss H.B., Wang S., Sollott S.J. (2009) Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc. Res., 83:213 -225.
  316. Zvyagilskaya R.A. and Kotelnikova A.V. (1989) Yeast energy metabolism at the cellular and mitochondrial levels. In: Sov. Sci. Rev. Physocochem. Biol., 18:63 109.
  317. R.A. (1996) Isolation of mitochondria of yeast. In: Manual of Membrane Lipids (Ed. R. Prasad), Springer Verlag., p. 28 30.
Заполнить форму текущей работой