Механизм землетрясений и их классификация
При зарождении землетрясения происходит разрушение породы на ограниченном участке, расположенном на определенной глубине от поверхности Земли. В связи с возникшем ослаблением происходит развитие дислокации на очаг или гипоцентральную часть область землетрясения. Разрушение произойдет там, где порода наименее прочна, а это может быть в разломах между блоками. В силу каких-то глубинных процессов… Читать ещё >
Механизм землетрясений и их классификация (реферат, курсовая, диплом, контрольная)
Механизм землетрясений и их классификация
Многие из сейсмологов, говоря о механизме землетрясений, придерживаются теории упругого высвобождения или упругой отдачи. Они связывают возникновение землетрясений с внезапным высвобождением энергии упругой деформации. В результате длительных движений в районе разлома и накопления в связи с этим напряжений, достигающих предельных для прочности пород величины, происходит разрыв или срез этих пород с внезапным быстрым смещением — упругой отдачей, вследствие чего и возникают сейсмические волны. Таким образом, очень медленные и длительные тектонические движения при землетрясении переходят в сейсмические движения, отличающиеся большой скоростью, что происходит в результате быстрой «разрядки», накопленной упругой энергии. Это разрядка происходит всего за 10−15 секунд (редко за 40−60 секунд).
При зарождении землетрясения происходит разрушение породы на ограниченном участке, расположенном на определенной глубине от поверхности Земли. В связи с возникшем ослаблением происходит развитие дислокации на очаг или гипоцентральную часть область землетрясения. Разрушение произойдет там, где порода наименее прочна, а это может быть в разломах между блоками. В силу каких-то глубинных процессов отдельные участки коры поднимаются или опускаются. При медленном смещении в земной коре происходят пластические деформации. При более быстрых движениях и при большем их градиенте напряжения, возникающие в коре, не успевая рассасываться, достигают величин, при которых в данных условиях происходит нарушение сплошности — либо по готовому, отчасти уже залечившемуся разрыву, либо с образованием нового. С увеличением глубины возрастают всесторонние сжимающие напряжения, и поэтому возникают большие силы трения, препятствующие быстрому разрушению. Возможно по этой причине глубокофокусные землетрясения отличаются большой энергией и продолжительностью.
В настоящее время наиболее распространены две модели распространения сил, вызывающих разрыв в очаге. Первая основана на предположении действия в очаге пары сил, вызывающих касательные усилия вдоль линии разрыва и момент; согласно второй модели в зоне очага существуют две взаимно перпендикулярных пары сил.
Кроме землетрясений, вызванных тектоническими движениями в земной коре и в верхних слоях мантии, существуют два других типа землетрясений, происходящих вследствие извержения вулканов и карстовых явлений, которые очень локальны, редки и обладают малой силой. Землетрясения могут быть вызваны искусственным путем, например при подземном взрыве. Колебания поверхности могут земли могут быть вызваны и работой промышленного оборудования, движением транспорта и т. д. При использовании чувствительной аппаратуры можно убедиться, что поверхность земли постоянно колеблется; эти колебания очень малы и по этой причине называются микросейсмическими. Наличие микросейсм позволяет извлечь очень полезную информацию как для сейсмологов, так и для инженеровстроителей.
Таким образом, в широком смысле по термином землетрясение можно понимать любые сотрясения поверхности Земли. В более узком смысле под землетрясением понимается кратковременное сотрясение поверхности Земли, вызванное сейсмическими волнами, возникшими при местном нарушении сплошности с внезапным выделением в недрах коры или верхней мантии (на глубину примерно до 700 км) упругой энергии.
В какой-то момент землетрясения возникает препятствие взаимному смещению блоков вдоль образовавшихся швов — частично восстанавливаются связи разорванного шва, которыми могут служить силы трения (их появление возможно на сжатых участках), зацепления на поверхностях. Не освободившаяся часть энергии вызывает в новых связях напряжения, которые через некоторое время преодолеют их сопротивление, возникает новый разрыв и новый толчок, однако меньшей силы, чем в момент основного землетрясения. Этих повторных толчков — афтершоков — после сильного землетрясения бывает обычно до нескольких сотен и происходят они в течение нескольких месяцев, постепенно ослабевая. Процесс ослабления толчков во времени не равномерен. Отдельные афтершоки по силе могут приближаться к силе основного землетрясения. Иногда землетрясениям предшествуют слабые толчки — форшоки.
В тех случаях когда землетрясения или вулканы происходят под дном океанов, они возбуждают морские волны, которые, достигая берегов суши и встречая их сопротивление поднимаются на высоту до нескольких десятков метров. Такие волны — цунами (по японски «цу» — порт, «нами» — волна) — временами приносят прибрежным районам большие беды.
Различают две группы сейсмических волн — объемные и поверхностные. Слагающие Землю горные породы упруги и поэтому могут деформироваться и испытывать колебания при резком приложении давления (нагрузок). Внутри объема горных пород распространяются объемные волны. Они делятся на два типа: продольные и поперечные. Продольные волны в теле Земли, как и привычные нам звуковые в воздухе, попеременно сжимают и растягивают вещество горных пород в направлении своего движения. Волны другого типа колеблют среду, через которую они проходят, поперек пути своего движения. Именно они-то, выходя на поверхность, раскачивают из стороны в сторону и вверз-вниз все на земле находящееся, приводя к наибольшим разрушениям. Именно потому, что поверхность твердой Земли — это граница с гораздо менее плотной средой, воздушной (ее называют свободной поверхностью), на земной поверхности объемные сейсмические волны могут свободнее «разгуляться», что обычно и происходит. Этому способствует и свойства приповерхностных грунтов.
Очень важны свойства разных групп и типов сейсмических волн, особенно скорость их прохождения через горные породы. Обычно она измеряется несколькими километрами в секунду и следовательно, на разных расстояниях от очага (гипоцентра и эпицентра) приход волн и ощущается и регистрируется неодновременно. На этом свойстве основано определение координат эпицентра по записям прихода волн на удаленные сейсмические станции. Не менее важны различие в скоростях отдельных групп и типов волн. Так поверхностные волны распространяются медленнее объемных и, следовательно, приходят в пункты наблюдения позднее. В группе объемных поперечные волны распространяются в среднем в 1,75 раза медленнее продольных. Отсюда понятно, почему оказавшиеся в эпицентральной области сильного землетрясения люди часто попадают во власть волн: их толкает, качает, трясет в разных направлениях с разными ускорениями.
Очевидцы нередко «слышат» землетрясения в буквальном смысле слова. Продольные волны сходны со звуковыми. При определенной частоте колебаний (в диапазоне слышимых волн, то есть более 15 герц) они при выходе на поверхность и становятся звуковыми волнами. Если вспомнить, что продольные волны распространяются быстрее, а поперечные нередко несут главные разрушения, легко понять, почему гул может слышаться перед землетрясением. Тут много зависит и от спектров излучения.
Землетрясения классифицируются в зависимости от глубины расположения их очага. Они делятся на следующие три типа1) нормальныес глубиной очага 0−70 км;2) промежуточные — 70−300 км;3) глубокофокусные — более 300 км.